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Abstract 

The Waste Heat Boiler (WHB) System is a steam-generating heat system that 

harnesses the energy transfer from combustion to transform water into steam, 

serving as the primary output. Identifying the plant model of the WHB unit poses 

challenges due to its dynamic characteristics and nonlinear behaviour, which are 

susceptible to the influence of numerous factors. This study involves the 

implementation of experiments aimed at identifying and collecting input data are 

boiler feed water flow and steam product flow, and its output is the real-time 

water level in high pressure drum from the operational activities of a fertilizer 

factory located in Gresik, East Java. The application of the Radial Basis Function-

Neural Network (RBFNN) identifier is justified in identifying the dynamics of a 

WHB system due to its favourable approximation properties and straightforward 

topological structure. The optimal topology for the single hidden layer structure 

RBFNN model with learning rate 0.5 involves using five identifier input vectors 

and nine RBF nodes in the hidden layer, resulting Normalized Square Root Mean 

Square Error (NSRMSE) values of 0.2299. The minimal final prediction error 

also indicates indicate that the output of the RBFNN model is capable of 

accurately estimating the dynamic characteristics of actual measurements. 

Keywords: Identification system, Level, Neural network, Radial basis function, 

Waste heat boiler 
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1.  Introduction 

The boiler is important as a utility unit inside fertilizer and petrochemical 

companies, exemplified by its utilization in PT Petrokimia Gresik. The primary 

purpose of the boiler is to provide thermal energy in the form of hot steam and 

transfer this energy to the steam turbine. The primary product, particularly in steam 

production, is utilized in subsequent stages within the ammonia plant and urea 

process units. The plant employs a Waste Heat Boiler (WHB) unit to meet its steam 

heat energy requirements, using exhaust gas from a gas turbine. The WHB system 

refers to a steam generator heat system that effectively exploits the transfer of 

energy from combustion to transform water into steam, serving as the primary 

output [1]. The steam generated will facilitate the process and provide the necessary 

power for the rotating steam machinery, often known as a steam turbine [1-3]. The 

absence of steam of high quality can cause harm to the rotating machinery. A waste 

heat boiler (WHB) is a specific boiler that exhibits high exhaust gas flow properties 

derived from gas turbines operating at low temperatures. Approximately 60% of 

the heat produced through combustion in the gas turbine is effectively utilized by 

the waste heat boiler (WHB) to facilitate the generation of steam.  

It is essential to effectively regulate numerous parameters to produce high-

quality steam, considering the dynamic features that frequently fluctuate in 

response to the prevailing process load. The initial stage in developing a control 

system, particularly one that relies on a plant model, involves modelling the system 

to ascertain its inherent properties. One approach that might be employed is the 

identification system methodology. It is challenging to identify and determine the 

mathematical model for a highly nonlinear and tightly linked complex system due 

to its dynamic properties. To address this challenge, an alternative strategy involves 

constructing models based on collected or observed data. An experiment was 

conducted to acquire real-time input and output data from a Gresik, East Java, 

Indonesia fertilizer factory. A mathematical model of a dynamic system can be 

derived through two distinct pathways. The initial methodology is grounded in the 

principles of natural law, while the alternative approach relies on empirical 

evidence. System identification refers to the discipline encompassing the artistic 

and scientific aspects of constructing mathematical models for dynamic systems 

based on the analysis of observed input-output data [4].  

The initial stage in developing a control system, particularly one that relies on 

a plant model, involves the creation of a model for the system to ascertain its 

inherent properties [5, 6]. One approach that might be employed is the identification 

system methodology. The impetus for studying systems identification approaches 

arises from the inherent challenge of mathematically expressing a physical system, 

as the equations that describe the system's dynamics are often unknown. The 

influence of several factors, such as the attributes and intricacy of the system, 

temporal limitations, and accessible resources, significantly impacts the outcome. 

This observation is supported by previous research [7].  

System identification is a methodology that intelligently chooses a suitable model and 

dynamically estimates the model parameters. This is done to ensure that the model's 

output closely approximates the response of the actual system when subjected to the same 

input signal. System identification encompasses more than just examining model studies 

and system features; it can also predict process behaviour and develop efficient control 

systems [8, 9]. A research investigation has been conducted using a theoretical 
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framework, where one potential methodology involves using artificial neural networks 

(ANN). Neural networks can acquire knowledge and adjust their behaviour based on a 

sequence of input and output data. Alternative neural network methodologies are widely 

utilized in various identification and control systems, including mathematical modelling 

and control system design for linear and nonlinear systems [8, 10, 11]. Artificial neural 

networks present a promising resolution for real engineering issues requiring intricate data 

processing. These networks exhibit a resilient nature and possess the capacity to model 

highly nonlinear and multivariate systems [8] accurately. The capabilities of artificial 

neural networks in various applications have been applied in areas such as control 

engineering [12], medical science [13] and character recognition [14, 15]. 

In contrast, several research studies have been conducted exploring the 

integration of artificial neural networks and radial basis functions as neurons in the 

hidden layer. These studies encompass various applications such as forecasting [8, 

9], data mining [10], motor speed regulation [9], aircraft control prediction models 

[16], identification of nonlinear systems [7, 10, 17], and temperature regulation. 

Several authors [2, 17, 18] have demonstrated that the RBFNN identifier is a viable 

alternative for approximation in identification systems. This is due to its simpler 

topological structure, faster learning capabilities, and the availability of easy-to-

implement methods [19]. Alitasb and Salau  [20] has also successfully applied 

RBFNN to identify multi-input multi-output (MIMO) boiler systems for 

temperature and pressure model and level water drum, but the network structure 

used 3 hidden layers so that this affects the complexity of the computational 

algorithm and a more complex network structure. 

This study proposes an alternative model estimation for the waste heat boiler 

system using the Radial Basis Function-Neural Network (RBFNN) identifier. This 

choice is motivated by the RBFNN's advantageous features, including its faster 

learning capacity, ability to universally approximate, and capability to approach 

any nonlinear function [11, 21-23]. System identification refers to the discipline 

that encompasses both the artistic and scientific aspects of constructing 

mathematical models for dynamic systems based on observed input-output data [4]. 

The rationale behind investigating system identification techniques arises from the 

inherent challenge of accurately representing a physical system. Often, the 

equations that govern the dynamics of these systems are unknown and attempts to 

derive them would be impractical due to various constraints such as time, resources, 

safety, and cost [4, 11, 18].  

One of the important parameters is the water level in the High-Pressure Steam Drum 

(HP drum). The water level affects the safety of the boiler process continuity. If the water 

level is too high, the steam produced will be too wet so that it has the potential to damage 

the equipment that utilizes the steam in its process utility. Conversely, if the water level in 

the WHB is too low, the components of the boiler tubes with high temperature heating will 

overheat, shortening the life of the boiler. Therefore, by considering safety and risk and in 

order not to interfere with the continuity of the process, the water level in the HP drum needs 

to be controlled at a certain height. In designing a control system, especially one based on a 

plant model, it is necessary to model the system with an input output data approach or known 

as system identification to determine the characteristics of the system. In of the single hidden 

layer radial basis function neural network architecture. This architecture has a simple 

network topology, adaptive learning process capabilities, and the ability to capture the 

characteristics of non-linear systems.  
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2.  Waste Heat Boiler Identification System with Radial Basis 

Function Neural Network Approach 

2.1.  Waste heat boiler unit 

The diagram illustrates the various stages involved in a particular process. Figure 1 

displays the WHB system derived from the Exhaust Gas PT. Petrochemical Gresik No. 

55012/6200 is represented using piping and instrument diagrams (P and ID). The 

system operates on the idea of processing waste heat boilers (WHB), where about 60% 

to 70% of the heat produced through combustion in the gas turbine is utilized by the 

WHB to facilitate steam generation [5, 24]. The primary output, vapor, is used in the 

ammonia and urea production facilities. In conjunction with the emission of exhaust 

gas from the gas turbine, the primary component introduced into the boiler system is 

regulated boiler feed water, commonly called boiler feed water (BFW). The BFW 

(boiler feed water) will be introduced into the system by the condensate pump P2221A 

WHB/B and directed into the low-pressure (LP) drum through the deaerator. The LP 

drum is also linked to the LP evaporator, which elevates the water's temperature within 

the drum, facilitating its transformation into steam through evaporation. 

 

Fig. 1. Schematic P & ID (exhaust gas waste heat boiler system). 

The internal and repetitive circulation process between the LP and LP evaporator 

drum facilitates the attainment of saturation temperature by the steam generated from 

the BFW in the deaerator. Nevertheless, in cases where the saturation temperature 

remains inadequate for generating the LP steam drum, it is imperative to provide 

supplementary steam from the high-pressure (HP) drum. Saturated steam in the LP 

drum will exit the drum and be transported back to the economizer by the action of 

pump BFW P2222 A/B. Under similar circumstances to those observed in an LP 

drum, the HP drum is similarly linked to the high-pressure (HP) evaporator, serving 

an identical purpose. In addition, using the HP steam drum facilitates the maintenance 

of a consistently high temperature in the superheater, hence ensuring the attainment 

of the necessary steam temperature. This is crucial for efficiently operating the 

system's waste heat boiler (WHB) and regulating steam flow and pressure. 

The implementation of experimental design in the WHB system is conducted 

with meticulous attention to various factors, including security, safety, cost, 
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availability of equipment and measuring instruments for each variable 

measurement in the plant, as well as the limitations and constraints associated with 

the operation area of measurement [24].  

2.2.  Artificial neural network (ANN)  

The utilization of artificial neural networks (ANN) has shown significant growth, 

extending its reach to various interdisciplinary domains. Artificial Neural Networks 

(ANNs) find many applications across several disciplines, such as computer 

science, engineering (including electrical, civil, mechanical, and aeronautical), 

medical science, environmental engineering, and business [25, 26]. The neural 

network architecture comprises a singular layer encompassing input, processing, 

and output elements. The quantity of layers is contingent upon the intricacy of the 

problem to be resolved. Evaluating neurons in an Artificial Neural Network (ANN) 

involves the utilization of feed-forward and backpropagation training techniques to 

address errors, as depicted in Fig. 2. The utilization of both algorithms is intended 

to provide optimal outcomes from a given set of training data. The artificial neural 

network (ANN) undergoes a network cycle consisting of four primary steps: (i) 

initialization, (ii) activation, (iii) weight training, and (iv) iteration [27, 28].  

 

Fig. 2. Feed-forward neural network [5]. 

Artificial Neural Networks (ANNs) are utilized to acquire knowledge about 

mapping nonlinear input spaces to output spaces. The radial basis neural network 

(RBFNN) algorithm has gained significant popularity due to its extensive application 

in problem-solving. The network possesses a rapid linear learning algorithm that 

enables the construction of intricate nonlinear mappings [23, 29]. The Radial Basis 

Function Neural Network (RBFNN) design consists of three layers: an input layer, a 

hidden layer, and an output layer [21], as depicted in Fig. 3. 

 

Fig. 3. Single hidden layer of RBFNN architecture [6]. 
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2.3.  Identification system  

The main objective of the identification system is to determine a mathematical 

model or set of models based on the given input-output data [7, 8]. The   

Mathematical models can be represented in the form of mathematical functions   of 

a system by determining the relationship between input and output data at the 

moment, the past of the system in the future from a set of observed data which is 

expressed in the family of function parameterization as follows:  

𝐹 =  {𝑓 (𝑥(𝑡), 𝜃)}                                                                                                (1)  

where is a nonlinear function.  

This paper explores an alternate method for determining the mathematical 

model: the NARX-RBFNN network. This network consists of parameter networks 

(), specifically the RBF networks' weight (wk), centres (bk), and width (ak). 

The Radial Basis Function Neural Network (RBFNN) was initially proposed as 

a feed-forward neural network with a single hidden layer, where radial functions 

were employed as activation functions [7, 22, 29]. The concept can be 

mathematically modelled as a system with several inputs and a single output. The 

mathematical representation of the nonlinear auto-regressive with exogenous input 

(NARX) model is given by Eq. (10). 

𝑦̂(𝑡)  =  𝑓 (𝑦(𝑡 − 1), . . , 𝑦(𝑡 − 𝑛), 𝑢(𝑡 − 1, . . . 𝑢(𝑡 − 𝑚))+e(t)                            (2)  

where y(t) and u(t) are sampled process output and input at time t, n, and m denote 

the number of past output and input, is a nonlinear function describing the system 

behaviours, and e(t) is the approximation error.  

The NARX RBFNN architecture used to identify the waste heat boiler system 

in this study can be shown in Fig. 4. 

 

Fig 4. NARX model based on RBF- identifier. 

The measurements of the input-output pairs are used to train the network to 

approximate the dynamic  , and the following expression gives the network:  

𝑦̂ = 𝑓(𝑥) = 𝑤0 + ∑ 𝑤𝑘ℎ𝑎𝑘,𝑏𝑘
(𝑥)𝑁

𝑘=1                                                                       (3) 

where  𝑦̂ ∈  𝑅 ,   𝑥 ∈  𝑅𝑛+𝑚 , wk, ℎ𝑎𝑘,𝑏𝑘
(𝑥), N, 0w  are the RBFNN output,  input 

vector, weight, radial basis function, number of RBF, the bias, respectively.  

f̂
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Several activation functions, such as spline, multi-quadratic, and Gaussian, 

have been extensively researched. However, the Gaussian type is the most 

prevalent among them. The Gaussian function [19, 30] is commonly selected as the 

standard choice for the radial basis function (RBF), and it is defined as follows. 

ℎ𝑎𝑘,𝑏𝑘
(𝑥) = 𝑒𝑥𝑝 (−

‖𝑥−𝑏𝑘‖2

2𝑎𝑘
2 )                                                                                  (4) 

3.  RBFNN Algorithm for Identification System  

3.1.  Training process  

Radial Basis Function Neural Network (RBFNN) possess several advantages when 

addressing challenges related to non-stationary and nonlinear components. The 

architecture of the RBFNN model consists of three layers: the input layer, the 

hidden layer, and the output layer [8]. In this study, the RBFNN model structure 

with a single hidden layer was proposed because it has a simple model structure 

and computational algorithm and its ability to approximate the non-linear 

characteristics of the system. The steps of the RBFNN training process consist of: 

1) Apply Input vector data set 𝑥𝑖̂as training data as input layer. 

2) Calculation of the output vector of the hidden layer ℎ𝑛𝑘(𝑥𝑖). 

3) Compute the output vector of the RBFNN, which is compared with the 

desired/ measurement output by updating the weight vector to reduce the 

difference until the error approaches zero [9]. 

The RBFNN hybrid learning procedure encompasses two distinct phases. The 

first step involves refining the activation function parameters within the hidden 

layer associated with unsupervised learning. The second stage entails the 

modification of the network output weights through a supervised process. As 

mentioned, the procedure often uses the least squares methodology to approximate 

the observed or measured output data [19]. 

The primary objective of the RBFNN identification algorithm is to iteratively 

adjust the parameters of the RBF-NN model to optimize its performance during the 

training phase. The parameters  can be optimized in the Least Mean Square sense 

by minimizing a cost function error defined by Ko et al. [10]. 

𝐸 =
1

2
∑ 𝑒2𝑇

𝑡=1 (𝑡)                                                                                                   (5) 

The term "error" refers to the discrepancy between the predicted output value 

of the radial basis function neural network (RBFNN) and the true output data or 

measured data. For updating the changes of each parameter 𝑤𝑘 , 𝑏𝑘 , 𝑎𝑘the gradients 
𝜕𝐸

𝜕𝑤𝑘  
 ,

𝜕𝐸

𝜕𝑎𝑘  
, 

𝜕𝐸

𝜕𝑏𝑘  
 are needed to minimize E. The incremental changes of each 

coefficient are 

∆𝑤 =  −
𝜕𝐸

𝜕𝑤
, ∆𝑏 =  −

𝜕𝐸

𝜕𝑏
 , ∆𝑎 =  −

𝜕𝐸

𝜕𝑎
                                                                              (6) 

Thus, each coefficient of the network is updated according to the following rule: 

𝑤(𝑡 + 1) =  𝑤(t) + μ𝑤  ∆𝑤                                                                                             (7) 

𝑏(𝑡 + 1) =  𝑏(t) + μ𝑏  ∆𝑏                                                                                                 (8) 
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𝑎(𝑡 + 1) =  𝑎(t) + μ𝑎  ∆𝑎                                                                                                 (9) 

where 𝜇 is the fixed learning rate parameter. 

3.2.  Validation process 

A dataset of 3000 pairs of input and output data has been obtained in real-time from 

the Plant Historical Data (PHD) software within the Distributed Control System 

(DCS) TDC-3000. The data was collected at a sampling rate of 1 minute. The 

training dataset is taken from more than the first 80% of the data or in this case 

around the first 2500 input output measurement data pairs are taken, and the 

remaining data is allocated for validation, allowing for the evaluation of the model's 

performance and generalization capacity. The residual's mean square error (MSE) 

is a qualitative measure used to assess the goodness of fit. To normalize the MSE, 

it is divided by the variance of the output signal, as expressed in reference [8]. 

𝑁𝑆𝑅𝑀𝑆𝐸 =  
1/𝑛 ∫ [𝑦(𝑡)−𝑦̂(𝑡)]2 

𝑛
𝑡=1

1/𝑛 ∫ [𝑦(𝑡)−𝑦(𝑡)]2𝑛
𝑡=1

                                                                                                (10) 

4.  Results Analysis and Performance 

4.1.  Proposed approach 

The amount/quality of steam produced by the boiler is influenced by the 

temperature, pressure and flow rate of steam produced from combustion in the gas 

turbine and the water level in the drum. Therefore, various parameters in it must be 

well controlled, considering its dynamic characteristics that often change to adjust 

to the existing process load. One important control component is the water level in 

the High-Pressure Steam Drum (HP drum) which must always be maintained at a 

certain height. If it is too high, the steam will be wet so that it has the potential to 

damage the equipment that uses the steam, such as steam turbines, etc. Conversely, 

if it is too low, the tubes of the boiler in question will become overheated so that 

the life of the boiler is short. The initial step in designing a control system, 

especially based on a plant model, is to model the system to determine the 

characteristics of the system. In this study, a system identification technique was 

used using the radial basis function neural network approach. 

The present study employed a simulation methodology that was substantiated 

by using empirical measurements, and its findings are not directly linked to the 

current operational procedures. The primary objective of this measure is to mitigate 

risks that carry significant financial implications, encompassing security, safety, 

and expenses. The research methodology under consideration is: 

• A comprehensive survey is conducted to acquire a theoretical and empirical 

foundation, which can be achieved through an examination of relevant 

literature or by conducting direct field surveys. This literature review aims to 

gather information on the mechanism and process model of the steam drum 

waste heat boiler, which serves as the focal point of investigation in this study. 

• Real-time data inputs and outputs have been obtained via the Plant Historical 

Data (PHD) software within the Distributed Control System (DCS) TDC-

3000, as depicted in Fig. 5. The network simulation approach is carried out 

using multi input single output (MISO) with the flow of boiler feed water and 

product steam as input and the water level in the HP steam drum as output. 
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Fig. 5. Input and output data. 

• The objective of this study is to establish the RBF identifier as the regressor 

and model structure by utilizing the following methodology: 

a. The modelling of the level in a High Pressure (HP) steam drum plant is 

conducted using a Multi Input Single Output (MISO) approach. This 
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approach incorporates data on steam flow, Boiler Feed Water (BFW) flow, 

and the percentage level within the HP steam drum. 

b. Utilizing the process identifier as a parameter estimator is common in the 

Radial Basis Function Neural Network (RBFNN) architecture. 

c. No estimated system delay time. 

d. The unit identification system of the WHB is implemented by a computer 

approach using MATLAB software. 

• Construct a mathematical model of the Waste Heat Boiler (WHB) system using 

data obtained from both scholarly research and on-site measurement data. 

4.2.  Determination of the structure of the input-output variable and 

disturbance  

The water level in the HP drum, which will be utilized for the identification process 

in constructing the modelling system, is influenced by a minimum of two input 

factors and five measurable disturbance variables, as shown in Table 1. 

Table 1. Input-output variable and disturbance. 

Input vector Input [tag number] Disturbance 

𝜇1(𝑡 − 1) 𝜇1: Flow BFW [FCV.22201] Pressure BFW : d1 

Temperature BFW: d2 

Pressure HP Drum: d3 

Temperature HP Drum: d4 

Steam Product  temperature 

d5 

𝜇2(𝑡 − 1) 𝜇2: Steam Product 

Flow[FC.2221] 

 Output [ tag number] 

𝑦𝑚(𝑘 − 1),  
 
𝑦𝑚(𝑘 − 2) 

𝑦𝑚: Level Water in HP 

drum [LC.2223] 

In this study, it is assumed that no estimation is carried out on the regressor 

input in the network, so that the selection of estimators/identifiers has been carried 

out for training to obtain the estimation model in Eq. (11).  

𝑦̂(𝑡) = 𝑓 (𝑦𝑚(𝑡 − 1), 𝑦𝑚(𝑡 − 2), 𝜇1(𝑡 − 1), 𝜇2(𝑡 − 1), 𝜃)                                           (11) 

4.3.  The result of system identification of waste heat boiler plant 

A training dataset consisting of 2,500 data points is utilized while acquiring 

knowledge. The learning rate constant is critical and set at 0.5, which determines 

how the model estimate changes respect to the estimation error when the model 

weights are updated. The selection of these parameters is important because it can 

affect the speed of the network training process and can even cause the process to 

get stuck or become unstable. 

Determining the number of radial basis functions in the network structure is 

related to the reduction of the model order. This means that it will reduce the 

number of parameters in the network so that it can affect the network computation 

time process. In this study, the Final Prediction Error (FPE) criteria [31, 32] will be 

used in this study. namely minimizing the Eq. (12).  

𝐽𝐹𝑃𝐸(𝑓 ) =
 1+𝑛𝑑/𝑛 1

 1− 𝑛𝑑/𝑛 2𝑛
 ∑ (𝑓𝑛

𝑛=1   (𝑥𝑛) − 𝑦𝑛)2                                                       (12) 
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where is the number of parameters in the estimator and d is the input dimension. 

For this RBFNN, the number of parameters is: 

𝑛𝑑 =  𝑘(𝑑 + 2) 

𝐾 = number of radial basis functions in the network. Multiple candidate models 

can be developed during the identification procedure, as depicted in Table 2.  

It is obtained that the best model that minimizes the FPE value is achieved using 

a Gaussian radial basis function with a count of 9, while the total number of network 

parameters is 27, which is the parameters of the network respectively 𝑤𝑘 , 𝑏𝑘 , 𝑎𝑘 are 

weight, dilation and translation.The final prediction error (FPE) value of estimated 

model is 3,14E-04 and the addition of the number of RBF nodes (K>9) does not 

improve the model and even increases its FPE value. It estimates the model-fitting 

error when we use the model to predict new outputs.  

Table 2. The candidate of RBFNN model. 

Number of 

RBF Nodes 
NSRMSE FPE 

Time 

(s) 

2 0.6235 0.003 3.55 

3 0.5038 0.0017 3.52 

4 0.4165 0.0011 3.79 

5 0.3526 7.83×10-04 3.67 

6 0.3054 5.75×10-04 3.89 

7 0.2704 4.43×10-04 3.29 

8 0.2448 3.59×10-04 3.33 

9 0.2299 3.14×10-04 3.4 

10 0.2434 3.49×10-04 3.34 

Figure 6 demonstrates that increasing the number of RBFNN nodes decreases 

the NSRMSE value. However, it is seen that the NSRMSE value exhibits a boost 

when the number of RBF nodes is set to 10. 

 

Fig. 6. Numbers of RBF nodes vs NSRMSE. 

Figure 7 illustrates the discrepancy between the simulated output of the RBFNN 

model and the measured output, hence indicating the presence of error. The 

RBFNN model has effectively detected the true dynamics of the HP steam drum's 

percentage level. This is proven by the minimum NSRMSE value of 0.2299; the 

computational time required for this analysis was 3.40 seconds.  
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(a) 

 
(b) 

Fig. 7. (a) The RBFNN model to the measurement output, (b) error. 

Following identifying the optimal structure for the Radial Basis Function Neural 

Network (RBFNN) during the learning phase, the subsequent model validation stage 

involves employing the remaining 500 measurement data as validation data. Figure 8 

displays the outcomes of the validation model and any validation faults.  

 
(a) 

 

(b) 

Fig. 8. (a) Validation model and (b) error validation. 
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The findings indicate that the RBFNN models' output can accurately represent 

the dynamic nature of real observation measurements. For further research, based 

on the RBFNN model structure that has been successfully implemented, a control 

system design will be conducted. 

5.  Conclusion 

The efficacy of the identification method using a Radial Basis Function Neural 

Network (RBFNN) identifier has been empirically demonstrated. The RBFNN 

structural model was utilized and examined using measurement data from the waste 

heat boiler (WHB) facility. After conducting data pre-processing identifying 

multiple candidate models through programming and simulation using MATLAB, 

it is observed from the graphical representation that the RBFNN model exhibits a 

satisfactory match when compared to the actual output measurements. The hybrid 

learning process is partitioned into 2500 measurement data and 500 data for model 

validation based on a dataset of 3000 input-output pairs from the WHB unit. The 

optimal topology for the Radial Basis Function Neural Network (RBFNN) entails 

using five input vectors as identifiers and incorporating nine RBF nodes within the 

single hidden layer, resulting in modest Normalized Square Root Mean Square 

Error (NSRMSE) values of 0.2299. This has the advantage of solving the problem 

of high dimensions of network inputs of more than 3. This study's findings 

demonstrate that the RBFNN models' output can accurately represent the dynamic 

nature of real observation measurements.  
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