Glucomannan is a Promising Isoniazid’s Enhancer That Inducing Macrophage Phagocytosis

Novita, Bernadette Dian, Wasiyastuti, Widya, Tjahjono, Yudy, Wijaya, Hendy, Hadinugroho, Wuryanto, Wijaya, Sumi, Soegianto, Lisa, Theodora, Imelda, Widoretno, Elisabeth Tri Wahyuni, Samsudin, Kevin and Julian, Alvin (2024) Glucomannan is a Promising Isoniazid’s Enhancer That Inducing Macrophage Phagocytosis. Journal of Advanced Pharmaceutical Technology & Research., 15 (3). pp. 135-241. ISSN pISSN: 09762094, eISSN: 22314040

[thumbnail of Glucomannan is a Promising Isoniazid’s Enhancer That Inducing Macrophage Phagocytosis] Text (Glucomannan is a Promising Isoniazid’s Enhancer That Inducing Macrophage Phagocytosis)
11. Glucomannan_is_a_promising_.pdf

Download (1MB)
[thumbnail of Glucomannan is a Promising Isoniazid’s Enhancer That Inducing Macrophage Phagocytosis] Text (Glucomannan is a Promising Isoniazid’s Enhancer That Inducing Macrophage Phagocytosis)
11. Glucomannan_is_a_promising_hasil cek similarity.pdf

Download (2MB)

Abstract

Isoniazid (INH) is a frontline antituberculosis agent effective against Mycobacterium tuberculosis (Mtb), but the increasing challenge of avoiding multidrug‑resistant tuberculosis, including INH resistance, necessitates innovative approaches. This study focused on enhancing macrophage phagocytosis to overcome INH resistance. Glucomannan, an immunomodulatory polysaccharide, emerged as a potential macrophage activator. Our objective was to characterize the glucomannan‑INH mixture and assess its impact on INH efficacy and macrophage activity. Detailed examination of the glucomannan from Amorphophallus muelleri (0.05%–0.2%) was performed in several methods. INH sensitivity tests were carried out with the Mtb strain H37RV on Löwenstein–Jensen medium. Murine macrophage (RAW264.7) viability and activity were evaluated through MTT and latex bead phagocytosis assays. Ultraviolet‑wavelength spectrophotometry was used to analyze chemical structure changes. Glucomannan (0.05%–0.2%) significantly enhanced murine macrophage viability and activity. When glucomannan was combined with INH, the IC50 value was greater compared to INH only. Phagocytosis assays revealed heightened macrophage activity in the presence of 0.05% and 0.1% glucomannan. Importantly, glucomannan did not compromise INH efficacy or alter its chemical structure. This study underscores the potential of glucomannan, particularly with a lower molecular weight, as a promising enhancer of INH, boosting macrophage phagocytosis against INH‑resistant Mtb. These findings challenge the assumptions about the impact of glucomannan on drug absorption and prompt potential reevaluation. While specific receptors for glucomannan in macrophage phagocytosis require further exploration, the complement receptors are proposed to be potential mediators.

Item Type: Article
Uncontrolled Keywords: Characteristic profile, glucomannan, isoniazid, macrophage phagocytosis, Mycobacterium tuberculosis
Subjects: Pharmacy
Divisions: Journal Publication
Depositing User: F.X. Hadi
Date Deposited: 15 Oct 2024 07:48
Last Modified: 27 Feb 2025 04:46
URI: https://repositori.ukwms.ac.id/id/eprint/41056

Actions (login required)

View Item View Item