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Background and aims: Meals with high protein and fiber could reduce weight and improve diabetes risk factors.
Isomalto-oligosaccharide (IMO), a form of dietary fiber, could induce the afferent signal that causes appetite
suppression. However, the direct effect of fiber supplementation in the form of IMO combined with a high-
protein diet (HPF) on those parameters is still unknown. This study aims to investigate the effect of HPF on
anthropometric parameters and blood glucose regulation of healthy subjects.

Methods: Thirteen healthy subjects were given a hypocaloric high protein diet (HPD) mixed with their prepared
meals for two weeks. Followed by the HPF diet for another two weeks. Their anthropometric parameters, such as
body composition (total body weight, body fat percentage, and fat-free mass), BMI and waist circumference, and
fasting plasma glucose, were measured.

Results: Compared to pre-intervention, HPF could significantly (p < 0.004) reduce the anthropometric param-
eters and fasting plasma glucose. Compared to HPD, HPF could significantly (p < 0.005) reduce more total body
weight, body fat percentage, and BMI. In addition, HPF could induce more satiety than HPD (higher VAS score).
Conclusion: HPF could improve the subject’s anthropometric parameters which is obviously beneficial in pre-
venting the risk of developing diabetes.

1. Introduction

The prevalence of overweight and obesity is rapidly increasing in
every region worldwide. People who are overweight and obese have a
higher risk of suffering from metabolic diseases such as type 2 diabetes
mellitus (T2DM) and cardiovascular diseases (CVD) [1]. Many people in
the last decade have widely practiced high protein diets (HPD) as a
means to reduce the risk of metabolic diseases. Nevertheless, despite
their popularity, the result of recent research on HPD on several
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anthropometric and metabolic parameters showed only slight benefit
[2]. HPD could reduce total body weight while maintaining or
increasing muscle mass [3].

Combining HPD with high dietary fiber (DF) can be a reasonable
approach. DF has played an important role in the human diet since
prehistoric times, such as maintaining energy balance [4,5], improving
cardiometabolic health [5-7], improving insulin sensitivity [8], pre-
venting cancer [9,10], and promoting optimized immune and inflam-
matory signaling required for human health and weight control [11].
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Daily intake of DF could also improve glycemic response and lower the
risk of diabetes by inhibiting the digestion and absorption of metabo-
lizable energy in the gastrointestinal tract, maintaining satiety, and
reducing caloric intake [12,13]. Therefore, the current recommended
dietary fiber intake is around 25-35 g per day [14]. DF is defined
basically as a carbohydrate with three or more monomeric units, which
cannot be hydrolyzed by the endogenous enzymes of the human small
intestine, including naturally occurring non-starch polysaccharides
(NSP) and oligosaccharides found in food, isolated from food raw ma-
terial, and synthetic forms. Because the human small intestine cannot
hydrolyze it, it can pass unchanged into the colon, where it will be
digested or fermented by the colonic microbiota [15].

Nevertheless, DF intake is still below the recommended level in many
countries [14,16,17]. Low DF intake is associated with a low intake of
fruits, vegetables, or whole grains, as the natural source of dietary fiber
[18]. To overcome this problem, DF in the form of a food supplement
may be used to augment a low-DF diet. Isomalto-oligosaccharides (IMO)
is a novel dietary fiber that is a mixture of a-(1 — 6) and a-(1 — 4)-linked
glucose oligomers, synthesized by an enzymatic reaction from starch
[19]. IMO have been widely used in food industries owing to their sta-
bilities, low calorigenic, and prebiotic properties.

Interestingly, there is no publication regarding the effect of IMO-
based dietary fiber and high protein diet supplement combination on
anthropometric profile and fasting plasma glucose. The fiber supple-
mentation in the form of IMO combined with a high-protein diet (HPF)
should have a positive synergistic effect on several anthropometric pa-
rameters and blood glucose regulation. To answer these hypotheses, we
conducted a preliminary repeated single-arm clinical trial with HPD,
followed by HPF intervention in thirteen metabolically healthy adults
with a body mass index (BMI) of >25. The results show that HPF
significantly improves the subject’s body composition by reducing the
total body weight, BMI, body fat percentage, and fasting plasma glucose,
which is obviously beneficial to preventing the risk of developing dia-
betes and other metabolic diseases.

2. Material and methods
2.1. Subjects

Thirteen (n = 13) healthy subjects were voluntarily recruited. In-
clusion criteria were body mass index (BMI) of >25.0, age between 18
and 50 years old, men or women, normal diet, not pregnant, not under
any medication, and not having any disease or acute infection.

2.2. Trial design, intervention, and supplementation

This experiment adapted a single-arm trial analysis (see Supple-
mentary Fig. 1). For the first two weeks, subjects were given hypocaloric
prepared meals with high protein content but low DF contents (HPD). It
contains less than 15 g/d of DF and protein content 30-40% of total
calories. Meal total calorie is 60% of estimated energy requirements
(EER), which is calculated with the formula developed by Institute of
Medicine (IOM) [20]. At the end of the first two weeks, waist circum-
ference, total body weight, body composition, and fasting plasma
glucose were measured. After two weeks of washing, all of the subjects
were given hypocaloric prepared meal (60% of EER) containing high
protein and high DF (HPF). It contains 25-30-g DF and protein content
between 30 and 40% of total calories. At the end of the interventions,
waist circumference, body weight, body composition, and fasting
plasma glucose were measured again. Half of DF content in food comes
from occurring natural fiber from fruit, vegetables, and whole grains,
the other half (50%) come from IMO-based fiber supplement (Fiberc-
reme®, PT. Lautan Natural Krimerindo, Mojokerto, Indonesia; detailed
composition sees Supplementary Table 1) which is added into the pre-
pared meal.
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2.3. Body composition measurement and blood sampling

Body weight, Body Mass Index (BMI), Fat-Free Mass (FFM), and Body
Fat Percentage (BFP) were measured using Tanita Bioelectrical Imped-
ance Analyzer (BIA) from Tanita Corporation (Illinois, USA). Before
measurement, subjects were instructed not to drink coffee, tea, or
alcohol and not to do moderate-to-vigorous physical activity. Waist
circumference (WC) was measured using body girth tape. Capillary
blood samples were taken for analysis of glucose concentration using the
FreeStyle Optium glucose monitoring system (Abbot Laboratories, Cal-
ifornia, USA) for the fasting plasma glucose (FPG) parameter. The
measurement of fasting plasma glucose concentration was performed
twice: [1] in the morning on the first day of dietary intervention (day 1)
for the pre-intervention group, and [2] in the morning on the final day of
dietary intervention (day 15) for the post-intervention group. The dif-
ference between pre-and-post-groups in the different interventions was
analyzed separately.

2.4. Visual analog scale (VAS)

Visual analog scales (VAS) are reliable tools to evaluate hunger and
satiety at the point of food consumption [21]. To acquire the VAS-score,
the subjects completed a defined questionnaire after every meal and
submitted to the research facility on the next day. This procedure was
done every day during the dietary intervention period.

2.5. Calculation of absolute body fat mass, measured fat loss, predicted
fat loss, and discrepancy of measured-predicted fat loss calculation

Absolute body fat mass was calculated by multiplying body fat per-
centage, which is measured using Tanita Bioelectrical Impedance
Analyzer, with total body weight in kilograms. Measured fat loss is the
difference between pre- and post-intervention absolute body fat mass.
On the other hand, predicted fat loss is calculated by dividing the total
calorie deficit after two weeks of dietary intervention by 7700, assuming
that 1 kg of body fat stores 7700 kilocalories of energy [22]. The
measured-predicted fat loss discrepancy is the difference between
measured fat loss mentioned above and predicted fat loss.

2.6. Statistical analysis

The data were analyzed statistically using paired-samples T-Test
methods. The data were presented graphically as the mean + standard
deviation (SD) using GraphPad Prism™ 5.0 (San Diego, USA). All results
were interpreted as significant if p < 0.05.

3. Results
3.1. Subjects’ characteristics

All subjects have completed the trial. Their characteristics, which
consist of age, body weight, body height, body mass index (BMI), sex,
and estimated energy requirements (EER), are shown in Table 1.

3.2. HPF intervention could improve anthropometric parameters,
particularly body fat percentage

The anthropometric parameter analysis and fasting plasma glucose
analysis are shown in Fig. 1. In all parameters, no significant difference
was observed between male and female subjects. Pre-and-post-
intervention body weight and BMI are presented in Fig. 1A and B,
respectively. The reduction of body weight, BMIL, and percentage of body
weight reduction are presented in Fig. 1F and G, and Supplementary
Fig. 1, respectively. A significant reduction of body weight pre-and-post-
intervention in HPD, from 81.78 + 4.52 Kg to 80.67 + 4.47 Kg (p =
0.000) and HPF, from 81.38 + 4.51 Kg to 79.33 + 4.45 Kg (p = 0.000)
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Table 1
Subjects characteristics.

Characterics Mean (Value + SD)

Male Female All
Total samples 6 7 13
Age (years) 32.00 + 4.05 28.00 + 3.27 29.85 + 4.06
Body weight (Kg) 96.7 + 10.29 69.00 =+ 5.46 81.78 + 4.52
Body height (cm) 172.50 + 6.03 160.14 + 5.73 165.85 + 8.52
Body Mass Index (Kg/m?) 32.54 + 3.49 26.98 + 2.67 29.55 + 4.18
Waist Circumference (cm) 110.50 + 6.03 92.20 + 6.06 98.46 + 13.06
Daily calorie intake (60% 1933.83 + 1360.71 + 1625.23 +

EER") 184.46 118.13 331.04

Adult Male EER: 661.8 - 9.53 x Age [y] x Physical Activities x (15.91 x Weight

[kg]) + 539.6 x Height [m].

Adult Female EER: 354.1 - 6.91 x Age [y] x Physical Activities x (9.36 x Weight

[kg]) + 726 x Height [m].

All trial subjects had sedentary activities, their Physical Activities values are 1.0.
2 EER: Estimated Energy Requirements calculated with formula as follows®”.

were observed. Nevertheless, the body weight reduction is significantly
higher in HPF than in HPD (-2.05 £+ 0.27 Kg vs. —1.11 + 0.16 Kg,
p=0.000). There is also a significant reduction in BMI pre-and-post-
intervention in HPD, from 29.55 + 1.14 kg/m? to 29.14 + 1.12 kg/m>
(p=0.000) and HPF, from 29.40 + 1.14 kg/m? to 28.65 + 1.12 kg/m? (p
= 0.000). The reduction in BMI is significantly higher in HPF than in
HPD (—0.75 + 0.10 kg/m? vs. —0.41 =+ 0.06 kg/m?, p=0.0002). Body
weight reduction in HPF is 2.55 + 0.35% from pre-intervention body
weight, significantly higher than body weight reduction in HPD (2.55 +
0.35% vs. 1.35 £ 0.22%, p = 0.000).

Pre-and-post-intervention WCs between different experimental
groups were presented in Fig. 1C. There is a significant reduction of
waist circumference pre-and-post-intervention in HPD, from 102.18 +
3.36 cm to 99.05 + 3.10 cm (p = 0.000) and HPF, from 100.59 + 3.82
cm to 96.59 + 3.62 cm (p = 0.000). The WC reduction between different
dietary intervention was presented in Fig. 1H. There is no significant
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difference in the reduction of waist circumference between different
experimental groups.

Pre-and-post-intervention BFPs between different experiment groups
were presented in Fig. 1D. There is a significant reduction of BFP pre-
and-post-intervention in HPD, from 33.66 + 1.32% to 33.24 + 1.29%
(p = 0.019) and HPF, from 33.52 + 1.26% to 32.65 + 1.30% (p =
0.0003). The BFP reduction between different dietary intervention was
presented in Fig. 11. The reduction of BFP in HPF is significantly higher
than in HPD (—0.88 + 0.15% vs. —0.42 + 0.18%, p = 0.005).

Pre-and-post-intervention FFM between different experimental
groups were presented in Fig. 1E. There is a significant reduction of FFM
post-intervention in HPF compared to its pre-intervention, from 51.51
+ 3.40 Kg to 50.77 + 3.36 Kg (p = 0.000). The muscle reduction be-
tween different dietary intervention was presented in Fig. 1J. The
reduction of FFM in HPF group is significantly higher than in HPD group
(—0.74 + 0.11 Kg vs. —0.22 £ 0.12 Kg, p=0.002).

3.3. HPF intervention could induce fasting plasma glucose (FPG)
reduction

Pre-and-post-intervention FPG between different experimental
groups were presented in Fig. 2A. There is a significant reduction of FPG
pre-and-post-intervention in HPF, from 90.38 + 3.36 mg/dL to 82.54 +
1.93 mg/dL (p = 0.004). The reduction of FPG between different dietary
intervention was presented in Fig. 2B. There is no significant difference
in FPG reduction between different experiment groups.

3.4. HPF intervention could increase the satiety of test subjects

The visual analog scale (VAS), which indicates a subjective feeling of
satiety, was analyzed daily during the dietary intervention period. The
VAS mean of each dietary intervention were presented in Fig. 1N. VAS
score in HPF group is significantly higher than in HPD group (9.23 +
0.17 vs. 8.23 + 0.23, p=0.002) (Fig. 3). There is no significant difference
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Fig. 1. Anthropometric parameters improvement after HPD and HPF interventions.

A-E: Comparison of pre- (black bar) and post-(grey bar) intervention parameters. F-J:

HPF (grey bar). The anthropometric parameters are A, F: Body weight analysis; B, G:
J Fat-Free (Muscle) Mass.

Pre-post difference between different dietary intervention: HPD (black bar) and
Body mass index (BMI); C, H: Waist Circumference; D, I Body Fat percentage; E,

HPD: High-protein diet, HPF: High-protein and High-Fiber Diet, Statistical symbols for all graphics: *p < 0.05; **p < 0.001 compared to Pre-post intervention (for A-

E) or to each dietary intervention groups (for F-J).
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in VAS scores between both sexes.

3.5. HPF intervention could reduce body fat mass closer to its predicted
value

The average of the measured fat loss in HPF is 1.38 + 0.21 kg, which
is significantly higher (p = 0.000) than the value in HPD, which is 0.72
+ 0.16 kg (Fig. 4A). There is a discrepancy between measured fat loss
and predicted fat loss. Predicted fat loss after being corrected by total
calories from snacking is 1.63 + 0.09 kg and 2.04 + 0.12 kg for HPD and

Visual Analogue Scale

10 3k

Score

|
HPF

HPD

Fig. 3. VAS score in HPD and HPF interventions.

The satiety index of each intervention was quantified as a visual analogue scale
(VAS) using a standard questionnaire. HPD: High-protein diet (black bar), HPF:
High-protein and High-Fiber Diet (grey bar); **p < 0.001.

HPF, respectively. Predicted fat loss is significantly higher than
measured in both HPD and HPF (p=0.000). The discrepancy between
measured and predicted weight loss is 50.76 + 12.28% in HPD, which is
significantly higher (p = 0.001) than the value in HPF, which is 25.22 +
12.34% (see Fig. 4B).

3.6. There is no significant correlation between body weight reduction and
FFM reduction in HPF intervention

The reduction in subjects’ body weight is strongly followed by the
reduction in BFP, both in HPD and HPF (r = 0.691, p = 0.009, and r =
0.770, p = 0.002, respectively). The correlation between body weight
reduction and BFP reduction in HPD and HPF are presented in Supple-
mentary Figs. 2A and 2B, respectively. Nevertheless, there is no signif-
icant correlation between body weight reduction and FFM reduction.
The reduction of FFM does not consistently follow the reduction of body
weight.

4. Discussion

4.1. HPF intervention could improve the anthropometric parameters and
increases the subject’s live quality

Due to the fact that diabetes could manifest through the unhealthy
diet correlated with bad anthropometric parameters, the supplementa-
tion of HPF as a novel dietary intervention could significantly improve
the subject’s anthropometric parameters. Indeed, this hypothesis has
been confirmed in Fig. 1. Compared to hypocaloric high protein diet
(HPD), hypocaloric high-protein and fiber diet (HPF) could reduce more
total body weight, body fat percentage, and BMI (see Fig. 1A-E).
Additionally, significant differences in total body weight (BW), body fat
percentage (BFP), and BMI pre-and-post-intervention between different
dietary intervention was observed (Fig. 1F-J). The waist circumference
(WC) was also reduced after two weeks in both dietary interventions
(HPF and HPD), compared to baseline (pre-intervention). Based on the
fact that WC represents visceral fat [23], this study shows that HPD and
HPF have a comparable effect in reducing visceral fat, particularly after
two weeks of continuous intervention. However, WC reduction in HPF
tends to be higher than HPD. For subjects who have WC within obese
criteria (WC > 102 cm for males and WC > 88 cm for females), there is a
WC reduction of as much as 3.15 + 0.70 cm for HPD and 4.10 + 0.73 cm
for HPF. There is no significant difference in WC reduction between HPD
and HPF in obese subjects based on WC criteria. These comparable re-
sults might be ascribed to the short duration of intervention.

Although the reduction of fat-free mass (FFM) in HPF is also higher
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Fig. 4. Measured fat loss and measured-predicted fat loss discrepancy in HPD and HPF interventions.
A: Comparison of measured fat loss. B: Comparison of discrepancy between predicted and measured fat loss (in percentage).
HPD: High-protein diet (black bar), HPF: High-protein and High-Fiber Diet (grey bar); *p < 0.05; ***p < 0.000.

compared to HPD (Fig. 1J), there is no significant correlation between
FFM and BW reduction in HPD and HPF intervention. These results
indicate that body weight reduction is not consistently followed by the
reduction of muscle mass, which is an integral part of FFM. Indeed,
previous studies showed that the reduction of FFM during a short course
of hypocaloric dietary intervention is likely attributed to body water
content [24]. Otherwise, there is a significant and strong correlation
between the reduction of BFP and BW in HPD and HPF (Supplementary
Fig. 2). Furthermore, the WC (see Fig. 1C,H) and BFP changes (see
Fig. 1D and I) strongly indicate that HPF could induce reduction in
abdominal or visceral adiposity.

4.2. Role of HPF-intervention in a reduction of the fasting plasma glucose
(FPG)

In line to the previous study conducted by Pickard et al. which
showed that fiber intake could improve FPG [25], our results (see Fig. 2)
showed that the reduction of fasting plasma glucose (FPG) (7.85 + 2.68
mg/dL) after two weeks of intervention caused by HPF tends to be two
times higher than FPG reduction in HPD (3.62 + 2.51 mg/dL). The di-
etary fiber tends to have an additional effect to a hypocaloric
high-protein diet on fasting plasma glucose in the short duration of
intervention and non-diabetic subjects. The plausible explanation for
these result are mentioned below.

There is a discrepancy between predicted and measured fat loss after
two weeks of dietary interventions. Based on the fact that 1 kg of fats
stores up to 7700 kcal and 40% calorie deficit after 14 days. After being
corrected by calories intake from snacks, it should induce 1.41 £+ 0.08 kg
and 1.85 + 0.11 kg for HPD and HPF, respectively. However, the
measured fat loss in HPD and HPF are 0.72 + 0.16 kg and 1.38 + 0.21
kg, respectively (Fig. 4A). It the discrepancy between predicted and
measured fat loss in HPD and HPF are 50.76 + 12.28% and 25.22 +
12.34%, respectively (Fig. 4B). This discrepancy is most likely caused by
the fall in resting and non-resting energy expenditure due to the un-
derfeeding or hypocaloric diet, and are defined as adaptive thermo-
genesis [26].

4.3. HPF-intervention could induce fat loss and increase the satiety

The measured-predicted fat loss discrepancy in HPF is significantly
lower than HPD. This phenomenon is caused by the lower total calories
intake from snacking in HPF than HPD. These results supported our
other observation regarding the increased satiety feeling induced by
HPF (see Fig. 3, VAS Score). Previous observations showed that IMO
supplementation could promote the growth of lactobacilli that, leads to
an increase in short-chain fatty acid (SCFA) production [27-29].
Furthermore, SCFA could upregulate the synthesis and secretion of the
hunger-suppressing or anorexigenic hormones such as leptin, peptide
YY, and glucagon-like peptide 1 [30,31]. Based on those studies, we
assume that HPF (which contains IMO) could suppress appetite and
snacking reduction, as demonstrated in this manuscript. Furthermore,
HPF might reduce energy harvesting and chronic low-grade inflamma-
tion through modulating gut microbiota as a beneficial manifestation of
IMO-supplementation [29,30]. However, further investigation is
required to understand the detailed mechanism. A previous study
revealed that a change in Firmicutes and Bacteriodes ratio (F/B ratio) in
colonic microbiome was associated with an additional energy harvest of
150 kcal per day [32]. In addition, SCFA produced by IMO fermentation
could, in principle, improve intestinal barrier integrity, reducing LPS
level in blood circulation [29,33,34]. Those previous studies might
explain the reduction of fasting plasma glucose in HPF, which tends to
be higher than that in HPD [35].

5. Conclusions

This study observed that IMO-based dietary fiber supplementation
combined with a hypocaloric high-protein diet could increase satiety,
induce weight loss, reduce body fat percentage, reduce peripheral
adiposity, and improve the subject’s body composition and fasting
plasma glucose better than hypocaloric high-protein diet alone. This is
obviously beneficial as a potential diet supplement to prevent the risk of
developing diabetes and other metabolic diseases.
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