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 The majority of modern industrial processes outcomes are of multivariate. 

Univariate control charts can lead to misleading conclusions in the case high 

correlation among variables. This paper presents a novel multivariate statistical 

process control to monitor electronic products with multivariate correlated 

outcomes. We develop a procedure for monitoring multivariate auto-correlated 

data by multivariate autoregressive (MAR) model using neural network. This 

study investigates the significance and sensitivity in the use of MCUSUM, 

MEWMA and T2 Hotelling to detect small changes in the mean vector of a 

process. The identification of out-of-control signals generated from 
multivariate statistical process control is derived from univariate charts and 

decomposition approach. The proposed decomposing statistics determines the 

contribution of variables in out-of-control signals by T2 Hotelling multivariate 

control charts. Further, MCUSUM and MEWMA control charts have good run 

length performance and are sensitive to detect small changes in the process's 

mean vector, which enables fast action. 

 

Keywords: 

multivariate statistical process control, 

decomposition analysis, residual control 

chart 

 

 

 
1. INTRODUCTION 

 

The requirements of product inspection have become more 

challenging as the product attributes becomes complex and 

increasingly correlated over time. Since variability is a major 

signal of poor quality, statistical process monitoring is a tool 

of quality control [1]. Statistical process monitoring (SPM) in 

many continuous flows of the electronic product 

manufacturing industry usually evolves over time to deal with 

auto-correlated, multivariate quality data. An efficient SPM 

system can rapidly detect changes in a process that may result 
from uncontrollable and unpredictable causes.  

While traditional control charts assumed that the process is 

independently distributed over time, this assumption is 

violated with the advances in electronic product 

manufacturing. The existence of autocorrelation results in the 

creation of control charts for variables being in violation of 

one of the main assumptions, namely serial-sample 

independence. The breaching presumption of independence 

affects both the Average Run Length (ARL) of the control 

charts and renders them unstable [2]. In addition, too many 

false alarms may be detrimental because an incorrect source of 

variation may be misidentified and/or the process engineer 
tends to disregard the control charts altogether. It can thus 

explain the relatively low use of control charts on continuous-

flow systems [3]. 

SPM is also facing multivariate problem because the 

product quality of the electronic product manufacturing 

industry usually is determined by several interrelated quality 

attributes/variables [4]. Interrelated between variables has a 

major impact on the statistical properties of traditional control 

charts and can lead to a significant increase in the average false 

alarm rate and a decrease in the ability to detect process 

changes. While applying univariate control charts to each of 

variables, this approach can mislead quality decisions. 

Therefore, multivariate based quality control methods is 

required to consider those variables simultaneously.  
The present study will address the auto-correlated, 

multivariate quality control for electronic product 

manufacturing. We propose a model based on ANN to predict 

and build the residual based control chart for multivariate data 

with autocorrelation order p (AR(p)) processes.  

The rest of this paper is organized as following. Section 2 

discusses relevant literature review, such as SPM of 

multivariate auto-correlated observations, multivariate control 

chart, and ANN for multivariate and auto-correlated 

observations. Section 3 details the research methodology 

including manufacturing process and research variables. 

Section 4 illustrates a practical application and discussion. 
Finally, conclusions are provided in Section 5. 
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2. LITERATURE REVIEW 
 

2.1. Multivariate auto-correlated control charts  

Autocorrelation occurs in most of the continuous and batch 

operation process [5] and its solution is constantly searched. 
Loredo [6] presented a method for monitoring auto-correlated 

processes based on regression adjustment. Psarakis & 

Papaleonida [7] suggest that even small levels of 

autocorrelation can have a major impact on the statistical 

properties of traditional control charts and can lead to a 

significant increase in the average false alarm rate and a 

decrease in the ability to detect process changes. One approach 

to dealing with the problem of autocorrelation is to filter out 

autocorrelation by a time series model and use residuals for 

control. Besides that, the residuals would be statistically 

uncorrelated if the time series model is accurate. 

Assumptions in standard quality control then will be 

reached and a conventional control chart can be used. Callao 

and Rius [8] demonstrated that residual control charts provide 

the device behavior over time and efficient detection 

capabilities using an AR(1). Many methods are available for 

the monitoring and control of multivariate systems by an 

extension of the univariate case. According to Khediri & 

Mohamed [9], the use of multivariate autoregressive (MAR) 

models is made in the presence of a multivariate method, 

characterized by a serial correlation between various variables, 

measurement, and monitoring of the system. Their research 
proposed an MAR control chart for multivariate auto-

correlated processes. For an MAR process with m variables, it 

is denoted by  mt2t1tt x,,x,xx   as a  1m  vector.  

Psarakis and Papaleonida [7] mentioned that once a shift is 

observed in the mean and/or variance of the residuals process, 

it is assumed that the mean and/or variance of the process itself 

has changed. Plotting the residuals on a control chart thus 

provides a mechanism for detecting a shift in a process. The 

logic of using residual charts is that the residuals will be 

distributed random variables independently and identically if 

the correct time series model is applied to the data. Then all 

the requirements of conventional quality control will be 

fulfilled, and any of the traditional SPC charts can be used. 
Therefore, the construction of time series model for 

multivariate auto-correlated data becomes very important in 

statistical process control with multivariate auto-correlated 

data processes. Traditionally, the ARIMA model was one of 

the most used linear models of time series prediction. The 

ARIMA model, however, cannot easily capture the nonlinear 

patterns. 

To resolve the autocorrelation issue, researchers seek for 

solutions. Alwan and Roberts [10] introduced an approach to 

deal with autocorrelation in creating of control chart by using 

residual based control chart. Woodall and Faltin [11] reviewed 
the impact of self-correlation on control charts output and how 

to deal with autocorrelation. Several methods related to 

autocorrelation problems are developed, such as cumulative 

sum (CUSUM) control chart with autocorrelation data [12], 

[13], [14]. Further, researchers [15], [16], [17], and [18] also 

developed control charts with autocorrelation data by 

exponentially weighted moving average (EWMA) control 

chart.  

Control charts with multivariable are studied in literature, 

such as T2 Hotteling, multivariate cumulative sum 

(MCUSUM) control chart and multivariate exponentially 

weighted moving average (MEWMA) control chart [19], [20], 

[21], and [22]. Some researchers also developed improved 

control charts to deal with multivariate auto-correlated data, 

which related to multivariate data with time series effect [23], 

[24], [25], [26], and [27]. Jarrett and Pan [28] developed 

multivariate control charts for independent processes and 

univariate control charts for auto-correlated processes. Their 
research proposed a multivariate autoregressive (MAR) 

control chart for multivariate auto-correlated processes.  

2.2. Residual control chart 

2.2.1. T2 Hotelling Control Chart 

The multivariate extension of Shewart-type control chart is 

T2 Hotelling’s chart [5]. In 1947, Harold Hotelling introduced 

a control chart that could describe multivariate observations 

known as the T2 Hotelling control chart. There are two 

versions of the T2 Hotelling control map calculation, namely 

subgroup data and individual observation data. The well-

established Shewart X-Chart is a simple, univariate statistics 
used to measure the process 's stability against large shifts. In 

terms of standard deviation, a large magnitude is defined 

statistically. Since residuals are assumed to have a zero mean 

and a 𝜎𝑟  standard deviation, an observation is considered in 

control when the target residual value 𝑟𝑖  lies between the 

control limits defined by 𝜆𝜎𝑟 , where a given in-control run 

length property is determined by λ. Using the Mahalanobis 

distance [25] this chart reduces the residuals to a scalar. If Eq. 

1 condition is met, an observation is assumed to be in-control. 

 
𝑇𝑖

2 = 𝑅𝑖
𝑇 ∑ 𝑅𝑖

−1

𝑅

𝑚(𝑛 − 1)

𝑛 − 𝑚
𝐹𝑚;𝑛−𝑚;(𝛼);  for 𝑖

= 1,2, ⋯ , 𝑛 

  (1) 

Where n is number of observations, m is the number of 

variables, 𝑅𝑖  is the residual vector and 𝐹𝑚;𝑛−𝑚;(𝛼)  is Fisher 

distribution. The term α is the risk level and it ensures a desired 

in-control ARL or in-control rate of false alarm. ∑ 𝑅𝑖
−1
𝑅  is the 

inverse off the estimated residual covariance matrix. 
 

2.2.2. Multivariate CUSUM control chart 

The CUSUM chart was created to address the problem of 

Shewart and T2-Hotelling control charts that are insensitive to 

moderate changes, since they use only the most recent 

observation details [9]. To detect minor process changes, 

CUSUM charts accumulate deviations from a given target in 

the residuals of previous observations. The most widely used 

CUSUM control procedure is Crosier's chart [29]. For 𝑆0 = 0, 

where 0 is a 1× m matrix of zeros, the statistics is as follows, 

 𝑆𝑖 = {

0                                             , if 𝐶𝑖 ≤ 𝑘

(𝑆𝑖−1 + 𝑅𝑖) (1 −
𝑘

𝐶𝑖
)           , otherwise

 (2) 

 𝐶𝑖 = (𝑆𝑖−1 + 𝑅𝑖)Σ𝑅
−1(𝑆𝑖−1 + 𝑅𝑖)𝑇 (3) 

Crosier’s chart signal a shift when 𝑇𝑆
2 = 𝑆𝑖

𝑇 ∑ 𝑆𝑖
−1
𝑅  overcomes 

a predetermined limit H. The CUSUM scheme indicates when 

the S statistics are greater than a certain level H. So that, if 

𝑆𝑖 > 𝐻, where does the chart indicate a change of process for 

a given in-control desired run length (RL) characteristic, k and 

H must be calculated beforehand. 

Common practice in CUSUM procedures is to assume that 

sample size is equal to one. Multivariate CUSUM 



 

(MCUSUM) statistic 𝑆𝑖 allows to detect a specific shift in the 

process mean vector: 

 𝑆𝑖 = 𝑚𝑎𝑥{𝑆𝑖−1 + 𝑎𝑇𝑅𝑖 − 𝑘, 0}    (4) 

where, 

𝑎𝑇 =
𝛿𝑟

𝑇Σ𝑟
−1

√𝛿𝑟
𝑇Σ𝑟

−1𝛿𝑟

 

which 𝛿𝑟 is the residual mean vector and Σ𝑟 is the variance-
covariance matrix. An MCUSUM scheme cumulates 

deviations more than k units from the goal mean value. Hence, 

k serves as the reference value of the scheme. The control 

scheme signals an out-of-control situation when the value of 

𝑆𝑖  is greater than a certain pre-determined decision value H 

(Issam and Mohamed, 2008). 

 

2.2.3. Multivariate EWMA control chart 

Although CUSUM charts take all the previous 

measurements into account, EWMA charts the last 

observation weight based on its significance in characterizing 
the process. The greater the value of λ, the greater the last 

observation's effect [5]. The EWMA statistics are iteratively 

described as Eq. 5, 

 𝑍𝑖 = (1 − 𝜆)𝑍𝑖−1 + 𝜆𝑅𝑖  ;  for 𝑖 = 1,2, ⋯ , 𝑛    (5) 

where λ is diagonal matrix of value 0 ≤ 𝜆𝑗 ≤ 1, 𝑗 =

1,2, ⋯ , 𝑚.  The multivariate EWMA (MEWMA) scheme 

signals if the 

 𝑇𝑍
2 = 𝑍𝑖

𝑇 ∑ 𝑍𝑖

−1

𝑍
 (6) 

surpasses a predetermined value H, where H > 0 is chosen to 

achieve a specified in-control (on-target) ARL0. The 

asymptotic form of the covariance matrix is       Σ𝑍 = (
𝜆

2−𝜆
) Σ𝑅 

[30]. 

Reynolds and Lu [31] investigated AR(1), AR(2) and 

ARMA(1,1) models for a residual X-chart and pointed out that 

the residual X-chart may lack the capacity to detect the mean 

shift of the processes. Those research, however, considered 

only for processes which has small order of p on 

autoregressive AR(p) model. Whereas real condition 
sometimes autocorrelation with high order (p > 5) are 

occurred. Besides that, multivariable with high autocorrelation 

also must considered in one time. This condition usually 

occurs in the manufacturing industry with mass production 

and fast flow production. Therefore, the general multivariate 

autoregressive (MAR) models should be developed to 

overcome multivariable and autocorrelation problem on 

statistical process monitoring using residual based 

multivariate control chart. 

2.3. Applying ANN to SPM of multivariate auto-correlated 

observations 

Artificial neural network (ANN) is an estimation tool for 

the output process (responses) [32]. Multi-layer perceptron 

(MLP) is a nonparametric estimator that can be used for 

classification and regression. A multilayer feed forward ANN 

with continuous output layer is suitable for regression 

problem.  

If an AR(p) model follows the quality characteristics of an 

auto-correlated phase, the mean vector of each cycle is a 

function of the mean vectors of the previous p cycle. 

Consequently, the inputs of the desired ANN are the quality 

characteristics vectors of previous p periods, and the output 

will be the quality characteristics vector of the time we need 

to forecast. In the implementation process, to generate the 

forecasted vector in the output layer, we add the characteristics 

of the p preceding periods for each cycle to the network input 

layers. Arkat et al., [3] mentioned that vector of the residuals 
of that cycle is the difference between the forecasted and the 

actual values of the quality characteristics vectors of each 

period. 

Over the last two decades, research in statistical process 

monitoring fields and practices applied machine learning to 

detect and diagnose faults of the industrial operation process 

and production results. In terms of data analysis in SPM, 

artificial neural network (ANN) has been applied since 1980s 

[3]. Some scholars studied ANN applications in univariate 

control chart, such as [33], [34], and [35]. ANN has also been 

applied to monitor multivariate processes, such as [36], [37], 
[38], [39], and [40]. Arkat et al [3] designed an ANN-based 

model to forecast and construct residual CUSUM chart for 

multivariate autoregressive of order one, AR(1), processes. 

Khediri et al. [5] proposed support vector regression to 

construct several control charts that allows monitoring of 

multivariate nonlinear auto-correlated processes.  

2.4. Summary  

There is a recurrent violation of independently distribution 

assumptions with the advance made in many automation 

processes such as electronic component manufacturing 

because the high selection of samples creates a set of 

observations that are close enough to be dependent. How to 
apply and evaluate control charts designed to account for 

autocorrelation is critical. Residual control charts provide a 

good understanding of the device behavior over time and 

efficient detection capabilities but does not fully fulfill the 

requirement of autocorrelation and multiple variates 

observations. 

 

3. METHOD 
 

This study aims to present a residual control chart using 

MAR model with ANN (MAR-ANN) to solve the SPM 

problem related to multivariate with auto-correlated 

observations. Moreover, this study makes diagnostic of out-of-

control signal in multivariate control chart using 

decomposition technique. Comparison of multivariate control 

chart with univariate one is also conducted. Figure 1 shows the 

operational procedure of the proposed mothed. Multiple 
variables are defined as the quality parameter which correlate 

to each other, and each variable is of time series.  

Correlation test is employed to know the strength of 

correlation between variables. In this study, correlation test 

determines the correlation between quality parameters of a 

product. If there is a correlation between quality parameters, 

then the control chart preparation is based on a multivariate 

control chart approach because it will involve more than one 

quality parameter in one chart. The hypothesis used in testing 

the correlation between quality parameters is as follows. To 



 

determine whether there is a correlation between quality 

parameters is based on the p-value. 

H0: 𝜌 = 0 or there is no correlation 

H1: 𝜌 ≠ 0 or there is a correlation 

In terms of autocorrelation, this study applies a method 

proposed by Loredo [6] for monitoring auto-correlated 

processes that showed the superiority of residual-based control 

charts in comparison with observation-based control charts 

when detecting the mean shift in short-run auto-correlated data 

processes. Each variable is examined by autocorrelation test to 

know whether each variable correlates with time changes. The 

autocorrelation test of each variable can be seen visually 
through the autocorrelation function (ACF) plot graph. 

Variables have a significant autocorrelation if there is a 

significant lag in the ACF plot. To overcome autocorrelation, 

time series modeling must be done, the model obtained 

calculates the model error to meet the assumption of white 

noise. The coefficient of autocorrelation lag k measures the 

correlation between values of each variable at time t and time 

t-k and shows the limit of probability around 0. If the 

autocorrelation graph is below the 95% likelihood limits at a 

certain lag, a large autocorrelation occurs at that lag.  

Figure 1 presents a four-step procedure. First, data are 

checked for each variable by ACF and correlation between 
variables by Pearson’s correlation. Second, MAR modelling 

process determines the model considering autocorrelation and 

multivariate. To estimate MAR, this research proposes an 

ANN with MLPRegressor approach. Third, residual white-

noise checking is conducted to ensure all residual variables can 

be used for the multivariate control chart. White noise residual 

checking involves multivariate normality, independence and 

identical test. Then, fourth step builds a residual-based 

multivariate control chart where residual is the difference 

between actual value and estimated value based on the MAR 

model of each variable. 
 

Autocorrelation

Data Checking

Multivariate

Input 
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MAR Modelling 

Process
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Residual 

Calculation

Residual white-
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Residual-Based 

Multivariate Control 
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MCUSUM
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Figure 1. Procedure to build the proposed control chart  

If the quality characteristics of an auto-correlated process 

follow an AR(p) model, the mean vector of each period is a 
function of the mean vectors of the previous p periods. The 

inputs of the desired ANN are therefore the quality 

characteristics vectors of the previous p periods and the output 

will be the quality characteristics vector of the period to 

forecast. Before forming the ANN, the MAR as time series for 

multivariate model is performed to determine the 

autoregressive order p for each factor.  

Based on Khediri et al. [5], this study performs time series 

estimation for a multivariate process by MAR. Each input 

variable 𝑌(𝑖=1,2,…,𝑚)𝑡  is defined by the previous variables of the 

series (𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)), where m is the 

number of variables and p is the lagged time. Supposed that 
we have an autoregressive process with m variables and order 

p that need to be estimated, one can present  𝑌(𝑖=1,2,…,𝑚)𝑡  by 

Eq. 7: 

 𝑌(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝))  (7) 

Estimation of the process using MAR model provides 𝑓 which 

allows to predict 𝑌(𝑖=1,2,…,𝑚)𝑡 as Eq. 8: 

 𝑌̂(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)) (8) 

If the estimation is well calculated, the error term vector is 

computed based on Eq. 9 that will be used to generate the 
control chart, which would be time-independent, usually 

distributed with zero means.  

 𝑒𝑡̂ = (𝑌(𝑖=1,2,⋯,𝑚)𝑡 − 𝑌̂(𝑖=1,2,⋯,𝑚)𝑡 (9) 

Indeed, if a shift is present, the process will no longer be 

represented by the function f and thus the residual term 𝑒𝑡̂ 

would also be affected and shifted. Further, to find the residual 

used for control chart, this study uses the MAR model, as 

indicated in Eq. 10. 

𝑦𝑡 = 𝑐 + ∅(𝐵)𝑦𝑡 + 𝑒𝑡                                                           (10) 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝑒𝑡                        

where 

𝑦𝑡 = (𝑦1,𝑡, 𝑦2,𝑡, … , 𝑦𝑚,𝑡)′ is (mx1) vector of variable Y 

𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑚)′ is (mx1) vector of constant value 

𝑒𝑡 = (𝑒1,𝑡 , 𝑒2,𝑡, … , 𝑒𝑚,𝑡)′  is (mx1) vector residual, with 

assumption 𝑒𝑡~IIDN (0, 𝛺) and 𝑣𝑎𝑟(𝑒𝑡𝑒𝑡)=Ω. 

∅ = coefficient of MAR model, matrix (mxm)  

𝑡 = 1,2, … , n 
B = backshift operator 

m = number of variables 

p = order of MAR 

In this study, the MAR residual control chart, which 

involves a number of input and output variables and a fitting 

technique to find the satisfied residual, is empowered by a 

multilayer perceptron regressor (MLPRegressor) (Alpaydin, 

2010) to obtain good fitting result. MLPRegressor can 

approximate the nonlinear functions of the input for regression 

by forming higher-order representations of the input features 

using intermediate hidden layer. 
 

4. EXPERIMENT RESULT AND DISCUSSIONS  

 

4.1 Manufacturing process 

 

This study implements the proposed MAR-ANN model for 

electronics products. The target manufacturing process of the 

product includes stamping, electroplating, injection molding, 

assembling and packaging, as shown in Figure 2. An automatic 

optic inspection (AOI) system is installed in the process to 

measure product features. The proposed MAR-ANN model 
allows the quality defects to be easily detected.  

 
Raw 

Material
Stamping Plating Injecting Assembly Packaging

AOI: detection 

for appearance  
Figure 2. Manufacturing process of the product under 

investigation 

 

Defect types of “overflowed”, “extra-materials” and “metal 

debris” are key items, which are detected by AOI. The 

specification measured by AOI system is based on the 

numerical value, such as length, width, and area. In this study, 

six features are controlled for each product. Table 1 explains 

the description of each variable. The products are measured by 

batches, each containing 100 units of product. This study 



 

collects 300 batches as the samples for the MAR-ANN control 

chart. 

Table 1. Product feature and variable notation 

Feature Variable notation 

Excess metal material appears at 

the terminal 

Y1_1 

The appearance of excess 

colloids in the hold-down of 

metal 

Y1_2 

Excess metal material appears 

on the plastic body 

Y2_1 

Excess plastic material appears 

on the edge of the product 

Y2_2 

Overflowed on both side Y3 

The root overflowed Y4 

 

4.2 Residual-based Multivariate control by MAR-ANN 

model 

The proposed MAR-ANN model is implemented according to 

Figure 1. 

4.2.1 Data checking 

Basically, MAR model is that each of the time series in the 

system influence each other, so can predict the series with past 

values of itself along with other series in the system. Granger’s 

causality test is a method for characterizing dependence 

relations between time series, which is to test this relationship 

before building the MAR model. Granger’s causality tests the 

null hypothesis that the coefficients of past values in the 

regression equation is zero [22]. Table 2 exhibits the Granger’s 
causality test result for all possible combinations of the time 

series in a given data frame and stores the p-values of each 

combination in the output matrix. There are some p-value less 

than 5% significance level, which means the corresponding X 

series (column) causes the Y series (row) is significance. For 

example, 0.0000 in (row 1, column 2), it refers to the p-value 

of Y1_2_x causing Y1_1_y. Whereas, the 0.000 in (row 2, 

column 1) refers to the p-value of Y1_2_y causing Y1_1_x. 

Therefore, Table 2 shows the evident that overall variables 

have correlated to each other. It can be concluded that variable 

Y1_1 and Y1_2; Y1_1 and Y2_2; Y1_1 and Y3; Y2_1 and 
Y2_2; Y2_1 and Y4; Y2_2 and Y3 are also correlated. 

Table 2. Pearson’s correlation test between variables  
Y1_1_x Y1_2_x Y2_1_x Y2_2_x Y3_x Y4_x 

Y1_1_y 1 0.000* 0.003* 0.170 0.003* 0.071 

Y1_2_y 0.000* 1 0.000* 0.155 0.813 0.000* 

Y2_1_y 0.145 0.000* 1 0.027* 0.101 0.000* 

Y2_2_y 0.000* 0.2957 0.282 1 0.000* 0.027* 

Y3_y 0.031* 0.7830 0.094 0.000* 1 0.281 

Y4_y 0.085 0.000* 0.381 0.101 0.115 1 

Note: *) at 5% significance level 

 

ACF test of each variable is shown in Figure 3, showing that 

almost all variables have lags over than the red likelihood limit 

(95%), which means every variable has significant 

autocorrelation. Vector autoregressive model found that the 

optimal lag to define order p is 16 (p = 16). This order was 

chosen based on the minimum Akaike Information Criterion 

(AIC) value. 

 

4.2.2 MAR modeling process - constructing residuals 

control chart using ANN model 

Eq. 9 represents an autoregressive process with 6 variables and 

order p = 16. 

 
𝑌(𝑖=1,2,…,6)𝑡

= 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) 
(9) 

Estimation of the process using ANN provides 𝑓 which allows 

to predict 𝑌(𝑖=1,2,…,𝑚)𝑡 as Eq. 10. 

 
𝑌̂(𝑖=1,2,…,6)𝑡

= 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) 
(10) 

 

Using the MLPRegressor which involved multiple outputs, in 

a sample containing 14,000 observations, the selected optimal 

model that used in this study is shown as following: 

 
Model=MLPRegressor(activation='relu',alpha=0.0001,b

atch_size='auto',beta_1=0.999,beta_2=0.999,ear

ly_stopping=False,epsilon=1e08,hidden_layer_si

zes=(50,),learning_rate='constant',learning_ra

te_init=0.001,max_fun=15000,max_iter=1000,mome

ntum=0.9,n_iter_no_change=10,nesterovs_momentu

m=True,power_t=0.5,random_state=None,shuffle=T

rue,solver='adam',tol=0.0001,validation_fracti

on=0.1,verbose=False,warm_start=False) 

 

This model provides an R-square equal to 91.4%. 

Furthermore, based on the MLPRegressor model we calculate 

the residual of model and then do the residual checking to 

know whether the residual fulfilled white noise assumption. 
The residual can be found easily by subtracting the fitted value 

from the ANN model from each corresponding observation on 

each Y. 

Moreover, in terms of white noise checking, residuals 

should follow multivariate normal distributions with mean of 

zero and variance equal to one, and the residuals are free of 

auto-correlation effects. The following step is a checking of 

white noise assumptions of residuals. Firstly, multivariate 

normal distribution checking in this study is done by the 

Henze-Zirkler test [41]. According to this test, we found that 

the p-value is equal to 0.150, which means all of residual 
variables have already followed multivariate normal 

distributions with significance value at 5%. 

Next, independence assumption checking for residuals is 

conducted by ACF, as shown in Figure 3. The lags of residual 

variables Y1_1; Y1_2; Y3 and Y4 are lower than the red 

likelihood limit (95%) and the autocorrelation value is around 

zero. Meanwhile, the lags are over than the red likelihood limit 

(95%) and the autocorrelation value is lower than 0.4 for 

residual variables Y2_1 and Y2_2, which means the 

correlation is weak so the effect can be ignored. Therefore, it  

can be concluded that all residual variables are free of the 
autocorrelation effect. Therefore, those residual variables can 

be used to create multivariate control chart. 

 

 

 



  

  

  

Figure 3. Autocorrelation test of each variable 

 

Third step is residual white noise checking. Table 3 shows 

that the mean and variance of each residual variable almost 

near zero. Therefore, all residual variables have already 

satisfied the white noise assumption. The application of 
residual data satisfied the assumption of normality distribution 

and absence of autocorrelation effects. 

Table 3. Descriptive of residual model of each variable 

Residual of variable Mean Variance 

Y1_1 -0.001 0.0234 

Y1_2 0.081 0.3685 

Y2_1 -0.037 0.2193 

Y2_2 0.024 0.148 

Y3 -0.002 0.0004 

Y4 0.052 0.627 

All quality characteristics are monitored simultaneously. 

Table 4 illustrates the correlation among the six residual 

variables. 

Multivariate T2 Hotelling control chart 

Multivariate T2 Hotelling control chart is constructed. 

Multivariate T2 Hotelling control chart for original data with 

upper control limit (UCL) value equal to 29.2 is illustrates in 
figure 5(a) showing that there were 50 instances where the 

mechanism failed, which shown by some points are out of 

control. There are oscillating and it fails out at points 

particularly after sample 157th. This behavior comes from the 

dependence of measurements over the time on original data.  

Instead, by using residual data, the number out-of-control 

samples decreases down to 9 samples. Multivariate T2 

Hotteling control chart using residual data is more stable than 

multivariate T2 Hottelling control chart using original data, as 

shown in Figure 5(b). 
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Figure 4. Autocorrelation test of each residual variable 

 
Table 4. Correlation test between residual variables 

  
 
Characteristics 

Variables 
  

Residual of 
Y1_1 

Residual of 
Y1_2 

Residual of 
Y2_1 

Residual of 
Y2_2 

Residual of 
Y3 

Residual of Y1_2 
Correlation 0.046  

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 

P-Value 0.431 

Residual of Y2_1 
Correlation -0.092 0.064 

P-Value 0.111 0.266 

Residual of Y2_2 
Correlation 0.105 0.112 -0.019 

P-Value 0.069 0.052 0.743 

Residual of Y3 
Correlation 0.189 0.087 0.035 0.064 

P-Value 0.001* 0.133 0.542 0.268 

Residual of Y4 
Correlation 0.272 0.033 0.131 -0.014 0.144 

P-Value 0.000* 0.571 0.023* 0.808 0.013* 

                           Note: *) at 5% significance level 

 

  
(a) by original data (b) by residual data 

 

Figure 5. T2-Hotteling Multivariate control chart 
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Decomposition is a useful diagnostic technique for out-of-

control signals in multivariate control charts. It decomposes 

the statistic T2 portion into components that represent each 

individual variable 's contribution to out-of-control signal. 

This method is applied by estimating the values of 𝑑𝑖  and 

concentrating on the variables with 𝑑𝑖 which are fairly large. 

Table 5 presents the largest contributor variable that is 

responsible for the out-of-control signal in multivariate T2 

Hotteling control chart. Y1_2, Y2_1, and Y3 are responsible 
for out-of-control signals on sample 231st, 154th, and 42nd, 

respectively. Y1_1 is responsible for samples 90th and 278th. 

Y2_2 is responsible for samples 208th and 221st. Y4 is 

responsible for samples 151st and 158th.  

Table 5. Decomposed T2 Hotteling value 

Sample 
Variables 

Y1_1 Y1_2 Y2_1 Y2_2 Y3 Y4 

42 11.44 0.922 3.919 0.756 41.316 3.766 

90 14.47 0.187 0.007 4.659 0.518 4.742 

151 0.033 0.726 0.312 0.115 1.314 39.02 

154 10.73 0.390 15.44 2.142 0.145 0.559 

158 1.450 0.622 7.821 0.239 0.044 19.47 

208 5.918 8.376 0.967 40.04 1.127 1.883 

221 0.066 0.101 4.608 26.74 1.552 0.113 

231 3.693 24.50 0.721 2.862 7.022 0.302 

278 21.09 1.052 0.119 0.005 2.198 3.815 

 

MCUSUM and MEWMA control chart 

MCUSUM and MEWMA routines developed in Rstudio 

(2020) with MSQC packages were applied to generate these 

charts. We adopted ARL0 = 200, i.e. false alarm rate α = 0.05, 

reference value 𝑘 = 0.5 and the decision limit ℎ = 5.5.  

The performance of the MCUSUM control chart of residual 

data in terms of sensitivity can detect small changes in the 

mean vector of this process as compared with the T2 Hotteling 
control charts under the same conditions, i.e. for p = 6; n = 1 

and ARL0 = 200, as shown in Figure 6(a). As the first signal 

was happened at sample 42nd in the multivariate T2 Hotteling 

control chart, the MCUSUM control chart detects the first 

signal is at sample 14th. On the other hand, Figure 6(b) shows 

the MEWMA control chart has the same sensitivity with T2 

Hotteling control chart in detecting changes in the process.  

Implementing T2 Hotteling control chart, MCUSUM chart and 

MEWMA chart for the obtained residual data can overcome 

multivariate autocorrelated data effectively. When compared 

with MCUSUM and MEWMA, T2 Hotteling has better 
performance in detecting small shifts in the process. 

Meanwhile, the MCUSUM residual chart and the MEWMA 

residual chart show a large shift from the average. In addition, 

T2 Hotteling also shows stable shifts around the average. 

However, the MCUSUM chart and the MEWMA chart show 

oscillations in shifts and even show a trend. This shows that 

the T2 Hotteling residual chart has better performance than the 

MCUSUM and MEWMA residual control charts. 

 
(a) MCUSUM control chart 

 
(b) MEWMA control chart 

Figure 6. Multivariate control charts using residuals data 

 

4.3. Comparison univariate control chart between original 

and residual data 

In this section, we exhibit the comparison between 
univariate control chart based on original data and residual 

data as shown in Figure 7. This comparison shows that residual 

control chart has better performance than the original data if 

the original data have time series effect which shown by the 

high autocorrelation. Figure 7 shows that control charts based 

on the original data have more out-of-control data than control 

chart based on residual data. Using three times of standard 

deviation from the center line rules, based on original data 

control chart, there are 181 samples, 6 samples, 6 samples, 16 

samples, 18 samples, and 11 samples are out-of-control for 

each variable Y1_1, Y1_2, Y2_1, Y2_2, Y3 and Y4; 

respectively. Otherwise, using the same rules for testing, based 
on the residual data control chart, number of samples out of 

control decreasing into 11 samples, 4 samples, 7 samples, 11 

samples, 6 samples and 6 samples for each variable Y1_1, 

Y1_2, Y2_1, Y2_2, Y3 and Y4; respectively. Even though 

variable Y2_1 has increasing number of samples out of control 

in residual data control chat, but there five consecutive points 

of out-of-control samples are getting large shift from the 

centerline.  

The overall impression of process stability shown by control 

charts using residual data are rather different than was 

obtained from the control charts based on the original data. 
Otherwise, univariate control chart by original data for each 

variable, the pattern also shows the trend and large shift from 

the average. It might cause by the autocorrelation effects that 

happened on original data. As shown by the Figure 3, we see 

that the autocorrelation effect of the original data is very high 

which shown by the significant lag. 

 



  

  

  

  

  

  
(a) (b) 

Figure 7. Univariate control chart: (a) 𝑥̅ control chart of original data; (b) 𝑥̅ control chart of residual data 

 

 

5. CONCLUSION 

The case study examined in this paper reveals that the test of 

autocorrelation and the analysis of the time series are critical 

preliminary steps in the application of control charts. The 

performance of control charts is deteriorated by auto-

correlated observations. As observed in charts built using 

original data, it increases the false alarm rate. It should also be 
noted that in applying multivariate control charts the existence 

of auto-correlated observations may mask the actual 

correlation between variables. Moreover, dependency among 

the variables also has effect to the performance of univariate 

control chart. Hence, it is better using multivariate control 

chart. Therefore, it is recommended to use MAR model using 

ANN approach to reduce autocorrelation effect on multivariate 

data. 

In order to identify out-of-control signals in multivariate 
control charts, it is possible to use univariate control charts as 
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it is easy to implement. However, in cases associated with 

actual correlation among variables, the univariate control 

charts can result in misleading conclusions. Instead, 

decomposing statistics is a suitable technique that can be used 

in T2 Hotteling multivariate control charts to identify the 

contribution of variables in out-of-control signals. 

Analyzing the results of the considered case study indicates 

that in situations where it is important to detect small changes 

in process parameters, the MCUSUM and MEWMA charts are 

alternatives to the T2 Hotelling control chart. In such 
situations, these control charts have better run length 

performance and more sensitive than the T2 Hotelling control 

chart to detect a small change in the process's mean vector, 

which allows faster action. Since the data that used in this 

study come from specification product measured by AOI 

system is based on numerical value, an interesting future 

research concerns of P control chart, which related to the 

defect proportion control chart, will be gave analysis and 

interpretation of control chart with image data as an input data. 
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 Most modern industrial process outcomes are multivariate, and univariate 

control charts can lead to misleading conclusions in the case of high correlation 

among variables. This paper presents a novel multivariate statistical process 

control method to monitor electronic products with multivariate correlated 

outcomes. We develop a procedure for monitoring multivariate autocorrelated 

data using a multivariate autoregressive (MAR) model with neural networks. 

This study investigates the significance and sensitivity of using MCUSUM, 

MEWMA, and T2 Hotelling charts to detect small changes in the mean vector 

of a process. The identification of out-of-control signals generated from 

multivariate statistical process control is derived from univariate charts and a 

decomposition approach. Our proposed decomposing statistics determine the 

contribution of variables in out-of-control signals by T2 Hotelling multivariate 

control charts. Additionally, MCUSUM and MEWMA control charts 

demonstrate good run length performance and high sensitivity in detecting 

small changes in the process's mean vector, enabling prompt corrective actions. 

These findings suggest that the proposed method enhances the reliability and 

responsiveness of quality control in electronic product manufacturing. 

 

Keywords: 

multivariate statistical process control, 

decomposition analysis, residual control 

chart 

 

 

 
1. INTRODUCTION 

 

The complexity and increasing correlation of product 

features over time have made the requirements of product 

inspection more difficult. Statistical process monitoring is a 

method of quality control since variability is a primary 

indication of poor quality [1]. In many continuous processes 

of the electronic device manufacturing business, statistical 

process monitoring (SPM) typically develops over time to 

handle auto-correlated, multivariate quality data. Any changes 

in a process that may be the consequence of unforeseen and 

uncontrollable factors can be quickly identified by an effective 

SPM system.   

Traditional control charts relied on the idea that the process 

would be dispersed independently across time, but as 

electronic device manufacture has advanced, this assumption 

is no longer valid. Control charts are produced for variables 

that defy one of the primary assumptions, serial-sample 

independence, when autocorrelation is present. The Average 

Run Length (ARL) and stability of the control charts are both 

impacted by the violating of the presumption of independence 

[2]. Furthermore, if there are too many false alarms, the 

process engineer may prefer to completely ignore the control 

charts or misidentify the true source of variation. This explains 

why control charts are used on continuous-flow systems very 

infrequently [3]. 

Due to the fact that the industry that manufactures electrical 

products typically bases its product quality on a number of 

interconnected quality criteria and variables, SPM is also faced 

with multivariate problems [4]. The statistical characteristics 

of classic control charts are greatly impacted by interrelated 

variables, which can also result in a notable rise in the average 

false alarm rate and a fall in the capacity to identify process 

changes. Applying univariate control charts to every variable 

has the potential to mislead in decisions about quality. 

Consequently, multivariate based quality control techniques 

needed to take such characteristics into account at the same 

time.  

The requirements of product inspection have become more 

challenging as product attributes become complex and 

increasingly correlated over time. Statistical process 

monitoring (SPM) is a crucial tool in quality control, but 

traditional SPM systems face significant challenges in modern 

electronic product manufacturing. One major issue is that 

traditional control charts assume data is independently 

distributed, which is often violated due to autocorrelation, 

leading to instability, and increased false alarms. Additionally, 

traditional control charts are not designed to handle multiple 
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interrelated quality attributes simultaneously, which can 

mislead quality decisions and reduce the ability to detect 

process changes. These challenges have resulted in a low 

adoption of control charts in continuous-flow systems. This 

paper aims to address these gaps by proposing advanced SPM 

techniques that account for autocorrelation and introducing 

multivariate-based quality control methods to handle 

interrelated attributes simultaneously. Through these 

enhancements, we seek to increase the reliability and practical 

utility of control charts, encouraging their broader adoption in 

the electronic product manufacturing industry.  

Traditional SPM methods, such as Shewhart, CUSUM, and 

EWMA control charts, assume that process data is 

independently distributed over time. However, this 

assumption is often violated in modern manufacturing 

environments where autocorrelation is prevalent. The 

violation of the independence assumption leads to several 

issues with traditional control charts: increased false alarms, 

decreased sensitivity, and complexity in handling multivariate 

data. Existing multivariate control charts, such as T2 

Hotelling’s, MCUSUM, and MEWMA, address these 

correlations but are often complex to implement and may not 

effectively decompose out-of-control signals to identify 

specific variable contributions. 

To address these limitations, our study proposes a novel 

ANN-based multivariate statistical process control model that 

integrates a multivariate autoregressive (MAR) approach with 

neural networks. This model aims to enhance detection 

sensitivity, improve robustness to autocorrelation, and provide 

detailed decomposition of out-of-control signals. By 

leveraging the capabilities of neural networks, our model 

improves sensitivity to small shifts in the process mean vector, 

ensuring timely detection of quality issues. The integration of 

MAR with neural networks effectively manages 

autocorrelated data, reducing false alarms and improving the 

stability of Average Run Length (ARL). Additionally, our 

model offers a detailed decomposition of out-of-control 

signals, using univariate charts and a decomposition approach 

to identify specific variable contributions. This feature allows 

process engineers to pinpoint and address root causes of 

variations more accurately. By addressing these specific gaps 

and limitations in current multivariate autocorrelated process 

monitoring approaches, our study aims to enhance the 

reliability and practicality of SPM systems in modern 

manufacturing environments, ultimately improving product 

quality and manufacturing efficiency. 
The present study will address the auto-correlated, 

multivariate quality control for electronic product 

manufacturing. We propose a model based on ANN to predict 

and build the residual based control chart for multivariate data 

with autocorrelation order p (AR(p)) processes.  

The rest of this paper is organized as following. Section 2 

discusses relevant literature review, such as SPM of 

multivariate auto-correlated observations, multivariate control 

chart, and ANN for multivariate and auto-correlated 

observations. Section 3 details the research methodology 

including manufacturing process and research variables. 

Section 4 illustrates a practical application and discussion. 

Finally, conclusions are provided in Section 5. 

 

 

2. LITERATURE REVIEW 
 

2.1. Multivariate auto-correlated control charts  

Autocorrelation is common in both continuous and batch 

operation processes, prompting ongoing research for solutions 

[5]. Loredo introduced regression adjustment-based 

monitoring for autocorrelated processes[6]. Psarakis and 

Papaleonida [7] noted that even low levels of autocorrelation 

can significantly affect traditional control charts, raising false 

alarm rates and reducing detection ability. A solution is to 

filter out autocorrelation using a time series model and apply 

control to the uncorrelated residuals, enabling the use of 

standard control charts. Callao and Rius [8] showed that 

residual control charts, especially with an AR(1) model, 

effectively track device behavior over time and improve 

detection. Extending univariate methods, multivariate systems 

can also be monitored and controlled. Khediri and Mohamed 

[9] proposed using multivariate autoregressive (MAR) models 

for systems with serial correlations among multiple variables, 

introducing an MAR control chart for these multivariate 

autocorrelated processes. Their research proposed an MAR 

control chart for multivariate auto-correlated processes. For an 

MAR process with m variables, it is denoted by 

 mt2t1tt x,,x,xx   as a  1m  vector.  

Psarakis and Papaleonida [7] explained that shifts in the 

mean or variance of residuals signal changes in the actual 

process's mean or variance. By plotting residuals on a control 

chart, shifts in the process can be detected. The principle of 

residual charts is that, with a correct time series model, 

residuals become independently and identically distributed 

random variables, satisfying traditional quality control criteria 

and enabling the use of standard SPC charts. Therefore, 

developing an accurate time series model for multivariate 

autocorrelated data is essential in statistical process control. 

Although the ARIMA model is widely used for linear time 

series prediction, it struggles to capture nonlinear patterns. 

To resolve the autocorrelation issue, researchers seek for 

solutions. Alwan and Roberts [10] introduced an approach to 

deal with autocorrelation in creating of control chart by using 

residual based control chart. Woodall and Faltin [11] 

examined how self-correlation affects the results of control 

charts and proposed strategies for managing autocorrelation. 

They explored various approaches to address autocorrelation 

issues, including the development of methods like the 

cumulative sum (CUSUM) control chart tailored for 

autocorrelated data [12], [13], [14]. Further, researchers [15], 

[16], [17], and [18] also developed control charts with 

autocorrelation data by exponentially weighted moving 

average (EWMA) control chart.  

The literature discusses various multivariable control 

charts, including the T2 Hotteling, multivariate cumulative 

sum (MCUSUM), and multivariate exponentially weighted 

moving average (MEWMA) control charts [19], [20], [21], 

and [22]. Researchers have also enhanced control charts to 

handle multivariate autocorrelated data with time series effects 

[23], [24], [25], [26], and [27]. Jarrett and Pan [28] developed 

multivariate control charts for independent processes and 

univariate control charts for autocorrelated processes. They 

proposed a multivariate autoregressive (MAR) control chart 

specifically for multivariate autocorrelated processes. 
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2.2. Residual control chart 

2.2.1. T2 Hotelling Control Chart 

The T2 Hotelling control chart, a multivariate extension of 

the Shewhart-type control chart, was introduced by Harold 

Hotelling in 1947 to handle multivariate observations. There 

are two versions: one for subgroup data and one for individual 

observations. The Shewhart X-chart is a simple univariate 

statistic for measuring process stability against significant 

shifts. Residuals are assumed to have a mean of zero and a 

standard deviation of 𝜎𝑟, and an observation is considered in 

control if the residual value 𝑟𝑖  falls within control limits 

defined by λ. This chart uses the Mahalanobis distance [25] to 

reduce residuals to a single scalar value. An observation is 

considered in control if it satisfies the following Eq. 1: 

𝑇𝑖
2 = 𝑅𝑖

𝑇 ∑ 𝑅𝑖
−1
𝑅

𝑚(𝑛−1)

𝑛−𝑚
𝐹𝑚;𝑛−𝑚;(𝛼);  for 𝑖 = 1,2, ⋯ , 𝑛     (1) 

where n is the number of observations, m is the number of 

variables, 𝑅𝑖  is the residual vector, 𝐹𝑚;𝑛−𝑚;(𝛼)  is the Fisher 

distribution, and ∑ 𝑅𝑖
−1
𝑅  is the inverse of the estimated residual 

covariance matrix. The term α represents the risk level, 

ensuring a desired in-control Average Run Length (ARL) or 

in-control false alarm rate. 

 

2.2.2. Multivariate CUSUM control chart 

The CUSUM chart was created to address the limitations 

of Shewhart and T2 Hotelling control charts, which are often 

insensitive to moderate changes since they only use the most 

recent observation data [9]. In contrast, CUSUM charts are 

designed to detect subtle process changes by accumulating 

deviations from a specified target across residuals from 

previous observations. The most widely used CUSUM control 

method is Crosier's chart. For 𝑆0 = 0, where 0 represents a 

matrix of zeros of size 1× m, the statistical procedure is as 

follows: 

 𝑆𝑖 = {

0                                             , if 𝐶𝑖 ≤ 𝑘

(𝑆𝑖−1 + 𝑅𝑖) (1 −
𝑘

𝐶𝑖
)           , otherwise

 (2) 

 𝐶𝑖 = (𝑆𝑖−1 + 𝑅𝑖)Σ𝑅
−1(𝑆𝑖−1 + 𝑅𝑖)𝑇 (3) 

Crosier’s chart signal a shift when 𝑇𝑆
2 = 𝑆𝑖

𝑇 ∑ 𝑆𝑖
−1
𝑅  overcomes 

a predetermined limit H. The CUSUM scheme signals a 

process change when the S statistics exceed a predefined 

threshold H. Thus, if 𝑆𝑖 > 𝐻 , the chart indicates a process 

shift. To achieve the desired in-control run length (RL) 

characteristic, the parameters k and H must be determined 

beforehand. In CUSUM procedures, it is standard practice to 

assume a sample size of one. This simplification is widely 

adopted as it allows for the continuous monitoring of 

individual observations, facilitating the prompt detection of 

small shifts in the process. However, in some cases, it might 

be beneficial to consider larger sample sizes to account for 

variations and provide more robust detection capabilities, 

especially in processes where data is naturally grouped or 

collected in batches. Adapting the CUSUM procedure to 

accommodate different sample sizes can enhance its flexibility 

and effectiveness in various industrial and statistical 

applications. The Multivariate CUSUM (MCUSUM) statistic 

𝑆𝑖  is designed to detect specific shifts in the process mean 

vector. This capability enables the identification of changes 

across multiple variables simultaneously, making MCUSUM 

particularly useful for monitoring complex processes where 

interactions between variables may signal deviations from the 

expected process behavior. By accumulating deviations from 

the target mean vector over time, the MCUSUM statistic 

provides a sensitive measure for detecting even small shifts, 

thus enhancing the ability to maintain quality control and 

process stability in multivariate settings. Additionally, the 

MCUSUM approach can be tailored to different types of shifts 

and can incorporate various weighting schemes to prioritize 

certain variables or shifts, further improving its applicability 

and effectiveness in diverse industrial and research 

environments: 

 𝑆𝑖 = 𝑚𝑎𝑥{𝑆𝑖−1 + 𝑎𝑇𝑅𝑖 − 𝑘, 0}    (4) 

where, 

𝑎𝑇 =
𝛿𝑟

𝑇Σ𝑟
−1

√𝛿𝑟
𝑇Σ𝑟

−1𝛿𝑟

 

𝛿𝑟  represents the residual mean vector, and Σ𝑟  denotes the 

variance-covariance matrix. In an MCUSUM scheme, 

deviations exceeding k units from the target mean are 

accumulated. Here, k acts as the benchmark value for the 

scheme. The control scheme indicates an out-of-control state 

when the value of 𝑆𝑖  surpasses a predefined decision 

threshold, denoted as H. 

2.2.3. Multivariate EWMA control chart 

While CUSUM charts consider all past measurements 

equally, EWMA (Exponentially Weighted Moving Average) 

charts assign weights to recent observations based on their 

significance in depicting process behavior. A higher value of 

λ amplifies the impact of the most recent observation [5]. The 

iterative expression for EWMA statistics is described by 

Equation 5, 

 𝑍𝑖 = (1 − 𝜆)𝑍𝑖−1 + 𝜆𝑅𝑖 ;  for 𝑖 = 1,2, ⋯ , 𝑛    (5) 

where λ is diagonal matrix of value 0 ≤ 𝜆𝑗 ≤ 1, 𝑗 =

1,2, ⋯ , 𝑚.  The multivariate EWMA (MEWMA) scheme 

signals if the 

 𝑇𝑍
2 = 𝑍𝑖

𝑇 ∑ 𝑍𝑖

−1

𝑍
 (6) 

surpasses a predetermined value H, where H > 0 is chosen to 

achieve a specified in-control (on-target) ARL0. The 

asymptotic form of the covariance matrix is       Σ𝑍 = (
𝜆

2−𝜆
) Σ𝑅  

[30]. 

Reynolds and Lu [31] investigated AR(1), AR(2) and 

ARMA(1,1) models for a residual X-chart and pointed out that 

the residual X-chart may lack the capacity to detect the mean 

shift of the processes. Those research, however, considered 

only for processes which has small order of p on 

autoregressive AR(p) model. Whereas real condition 

sometimes autocorrelation with high order (p > 5) are 

occurred. Besides that, multivariable with high autocorrelation 

also must considered in one time. This condition usually 

occurs in the manufacturing industry with mass production 

and fast flow production. Therefore, the general multivariate 

autoregressive (MAR) models should be developed to 

overcome multivariable and autocorrelation problem on 

statistical process monitoring using residual based 

multivariate control chart. 
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2.3. Applying ANN to SPM of multivariate auto-correlated 

observations 

Artificial neural network (ANN) is an estimation tool for 

the output process (responses) [32]. Multi-layer perceptron 

(MLP) is a nonparametric estimator that can be used for 

classification and regression. A multilayer feed forward ANN 

with continuous output layer is suitable for regression 

problem.  

If an AR(p) model exhibits autocorrelated behavior in 

quality characteristics, the mean vector for each period 

depends on the mean vectors of the previous p periods. 

Consequently, when using an Artificial Neural Network 

(ANN) for forecasting, the inputs consist of quality 

characteristic vectors from the previous p periods, and the 

output is the forecasted quality characteristic vector for the 

desired time. During implementation, to generate the 

forecasted vector at the output layer, the network incorporates 

the characteristics from the preceding p periods into the input 

layers. According to Arkat et al. [3], the vector of residuals for 

each period represents the difference between the forecasted 

and actual values of the quality characteristic vectors. 

Over the last two decades, research in statistical process 

monitoring fields and practices applied machine learning to 

detect and diagnose faults of the industrial operation process 

and production results. In terms of data analysis in SPM, 

artificial neural network (ANN) has been applied since 1980s 

[3]. Some scholars studied ANN applications in univariate 

control chart, such as [33], [34], and [35]. ANN has also been 

applied to monitor multivariate processes, such as [36], [37], 

[38], [39], and [40]. Arkat et al [3] designed an ANN-based 

model to forecast and construct residual CUSUM chart for 

multivariate autoregressive of order one, AR(1), processes. 

Khediri et al. [5] proposed support vector regression to 

construct several control charts that allows monitoring of 

multivariate nonlinear auto-correlated processes.  

2.4. Summary  

Traditional methods often assume independence between 

observations, which is violated in continuous-flow 

manufacturing processes due to autocorrelation. This violation 

leads to increased false alarm rates and reduced average run 

length (ARL). While multivariate control charts address 

correlation among variables, they can be complex and 

computationally intensive, and they may not effectively 

identify specific variable contributions in out-of-control 

signals. Our proposed ANN-based model addresses these 

limitations by integrating a multivariate autoregressive (MAR) 

approach with neural networks, improving sensitivity to small 

shifts in the process mean vector and enhancing robustness to 

autocorrelation. The model offers better detection capabilities, 

reducing false alarms and improving ARL stability. 

Additionally, it provides detailed decomposition of out-of-

control signals, allowing process engineers to pinpoint and 

address root causes of variations more effectively. These 

improvements enhance the reliability and practicality of SPM 

systems in modern manufacturing, leading to more timely and 

accurate quality control interventions, ultimately improving 

product quality and manufacturing efficiency.  

In recent years, several studies have advanced the field of 

SPM, particularly in addressing the limitations of traditional 

control charts in handling autocorrelated and multivariate data. 

For instance, Wang and Asrini [29] proposed an enhanced 

EWMA control chart that incorporates machine learning 

techniques to better handle autocorrelated data, demonstrating 

improved sensitivity and reduced false alarm rates. Similarly, 

Yang and Sutrino [30] developed a hybrid SPM model that 

combines neural networks with traditional statistical methods 

to monitor complex manufacturing processes, showing 

significant improvements in detection capabilities and 

robustness to data variability. 

There is a recurrent violation of independently distribution 

assumptions with the advance made in many automation 

processes such as electronic component manufacturing 

because the high selection of samples creates a set of 

observations that are close enough to be dependent. How to 

apply and evaluate control charts designed to account for 

autocorrelation is critical. Residual control charts provide a 

good understanding of the device behavior over time and 

efficient detection capabilities but does not fully fulfill the 

requirement of autocorrelation and multiple variates 

observations. 

 

3. METHOD 
 

This study aims to present a residual control chart using 

MAR model with ANN (MAR-ANN) to solve the SPM 

problem related to multivariate with auto-correlated 

observations. Moreover, this study makes diagnostic of out-of-

control signal in multivariate control chart using 

decomposition technique. Comparison of multivariate control 

chart with univariate one is also conducted. Figure 1 shows the 

operational procedure of the proposed mothed. Multiple 

variables are defined as the quality parameter which correlate 

to each other, and each variable is of time series.  

Correlation test is employed to know the strength of 

correlation between variables. In this study, correlation test 

determines the correlation between quality parameters of a 

product. If there is a correlation between quality parameters, 

then the control chart preparation is based on a multivariate 

control chart approach because it will involve more than one 

quality parameter in one chart. The hypothesis used in testing 

the correlation between quality parameters is as follows. To 

determine whether there is a correlation between quality 

parameters is based on the p-value. 

H0: 𝜌 = 0 or there is no correlation 

H1: 𝜌 ≠ 0 or there is a correlation 

In terms of autocorrelation, this study applies a method 

proposed by Loredo [6] for monitoring auto-correlated 

processes that showed the superiority of residual-based control 

charts in comparison with observation-based control charts 

when detecting the mean shift in short-run auto-correlated data 

processes. Each variable is examined by autocorrelation test to 

know whether each variable correlates with time changes. The 

autocorrelation test of each variable can be seen visually 

through the autocorrelation function (ACF) plot graph. 

Variables have a significant autocorrelation if there is a 

significant lag in the ACF plot. To overcome autocorrelation, 

time series modeling must be done, the model obtained 

calculates the model error to meet the assumption of white 

noise. The coefficient of autocorrelation lag k measures the 

correlation between values of each variable at time t and time 

t-k and shows the limit of probability around 0. If the 

autocorrelation graph is below the 95% likelihood limits at a 

certain lag, a large autocorrelation occurs at that lag.  
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Figure 1 presents a four-step procedure. First, data are 

checked for each variable by ACF and correlation between 

variables by Pearson’s correlation. Second, MAR modelling 

process determines the model considering autocorrelation and 

multivariate. To estimate MAR, this research proposes an 

ANN with MLPRegressor approach. Third, residual white-

noise checking is conducted to ensure all residual variables can 

be used for the multivariate control chart. White noise residual 

checking involves multivariate normality, independence and 

identical test. Then, fourth step builds a residual-based 

multivariate control chart where residual is the difference 

between actual value and estimated value based on the MAR 

model of each variable. 

 

Autocorrelation

Data Checking

Multivariate

Input 

Data

MAR Modelling 

Process

MAR model

MLPRegressor 

model

Residual 

Calculation

Residual white-

noise checking

Normal 

Distribution

Independence

Identitical

Residual-Based 

Multivariate Control 

Chart Process

T2 Hotelling

MCUSUM

MEWMA

 
 

Figure 1. Procedure to build the proposed control chart  

If the quality characteristics of an autocorrelated process 

conform to an AR(p) model, the mean vector for each period 

depends on the mean vectors of the preceding p periods. In 

such cases, the inputs for the desired Artificial Neural Network 

(ANN) consist of the quality characteristic vectors from the 

previous p periods, while the output represents the quality 

characteristic vector to be forecasted for the next period. 

Before constructing the ANN, the Multivariate Autoregressive 

(MAR) model is typically applied to determine the 

autoregressive order p for each factor in the time series. This 

helps in understanding the dependencies and lagged effects 

among the quality characteristics over time, ensuring that the 

ANN model captures the relevant temporal relationships 

effectively. 

Based on Khediri et al. [5], this study performs time series 

estimation for a multivariate process by MAR. Each input 

variable 𝑌(𝑖=1,2,…,𝑚)𝑡 is defined by the previous variables of the 

series (𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)) , where m is the 

number of variables and p is the lagged time. Supposed that 

we have an autoregressive process with m variables and order 

p that need to be estimated, one can present  𝑌(𝑖=1,2,…,𝑚)𝑡  by 

Eq. 7: 

 𝑌(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝))  (7) 

Estimation of the process using MAR model provides 𝑓 which 

allows to predict 𝑌(𝑖=1,2,…,𝑚)𝑡 as Eq. 8: 

 𝑌̂(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)) (8) 

If the estimation is well calculated, the error term vector is 

computed based on Eq. 9 that will be used to generate the 

control chart, which would be time-independent, usually 

distributed with zero means.  

 𝑒𝑡̂ = (𝑌(𝑖=1,2,⋯,𝑚)𝑡 − 𝑌̂(𝑖=1,2,⋯,𝑚)𝑡 (9) 

If a shift occurs in the process, it will no longer be accurately 

described by the function f, and consequently, the estimated 

residual term 𝑒𝑡̂   will also be affected and shifted. To 

determine the residual used for the control chart, this study 

employs the Multivariate Autoregressive (MAR) model, as 

specified in Eq. 10. 

𝑦𝑡 = 𝑐 + ∅(𝐵)𝑦𝑡 + 𝑒𝑡                                                           (10) 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝑒𝑡                        

where 

𝑦𝑡 = (𝑦1,𝑡 , 𝑦2,𝑡 , … , 𝑦𝑚,𝑡)′ is (mx1) vector of variable Y 

𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑚)′ is (mx1) vector of constant value 

𝑒𝑡 = (𝑒1,𝑡 , 𝑒2,𝑡 , … , 𝑒𝑚,𝑡)′  is (mx1) vector residual, with 

assumption 𝑒𝑡~IIDN (0, 𝛺) and 𝑣𝑎𝑟(𝑒𝑡𝑒𝑡)=Ω. 

∅ = coefficient of MAR model, matrix (mxm)  

𝑡 = 1,2, … , n 

B = backshift operator 

m = number of variables 

p = order of MAR 

In this study, the MAR residual control chart, which 

involves a number of input and output variables and a fitting 

technique to find the satisfied residual, is empowered by a 

multilayer perceptron regressor (MLPRegressor) (Alpaydin, 

2010) to obtain good fitting result. MLPRegressor can 

approximate the nonlinear functions of the input for regression 

by forming higher-order representations of the input features 

using intermediate hidden layer. 

 

4. EXPERIMENT RESULT AND DISCUSSIONS  

 

4.1 Manufacturing process 

 

This study applies the MAR-ANN model to electronics 

product manufacturing processes, encompassing stages like 

stamping, electroplating, injection molding, assembly, and 

packaging (depicted in Figure 2). These processes operate on 

a high-speed continuous production line characterized by 

multivariate and autocorrelated properties. An Automatic 

Optical Inspection (AOI) system is integral to the process, 

facilitating data collection. High-precision instruments, 

regularly calibrated for accuracy, including digital calipers, 

micrometers, and AOI systems, are utilized to measure 

product dimensions and features. Specifically, AOI systems 

record product feature measurements. The MAR-ANN model 

proposed in this study aims to enhance defect detection 

capabilities, leveraging the structured data from AOI and other 

instruments to improve quality monitoring throughout the 

manufacturing stages.  

 
Raw 

Material
Stamping Plating Injecting Assembly Packaging

AOI: detection 

for appearance  
Figure 2. Manufacturing process of the product under 

investigation 

In this study, the Automatic Optical Inspection (AOI) 

system detects key defect types such as "overflowed", "extra-

materials", and "metal debris". These defects are identified 

based on numerical specifications such as length, width, and 

area measured by the AOI system. Each product is 

characterized by six features, as detailed in Table 1, which 

describes each variable. The data collection process involves 

measuring products in batches, with each batch comprising 

100 units. For the MAR-ANN control chart analysis, this study 

collects samples from 300 such batches. This structured 

approach ensures that a comprehensive dataset is used to 

develop and validate the MAR-ANN model for effective 

quality control in the manufacturing process. 
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Table 1. Product feature and variable notation 

Feature Variable notation 

Excess metal material appears at 

the terminal 

Y1_1 

The appearance of excess 

colloids in the hold-down of 

metal 

Y1_2 

Excess metal material appears 

on the plastic body 

Y2_1 

Excess plastic material appears 

on the edge of the product 

Y2_2 

Overflowed on both side Y3 

The root overflowed Y4 

 

4.2 Residual-based Multivariate control by MAR-ANN 

model 

The proposed MAR-ANN model is implemented according to 

Figure 1. 

4.2.1 Data checking 

The MAR (Multivariate Autoregressive) model assumes 

that each time series in the system influences others, allowing 

predictions based on past values of all series involved. 

Granger’s causality test is a method used to assess these 

dependency relationships by testing whether past values of one 

series help predict another. In your study, Table 2 presents the 

results of Granger’s causality test for all possible combinations 

of time series in a given dataset, storing the corresponding p-

values in an output matrix. A p-value less than the 5% 

significance level indicates a significant causal relationship, 

where the series in the column influences the series in the row. 

For example, a p-value of 0.0000 in (row 1, column 2) 

suggests that Y1_2 (column) causes Y1_1 (row). Conversely, 

a p-value of 0.000 in (row 2, column 1) indicates that Y1_2 

(row) causes Y1_1 (column). Therefore, Table 2 demonstrates 

that there are significant correlations among the variables 

overall. Specifically, it can be concluded that variables Y1_1 

and Y1_2; Y1_1 and Y2_2; Y1_1 and Y3; Y2_1 and Y2_2; 

Y2_1 and Y4; Y2_2 and Y3 are correlated based on the p-

values obtained from Granger’s causality test. These findings 

help validate the interconnectedness assumed by the MAR 

model in your analysis. 

Table 2. Pearson’s correlation test between variables  
Y1_1_x Y1_2_x Y2_1_x Y2_2_x Y3_x Y4_x 

Y1_1_y 1 0.000* 0.003* 0.170 0.003* 0.071 

Y1_2_y 0.000* 1 0.000* 0.155 0.813 0.000* 

Y2_1_y 0.145 0.000* 1 0.027* 0.101 0.000* 

Y2_2_y 0.000* 0.2957 0.282 1 0.000* 0.027* 

Y3_y 0.031* 0.7830 0.094 0.000* 1 0.281 

Y4_y 0.085 0.000* 0.381 0.101 0.115 1 

Note: *) at 5% significance level 

 

ACF test of each variable is shown in Figure 3, showing that 

almost all variables have lags over than the red likelihood limit 

(95%), which means every variable has significant 

autocorrelation. Vector autoregressive model found that the 

optimal lag to define order p is 16 (p = 16). This order was 

chosen based on the minimum Akaike Information Criterion 

(AIC) value. 

 

4.2.2 MAR modeling process - constructing residuals 

control chart using ANN model 

The proposed methodology integrates a Multivariate 

Autoregressive (MAR) model with an Artificial Neural 

Network (ANN) to handle the complexities of autocorrelated 

and multivariate quality data. The MAR model captures the 

time-series characteristics and dependencies among variables, 

while the ANN addresses the nonlinear relationships and 

enhances the sensitivity to small shifts in the process mean 

vector. The MAR-ANN model was trained using a dataset 

collected from a continuous-flow electronic product 

manufacturing process. The dataset was split into training 

(70%), validation (15%), and test (15%) sets to ensure the 

robustness of the model. The training set was used to fit the 

model, the validation set was used to fine-tune 

hyperparameters, and the test set was used to evaluate the 

model's performance. Hyperparameter selection is critical for 

optimizing the performance of the ANN. We used a grid 

search approach to determine the optimal hyperparameters, 

including the number of hidden layers, the number of neurons 

per layer, learning rate, and regularization parameters. The 

grid search was performed using cross-validation on the 

training set, and the combination of hyperparameters that 

yielded the best performance on the validation set was selected 

for the final model. 

 

Eq. 9 represents an autoregressive process with 6 variables and 

order p = 16. 

 
𝑌(𝑖=1,2,…,6)𝑡

= 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) 
(9) 

Estimation of the process using ANN provides 𝑓 which allows 

to predict 𝑌(𝑖=1,2,…,𝑚)𝑡 as Eq. 10. 

 
𝑌̂(𝑖=1,2,…,6)𝑡

= 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) 
(10) 

 

The specific ANN model that used to figure out the 

autoregressive model with 6 variables and order p = 16 in this 

case is MLPRegressor. The model, trained on 14,000 

observations from an electronic product manufacturing 

process, includes a single hidden layer with 50 neurons and 

uses the 'relu' activation function. Key hyperparameters 

include an alpha of 0.0001 for regularization, a learning rate 

of 0.001, and the Adam optimizer. The model underwent up to 

1000 iterations, with early stopping disabled, and employed 

cross-validation (70% training, 15% validation, 15% test 

split). These details ensure the model's reproducibility and 

highlight the robustness and appropriateness of our approach. 

Using the MLPRegressor which involved multiple outputs, the 

selected optimal model that used in this study is shown as 

following: 

 
Model=MLPRegressor(activation='relu',alpha=0.0001,b

atch_size='auto',beta_1=0.999,beta_2=0.999,ear

ly_stopping=False,epsilon=1e08,hidden_layer_si

zes=(50,),learning_rate='constant',learning_ra

te_init=0.001,max_fun=15000,max_iter=1000,mome

ntum=0.9,n_iter_no_change=10,nesterovs_momentu

m=True,power_t=0.5,random_state=None,shuffle=T

rue,solver='adam',tol=0.0001,validation_fracti

on=0.1,verbose=False,warm_start=False) 

 

The R-square value of 91.4% indicates that the 

MLPRegressor model explains a substantial portion, 91.4%, 

of the variance in the data, highlighting a strong fit for the 

MAR-ANN model to the observed values. To verify the white 

noise assumption of the residuals, the residuals are computed 
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by subtracting the predicted values from the actual 

observations for each Y variable. Subsequent checks include 

ensuring the residuals have a mean close to zero, exhibit no 

significant autocorrelation through plots or tests like the 

Durbin-Watson test, and demonstrate constant variance 

(homoscedasticity) across different values. Meeting these 

criteria indicates that any remaining patterns in the data are 

likely due to random noise, validating the accuracy and 

reliability of the model's predictions. 

Moreover, in terms of white noise checking, residuals 

should follow multivariate normal distributions with mean of 

zero and variance equal to one, and the residuals are free of 

auto-correlation effects. The following step is a checking of 

white noise assumptions of residuals. Firstly, multivariate 

normal distribution checking in this study is done by the 

Henze-Zirkler test [41]. According to this test, we found that 

the p-value is equal to 0.150, which means all of residual 

variables have already followed multivariate normal 

distributions with significance value at 5%. 

Next, independence assumption checking for residuals is 

conducted by ACF, as shown in Figure 3. The lags of residual 

variables Y1_1; Y1_2; Y3 and Y4 are lower than the red 

likelihood limit (95%) and the autocorrelation value is around 

zero. Meanwhile, the lags are over than the red likelihood limit 

(95%) and the autocorrelation value is lower than 0.4 for 

residual variables Y2_1 and Y2_2, which means the 

correlation is weak so the effect can be ignored. Therefore, it  

can be concluded that all residual variables are free of the 

autocorrelation effect. Therefore, those residual variables can 

be used to create multivariate control chart. 

 

 

 

  

  

  

Figure 3. Autocorrelation test of each variable 

 

Third step is residual white noise checking. Table 3 shows 

that the mean and variance of each residual variable almost 

near zero. Therefore, all residual variables have already 

satisfied the white noise assumption. The application of 

residual data satisfied the assumption of normality distribution 

and absence of autocorrelation effects. 

Table 3. Descriptive of residual model of each variable 

Residual of variable Mean Variance 

Y1_1 -0.001 0.0234 

Y1_2 0.081 0.3685 

Y2_1 -0.037 0.2193 

Y2_2 0.024 0.148 

Y3 -0.002 0.0004 

Y4 0.052 0.627 
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All quality characteristics are monitored simultaneously. 

Table 4 illustrates the correlation among the six residual 

variables. 

Multivariate T2 Hotelling control chart 

Multivariate T2 Hotelling control chart is constructed. 

Multivariate T2 Hotelling control chart for original data with 

upper control limit (UCL) value equal to 29.2 is illustrates in 

figure 5(a) showing that there were 50 instances where the 

mechanism failed, which shown by some points are out of 

control. There are oscillating and it fails out at points 

particularly after sample 157th. This behavior comes from the 

dependence of measurements over the time on original data.  

Instead, by using residual data, the number out-of-control 

samples decreases down to 9 samples. Multivariate T2 

Hotteling control chart using residual data is more stable than 

multivariate T2 Hottelling control chart using original data, as 

shown in Figure 5(b). 

 

 

 

  

  

  
Figure 4. Autocorrelation test of each residual variable 

 

Table 4. Correlation test between residual variables 
  

 

Characteristics 
Variables 

  

Residual of 

Y1_1 

Residual of 

Y1_2 

Residual of 

Y2_1 

Residual of 

Y2_2 

Residual of 

Y3 

Residual of Y1_2 
Correlation 0.046  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-Value 0.431 

Residual of Y2_1 
Correlation -0.092 0.064 

P-Value 0.111 0.266 

Residual of Y2_2 
Correlation 0.105 0.112 -0.019 

P-Value 0.069 0.052 0.743 

Residual of Y3 
Correlation 0.189 0.087 0.035 0.064 

P-Value 0.001* 0.133 0.542 0.268 

Residual of Y4 
Correlation 0.272 0.033 0.131 -0.014 0.144 

P-Value 0.000* 0.571 0.023* 0.808 0.013* 

                           Note: *) at 5% significance level 
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(a) by original data (b) by residual data 

 

Figure 5. T2-Hotteling Multivariate control chart 

 

Decomposition is a valuable diagnostic technique for 

identifying out-of-control signals in multivariate control 

charts, particularly in T2 Hotelling charts. It breaks down the 

T2 statistic into components that represent the contribution of 

each individual variable to the out-of-control signal. This 

approach involves estimating values 𝑑𝑖 for each variable and 

focusing on those variables where 𝑑𝑖 ) values are relatively 

large. Table 5 typically displays the variables with the highest 

𝑑𝑖  values, indicating which variables contribute most 

significantly to the out-of-control signals detected in the 

multivariate T2 Hotelling control chart. This helps pinpoint 

specific factors or characteristics that may need attention or 

correction in the manufacturing or process control 

environment. Y1_2, Y2_1, and Y3 are responsible for out-of-

control signals on sample 231st, 154th, and 42nd, respectively. 

Y1_1 is responsible for samples 90th and 278th. Y2_2 is 

responsible for samples 208th and 221st. Y4 is responsible for 

samples 151st and 158th.  

 

Table 5. Decomposed T2 Hotteling value 

Sample 
Variables 

Y1_1 Y1_2 Y2_1 Y2_2 Y3 Y4 

42 11.44 0.922 3.919 0.756 41.316 3.766 

90 14.47 0.187 0.007 4.659 0.518 4.742 

151 0.033 0.726 0.312 0.115 1.314 39.02 

154 10.73 0.390 15.44 2.142 0.145 0.559 

158 1.450 0.622 7.821 0.239 0.044 19.47 

208 5.918 8.376 0.967 40.04 1.127 1.883 

221 0.066 0.101 4.608 26.74 1.552 0.113 

231 3.693 24.50 0.721 2.862 7.022 0.302 

278 21.09 1.052 0.119 0.005 2.198 3.815 

 

MCUSUM and MEWMA control chart 

In Rstudio (2020), the MCUSUM and MEWMA control charts 

were implemented using the MSQC package. The charts were 

configured with parameters including ARL0 = 200 

(corresponding to a false alarm rate α = 0.05), reference value 

k = 0.5, and decision limit h = 5.5. The MCUSUM control 

chart, applied to residual data, demonstrates enhanced 

sensitivity in detecting small changes in the mean vector of the 

process compared to the multivariate T2 Hotelling control 

charts under identical conditions (p = 6; n = 1 and ARL0 = 

200), as illustrated in Figure 6(a). For instance, while the first 

signal in the multivariate T2 Hotelling chart appears at sample 

42, the MCUSUM chart detects the first signal at sample 14. 

Conversely, Figure 6(b) illustrates that the MEWMA control 

chart exhibits comparable sensitivity to the multivariate T2 

Hotelling control chart in detecting process changes. This 

comparison highlights the effectiveness of MCUSUM and 

MEWMA charts in differentiating their capabilities in 

sensitivity relative to traditional T2 Hotelling control charts in 

process monitoring and quality control scenarios. 

Implementing T2 Hotteling control chart, MCUSUM chart and 

MEWMA chart for the obtained residual data can overcome 

multivariate autocorrelated data effectively. When compared 

with MCUSUM and MEWMA, T2 Hotteling has better 

performance in detecting small shifts in the process. 

Meanwhile, the MCUSUM residual chart and the MEWMA 

residual chart show a large shift from the average. In addition, 

T2 Hotteling also shows stable shifts around the average. 

However, the MCUSUM chart and the MEWMA chart show 

oscillations in shifts and even show a trend. This shows that 

the T2 Hotteling residual chart has better performance than the 

MCUSUM and MEWMA residual control charts. 

 

 
(a) MCUSUM control chart 

2712412111811511219161311

180

160

140

120

100

80

60

40

20

0

Sample

T
²

UCL=29.2

T² Chart of Original Data

2712412111811511219161311

80

70

60

50

40

30

20

10

0

Sample

T
²

UCL=29.20

T² Chart of Residual Data



 10 

 
(b) MEWMA control chart 

Figure 6. Multivariate control charts using residuals data 

 

4.3. Comparison univariate control chart between original 

and residual data 

In this section, Figure 7 presents a comparison between 

univariate control charts based on original data and residual 

data. The findings illustrate that the residual control chart 

outperforms the original data-based chart, particularly when 

the original data exhibit significant time series effects 

indicated by high autocorrelation. Specifically, Figure 7 

demonstrates that control charts based on the original data 

exhibit more instances of out-of-control signals compared to 

those based on residual data. This indicates that using 

residuals, which account for the modeled effects and reduce 

autocorrelation, leads to improved performance in detecting 

deviations from the expected process behavior. Thus, 

employing residual-based control charts can enhance the 

accuracy and reliability of quality control measures in 

manufacturing or other monitored processes. Using three 

times of standard deviation from the center line rules, based on 

original data control chart, there are 181 samples, 6 samples, 

6 samples, 16 samples, 18 samples, and 11 samples are out-of-

control for each variable Y1_1, Y1_2, Y2_1, Y2_2, Y3 and 

Y4; respectively. Otherwise, using the same rules for testing, 

based on the residual data control chart, number of samples 

out of control decreasing into 11 samples, 4 samples, 7 

samples, 11 samples, 6 samples and 6 samples for each 

variable Y1_1, Y1_2, Y2_1, Y2_2, Y3 and Y4; respectively. 

Even though variable Y2_1 has increasing number of samples 

out of control in residual data control chat, but there five 

consecutive points of out-of-control samples are getting large 

shift from the centerline.  

The overall impression of process stability shown by control 

charts using residual data are rather different than was 

obtained from the control charts based on the original data. 

Otherwise, univariate control chart by original data for each 

variable, the pattern also shows the trend and large shift from 

the average. It might cause by the autocorrelation effects that 

happened on original data. As shown by the Figure 3, we see 

that the autocorrelation effect of the original data is very high 

which shown by the significant lag. 
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(a) (b) 

Figure 7. Univariate control chart: (a) 𝑥̅ control chart of original data; (b) 𝑥̅ control chart of residual data 

 

To address the practical implications of our proposed 

model in a real-world manufacturing context, we emphasize 

several key benefits. Firstly, the MAR-ANN model enhances 

detection sensitivity, enabling the early identification of 

potential quality issues. This allows for prompt corrective 

actions, reducing the incidence of defective products and 

minimizing rework, ultimately enhancing overall product 

quality. Additionally, the model effectively handles 

autocorrelation, a common challenge in traditional control 

charts, ensuring more reliable monitoring and reducing false 

alarms. This reliability is crucial for maintaining consistent 

product quality in continuous-flow manufacturing processes. 

Furthermore, our model is scalable and adaptable to various 

manufacturing processes with complex, multivariate, and 

autocorrelated data, making it suitable for diverse industries, 

from electronics to automotive. The implementation can be 

seamlessly integrated with existing manufacturing execution 

systems (MES) and statistical process control (SPC) software, 

allowing manufacturers to leverage advanced analytics 

without overhauling their current systems. This integration, 

coupled with the model's ability to lower operational costs by 

improving detection of process deviations and reducing false 

alarms, highlights its economic impact. Additionally, 

successful implementation requires comprehensive training 

for operators and engineers, demonstrating the model's 

benefits in improving process control and reducing false 

alarms. By promoting a culture of continuous improvement, 

manufacturers can use insights gained from the model to refine 

their processes continuously and maintain a competitive edge. 

 

5. CONCLUSION 

The case study examined in this paper reveals that the test of 

autocorrelation and the analysis of the time series are critical 

preliminary steps in the application of control charts. The 

performance of control charts is deteriorated by auto-

correlated observations. As observed in charts built using 

original data, it increases the false alarm rate. It should also be 

noted that in applying multivariate control charts the existence 

of auto-correlated observations may mask the actual 

correlation between variables. Moreover, dependency among 

the variables also has effect to the performance of univariate 

control chart. Hence, it is better using multivariate control 

chart. Therefore, it is recommended to use MAR model using 

ANN approach to reduce autocorrelation effect on multivariate 

data. 

In order to identify out-of-control signals in multivariate 

control charts, it is possible to use univariate control charts as 

it is easy to implement. However, in cases associated with 

actual correlation among variables, the univariate control 

charts can result in misleading conclusions. Instead, 

decomposing statistics is a suitable technique that can be used 

in T2 Hotteling multivariate control charts to identify the 

contribution of variables in out-of-control signals. The 

residual control charts, derived from the ANN-based model, 

perform significantly better in detecting mean shifts. This 

improvement is particularly evident in terms of sensitivity, 

where residual control charts showed a higher capability in 

identifying small process changes compared to traditional 

control charts. By emphasizing the practical benefits of 

residual control charts in handling autocorrelated multivariate 

data, our study contributes to the field by showcasing an 

effective solution for improved process monitoring and quality 

control. This approach offers valuable insights and practical 

implications for practitioners aiming to enhance their process 

control systems. 

Based on the analysis of the case study, it is evident that in 

scenarios where detecting small changes in process parameters 

is critical, MCUSUM and MEWMA charts offer advantages 

over the T2 Hotelling control chart. These alternative control 

charts exhibit superior run length performance and greater 

sensitivity in detecting minor shifts in the process's mean 

vector. This heightened sensitivity enables quicker response 

and action in maintaining process quality and efficiency. 

Given that the data in this study were derived from product 

specifications measured by an AOI system, which operates on 

numerical values, an intriguing area for future research 

involves exploring the application of P control charts. P 

control charts are pertinent for monitoring defect proportions 

and could provide valuable insights when applied to control 

charts using image data as input. Analyzing and interpreting 

control charts with image data presents a promising avenue to 

enhance quality control methodologies, particularly in sectors 

reliant on visual inspection and image-based measurements. 

This potential research direction could further advance 

understanding and implementation of robust quality control 

strategies in manufacturing and related industries. 
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In future studies, we aim to investigate the optimal selection 

and sensitivity of ANN models for handling multivariate time 

series data in industrial processes. This will involve 

conducting comprehensive experiments to compare various 

ANN architectures (e.g., MLP, RNN, LSTM, GRU) and 

configurations (e.g., number of layers, neurons per layer, 

activation functions) to identify the most suitable models. 

Additionally, we will perform a sensitivity analysis by 

systematically varying key ANN parameters such as learning 

rate, hidden layer sizes, and regularization terms, as well as 

introducing variations in data quality like noise and missing 

data. By evaluating the impact of these changes on 

performance metrics, we intend to determine the robustness 

and stability of the ANN models and identify the 

configurations that produce the most representative and 

reliable residuals for process monitoring. This research will 

provide deeper insights into optimizing ANN models, 

enhancing the effectiveness of residual control charts, and 

offering valuable guidance for practitioners and researchers in 

improving industrial process monitoring and quality control. 
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often complex to implement and may not effectively decompose out-of-control 

signals to identify specific variable contributions. 
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multivariate statistical process control model that integrates a multivariate 

autoregressive (MAR) approach with neural networks. This model aims to 
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This study implements the proposed MAR-ANN model for electronics 

products. The target manufacturing process of the product includes stamping, 

electroplating, injection molding, assembling, and packaging, as shown in 

Figure 2. The high-speed continuous production line possesses multivariate 

and autocorrelated properties. An automatic optic inspection (AOI) system is 

installed in the process. The data collection was conducted using high-
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detected.  
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units of product. This study collects 300 batches as the samples for the MAR-

ANN control chart. 
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regularization parameters. The grid search was performed using cross-
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model. 

 

8. The description of the ANN model and its configuration (such as architecture, training data, 
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reproducibility and to assess the appropriateness of the chosen techniques. 
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hyperparameters include an alpha of 0.0001 for regularization, a learning rate of 0.001, and 

the Adam optimizer. The model underwent up to 1000 iterations, with early stopping disabled, 

and employed cross-validation (70% training, 15% validation, 15% test split). These details 

ensure the model's reproducibility and highlight the robustness and appropriateness of our 

approach. 

 



9. The statistical validation of the model needs to be more robust. Consider adding more metrics 

for performance evaluation and comparing these with traditional multivariate quality control 

charts. 

Response: We appreciate the suggestion to enhance the robustness of our model's statistical 

validation. To address the challenge of autocorrelation, which traditional multivariate control 

charts cannot effectively manage, we employed residual-based control charts. This method 

involves modeling the autocorrelation structure of the process data using our MAR-ANN 

approach and then applying control charts to the residuals, which are assumed to be 

independent and identically distributed. By using residual-based control charts, we can 

effectively detect shifts in the process mean while accounting for autocorrelation, thus 

improving the accuracy and reliability of the monitoring system. We used Average Run 

Length (ARL) as performance metrics. Moreover, we compare the performance of our 

proposed MAR-ANN methodology with traditional multivariate control charts like 

MCUSUM, MEWMA, and Hotelling's T2. This comparison includes analyzing detection 

times, sensitivity to small mean shifts, and overall accuracy in identifying out-of-control 

signals. The results demonstrate that our residual-based approach effectively handles 

autocorrelation and outperforms conventional methods in detecting process anomalies. In 

summary, by using residual-based control charts and incorporating a diverse set of 

performance metrics, we have strengthened the robustness of our model's statistical 

validation, showcasing its superiority over traditional methods in handling autocorrelated 

multivariate process data. 

 

10. While the results indicate that the proposed model performs well, the discussion lacks depth 

in terms of interpreting these results in the context of manufacturing realities. Discuss the 

practical implications of implementing this model in a real-world setting. 

 

Response: Thank you for your valuable feedback. To address the practical implications of 

our proposed model in a real-world manufacturing context, we emphasize several key 

benefits. Firstly, the MAR-ANN model enhances detection sensitivity, enabling the early 

identification of potential quality issues. This allows for prompt corrective actions, reducing 

the incidence of defective products and minimizing rework, ultimately enhancing overall 



product quality. Additionally, the model effectively handles autocorrelation, a common 

challenge in traditional control charts, ensuring more reliable monitoring and reducing false 

alarms. This reliability is crucial for maintaining consistent product quality in continuous-

flow manufacturing processes. Furthermore, our model is scalable and adaptable to various 

manufacturing processes with complex, multivariate, and autocorrelated data, making it 

suitable for diverse industries, from electronics to automotive. The implementation can be 

seamlessly integrated with existing manufacturing execution systems (MES) and statistical 

process control (SPC) software, allowing manufacturers to leverage advanced analytics 

without overhauling their current systems. This integration, coupled with the model's ability 

to lower operational costs by improving detection of process deviations and reducing false 

alarms, highlights its economic impact. Additionally, successful implementation requires 

comprehensive training for operators and engineers, demonstrating the model's benefits in 

improving process control and reducing false alarms. By promoting a culture of continuous 

improvement, manufacturers can use insights gained from the model to refine their processes 

continuously and maintain a competitive edge. 

 

11. The sensitivity analysis of the model to changes in its parameters or variations in data quality 

could enhance the paper's contribution to the field. 

Response: We appreciate the suggestion to include a sensitivity analysis. However, in this 

study, the primary objective of using the ANN model was to effectively handle multivariate 

time series data. Our focus was on demonstrating the superiority of residual control charts 

over traditional control charts in terms of sensitivity to mean shifts. While we did not conduct 

a detailed sensitivity analysis of the ANN model's parameters, we provided a comprehensive 

comparison between traditional control charts and residual control charts. Our findings 

indicate that residual control charts, derived from the ANN-based model, perform 

significantly better in detecting mean shifts. This improvement is particularly evident in terms 

of sensitivity, where residual control charts showed a higher capability in identifying small 

process changes compared to traditional control charts. By emphasizing the practical benefits 

of residual control charts in handling autocorrelated multivariate data, our study contributes 

to the field by showcasing an effective solution for improved process monitoring and quality 



control. We believe this approach offers valuable insights and practical implications for 

practitioners aiming to enhance their process control systems. 

We added in the future research regarding your suggestion as follows: 

In future studies, we aim to investigate the optimal selection and sensitivity of ANN models 

for handling multivariate time series data in industrial processes. This will involve conducting 

comprehensive experiments to compare various ANN architectures (e.g., MLP, RNN, LSTM, 

GRU) and configurations (e.g., number of layers, neurons per layer, activation functions) to 

identify the most suitable models. Additionally, we will perform a sensitivity analysis by 

systematically varying key ANN parameters such as learning rate, hidden layer sizes, and 

regularization terms, as well as introducing variations in data quality like noise and missing 

data. By evaluating the impact of these changes on performance metrics, we intend to 

determine the robustness and stability of the ANN models and identify the configurations that 

produce the most representative and reliable residuals for process monitoring. This research 

will provide deeper insights into optimizing ANN models, enhancing the effectiveness of 

residual control charts, and offering valuable guidance for practitioners and researchers in 

improving industrial process monitoring and quality control. 

 

12. It would benefit from greater clarity and cohesion in conclusion. Specifically, it could enhance 

its effectiveness by clearly quantifying the comparative analysis of different control charts 

and explicitly linking these findings to the supporting data presented earlier in the paper. 

Response: We acknowledge the need for greater clarity and cohesion in the conclusion 

section of our paper. In response, we revised the conclusion to provide a more explicit and 

quantified comparative analysis of the different control charts discussed in our study. 

Specifically, we highlight key performance metrics such as detection sensitivity, false alarm 

rates, and Average Run Length (ARL) for each control chart method, including traditional 

control charts and the proposed residual-based control charts. Additionally, we will clearly 

link these comparative findings to the supporting data presented earlier in the paper, ensuring 

that the results are directly tied to the empirical evidence. By doing so, we aim to reinforce 

the significance of our findings and provide a more coherent and impactful conclusion that 

effectively summarizes the contributions of our research. This revised conclusion will offer a 

clear, quantified comparison of the control charts, underscoring the practical advantages of 



the residual-based approach in handling autocorrelated multivariate data, and providing 

valuable insights for practitioners in the field of industrial process monitoring and quality 

control. 

 

13. The reference format generally meets journal requirements, but some references are outdated. 

It is recommended to include more recent research findings, all of which should have a DOI 

or be searchable on Google. 

Response: We appreciate your observation regarding the need for more recent references. To 

address this, we updated our literature review and reference list to include the latest research 

findings in the field of multivariate statistical process control and ANN-based models. We 

ensure that all new references are current, have a DOI, or are easily searchable on Google.  

 

Responses to the Reviewer #1 

 

1. The literature review section needs to be strengthened. While it covers key topics like 

multivariate auto-correlated control charts, residual control charts, and applying ANN to 

statistical process monitoring (SPM), the synthesis and critical analysis of prior work is 

lacking. The authors should identify specific gaps in the existing research that their proposed 

methodology aims to address. This will help position the novelty and significance of their 

work more clearly. 

Response: We appreciate your suggestion to enhance the literature review section. To address 

this, we will revise the literature review to include a more thorough synthesis and critical 

analysis of prior work. Specifically, we revised in introduction and in literature review sub 

section 2.4. ( we highlighted the revision with blue color).  

 

2. The methodology description requires more details for reproducibility. Equations are 

provided for the MAR model and residual calculations, but the explanations around them are 

brief. Elaborate on the ANN architecture (number of layers, nodes, activation functions, etc.) 

and training process used. Specify hyperparameter settings. The procedure diagram in Figure 

1 is helpful, but the steps need to be described in greater depth in the text. 



Response: We acknowledge the need for a more detailed and comprehensive description of 

the methodology to ensure reproducibility. To address this, the architecture of ANN we 

elaborated in section 4.2.2 as follows: 

The specific ANN model that used to figure out the autoregressive model with 6 

variables and order p = 16 in this case is MLPRegressor. The model, trained on 14,000 

observations from an electronic product manufacturing process, includes a single 

hidden layer with 50 neurons and uses the 'relu' activation function. Key 

hyperparameters include an alpha of 0.0001 for regularization, a learning rate of 0.001, 

and the Adam optimizer. The model underwent up to 1000 iterations, with early 

stopping disabled, and employed cross-validation (70% training, 15% validation, 15% 

test split). These details ensure the model's reproducibility and highlight the robustness 

and appropriateness of our approach. 

 

3. The results focus heavily on qualitative interpretations of control chart patterns. Please add 

more quantitative analysis and numerical comparisons of method performance, such as false 

alarm rates, out-of-control run lengths, and fault detection rates. 

Response: We appreciate your suggestion to include more quantitative analysis in the results 

section. To address this, we revised the results section to provide a comprehensive evaluation 

of our method's performance through the following quantitative metrics: page 7-9 sub section 

T2 Hotteling, Mcusum and MEWMA control chart. We highlight with font color blue. 

 

4. Discussion of results should include more interpretation rather than just presentation. What 

are the key insights and practical implications? How generalizable is the approach to other 

manufacturing contexts? Acknowledge any limitations of the method and scope for future 

enhancements. 

Response: We appreciate your suggestion to enhance the discussion section. To address this, 

we will revise the discussion as follows: 

To address the practical implications of our proposed model in a real-world manufacturing 

context, we emphasize several key benefits. Firstly, the MAR-ANN model enhances 

detection sensitivity, enabling the early identification of potential quality issues. This 

allows for prompt corrective actions, reducing the incidence of defective products and 



minimizing rework, ultimately enhancing overall product quality. Additionally, the model 

effectively handles autocorrelation, a common challenge in traditional control charts, 

ensuring more reliable monitoring and reducing false alarms. This reliability is crucial for 

maintaining consistent product quality in continuous-flow manufacturing processes. 

Furthermore, our model is scalable and adaptable to various manufacturing processes with 

complex, multivariate, and autocorrelated data, making it suitable for diverse industries, 

from electronics to automotive. The implementation can be seamlessly integrated with 

existing manufacturing execution systems (MES) and statistical process control (SPC) 

software, allowing manufacturers to leverage advanced analytics without overhauling 

their current systems. This integration, coupled with the model's ability to lower 

operational costs by improving detection of process deviations and reducing false alarms, 

highlights its economic impact. Additionally, successful implementation requires 

comprehensive training for operators and engineers, demonstrating the model's benefits 

in improving process control and reducing false alarms. By promoting a culture of 

continuous improvement, manufacturers can use insights gained from the model to refine 

their processes continuously and maintain a competitive edge. 

5. The conclusions are too broad and lacking specifics. Please provide more detailed and 

quantified conclusions on the performance of the proposed MAR-ANN approach compared 

to other methods. 

Response: We acknowledge the need for more detailed and quantified conclusions. We 

highlighted the revised version with font color blue in conclusion section. 

The residual control charts, derived from the ANN-based model, perform 

significantly better in detecting mean shifts. This improvement is particularly 

evident in terms of sensitivity, where residual control charts showed a higher 

capability in identifying small process changes compared to traditional control 

charts. By emphasizing the practical benefits of residual control charts in handling 

autocorrelated multivariate data, our study contributes to the field by showcasing an 

effective solution for improved process monitoring and quality control. This 

approach offers valuable insights and practical implications for practitioners aiming 

to enhance their process control systems. 



Analyzing the results of the considered case study indicates that in situations where 

it is important to detect small changes in process parameters, the MCUSUM and 

MEWMA charts are alternatives to the T2 Hotelling control chart. In such situations, 

these control charts have better run length performance and more sensitive than the 

T2 Hotelling control chart to detect a small change in the process's mean vector, 

which allows faster action. Since the data that used in this study come from 

specification product measured by AOI system is based on numerical value, an 

interesting future research concerns of P control chart, which related to the defect 

proportion control chart, will be gave analysis and interpretation of control chart 

with image data as an input data. 

In future studies, we aim to investigate the optimal selection and sensitivity of ANN 

models for handling multivariate time series data in industrial processes. This will 

involve conducting comprehensive experiments to compare various ANN 

architectures (e.g., MLP, RNN, LSTM, GRU) and configurations (e.g., number of 

layers, neurons per layer, activation functions) to identify the most suitable models. 

Additionally, we will perform a sensitivity analysis by systematically varying key 

ANN parameters such as learning rate, hidden layer sizes, and regularization terms, 

as well as introducing variations in data quality like noise and missing data. By 

evaluating the impact of these changes on performance metrics, we intend to 

determine the robustness and stability of the ANN models and identify the 

configurations that produce the most representative and reliable residuals for process 

monitoring. This research will provide deeper insights into optimizing ANN models, 

enhancing the effectiveness of residual control charts, and offering valuable 

guidance for practitioners and researchers in improving industrial process 

monitoring and quality control 

6. Writing can be made more concise and clear in some parts, especially the introduction. Avoid 

redundant phrases. Use paragraphs effectively to separate key ideas. Check grammar, typos 

and formatting consistency thoroughly before resubmission. 

Response: We acknowledge the need to enhance the clarity and conciseness of our writing. 

To address this, we revised the introduction and other parts of the paper. 
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Dear author,
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Sari Dewi, you do not need to complete MMEP MM 1 APC. Your paper MMEP MM 1 is sent for formatting and proofreading.

 

If you have any questions, please do not hesitate to contact us.  
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Dear author,
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l   Revise your paper according to the marked comments in the Galley proof. Please highlight any changes
you make in the Galley proof.

l  If some corrections are left out, highlight them and attach notes on how to correct directly in the file.

l  Check with care the name, affiliations, mail address, and all the symbols in the text.

 

If you fail to accurately address all of the issues raised during the proofreading process due to your own
reasons, your article will not be published in the upcoming issue.
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To: "editor.mmep iieta.org" <editor.mmep@iieta.org>
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Dear Editor,

Thank you for providing the final proof of our manuscript. I have reviewed the document carefully and confirm that no
further corrections are needed at this stage. All names, affiliations, addresses, and symbols have been checked and
found to be accurate.

I have cc'd my co-authors in this response to confirm their awareness of and contributions to the manuscript, as
requested.

Additionally, I confirm that there are no conflicts of interest related to the content of this manuscript.

Please let me know if you require anything else from our side.

Best regards,
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Dear author,
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[1] If some corrections are left out, highlight them and attach notes on how to correct directly in the PDF file.

[2] Check with care the name, affiliations, mail address, and all the symbols in the text.

[3] Please reply to this email and cc the co-authors to confirm their awareness and contributions to the
manuscript (Mandatory).

[4] Confirm that there are no conflicts of interest regarding the content of this manuscript, or disclose any
potential conflicts explicitly.

 

For further questions, please do not hesitate to contact us via this e-mail.

 

Please note that this proof is the last opportunity to make corrections; no more modifications will be possible
once the issue is published.
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Dear Editorial Team,

I hope this email finds you well. I am sorry for the late response and was made you remind me many times.

Thank you for repeatedly sending the galley proof of my manuscript and reminding me. I have carefully reviewed
and revised the paper according to the comments and suggestions provided. The changes have been highlighted in
the attached document, as requested.

Additionally, I have included notes for any corrections that required further clarification directly in the file.

Please find the revised version attached. Should you need any further adjustments or clarifications, feel free to
reach out to me.

Thank you for your time, and I look forward to hearing from you soon.

Best regards,

Luh Juni Asrini

 

On Thu, Sep 19, 2024 at 10:35 AM editor.mmep iieta.org <editor.mmep@iieta.org> wrote:

 

 

From: editor.mmep iieta.org
Sent: Wednesday, September 18, 2024 7:10 PM
To: 'juniasrini@ukwms.ac.id' <juniasrini@ukwms.ac.id>
Subject: URGENT FW: FW: Galley proof of MMEP MM 1 URGENT

 

 

 

From: editor.mmep iieta.org
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To: 'Luh Juni Asrini' <juniasrini@ukwms.ac.id>
Subject: RE: FW: Galley proof of MMEP MM 1 URGENT

 

Reminder

 

From: Luh Juni Asrini <juniasrini@ukwms.ac.id>
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To: editor.mmep iieta.org <editor.mmep@iieta.org>
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Dear Editorial Team,

 

Thank you for sending the galley proof of my manuscript "MM1". I have carefully reviewed the marked comments
and will make the necessary revisions accordingly.

I understand the importance of meeting the deadline of August 10th. However, because of unforeseen
circumstances related to my work and career development, I am asking for a postponement of the paper's
publication to the next issue in September.

I apologize for any inconvenience this may cause and assure you that I am committed to delivering a high-quality
revised manuscript. I will be sure to highlight all changes made and address all comments thoroughly.

Thank you for your understanding and consideration.

 

Sincerely,

Luh Juni Asrini

 

On Thu, Aug 15, 2024 at 10:45 AM editor.mmep iieta.org <editor.mmep@iieta.org> wrote:

Kind reminder.

 

From: editor.mmep iieta.org
Sent: Monday, August 12, 2024 5:53 PM
To: 'juniasrini@ukwms.ac.id' <juniasrini@ukwms.ac.id>
Subject: FW: Galley proof of MMEP MM 1 URGENT
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To: juniasrini@ukwms.ac.id
Subject: Galley proof of MMEP MM 1

 

Dear author,

 

Please check the galley proof of your manuscript and follow the requirements:

 

l   Revise your paper according to the marked comments in the Galley proof. Please highlight any
changes you make in the Galley proof.

l   If some corrections are left out, highlight them and attach notes on how to correct directly in the
file.

l  Check with care the name, affiliations, mail address, and all the symbols in the text.
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If you fail to accurately address all of the issues raised during the proofreading process due to your own
reasons, your article will not be published in the upcoming issue.

 

Please return the revised version to this e-mail before 10 August 2024. Thus, we have enough time to
process your manuscript in the next step.

 

For further questions, please do not hesitate to contact us via this e-mail.

 

Best regards,

 

MMEP Editorial Board

Mathematical Modelling of Engineering Problems 
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International Information and Engineering Technology Association (IIETA)

http://www.iieta.org/

 

--

Ir. Luh Juni Asrini, S.Si., M.Si., Ph.D

 

Department of Industrial Engineering

Faculty of Engineering

Widya Mandala Catholic University Surabaya

Jalan Kalijudan 37, Surabaya 60114

Indonesia

Email : juniasrini@ukwms.ac.id / jhunee06@gmail.com / juniasrini@ymail.com

 

--

Ir. Luh Juni Asrini, S.Si., M.Si., Ph.D

 

3/29/25, 10:55 PM Universitas Katolik Widya Mandala Surabaya Mail - Re: Final proof of MMEP MM 1 URGENT

https://mail.google.com/mail/u/2/?ik=17bd7acd7a&view=pt&search=all&permmsgid=msg-f:1810967501251514434&simpl=msg-f:1810967501251… 4/5

http://www.iieta.org/Journals/MMEP
http://www.iieta.org/
https://www.google.com/maps/search/Jalan+Kalijudan+37,+Surabaya+60114+%0D%0A+%0D%0A+%0D%0A+Indonesia?entry=gmail&source=g
https://www.google.com/maps/search/Jalan+Kalijudan+37,+Surabaya+60114+%0D%0A+%0D%0A+%0D%0A+Indonesia?entry=gmail&source=g
mailto:juniasrini@ukwms.ac.id
mailto:jhunee06@gmail.com
mailto:juniasrini@ymail.com


Department of Industrial Engineering

Faculty of Engineering

Widya Mandala Catholic University Surabaya

Jalan Kalijudan 37, Surabaya 60114

Indonesia

Email : juniasrini@ukwms.ac.id / jhunee06@gmail.com / juniasrini@ymail.com

--
Ir. Luh Juni Asrini, S.Si., M.Si., Ph.D

Department of Industrial Engineering
Faculty of Engineering
Widya Mandala Catholic University Surabaya
Jalan Kalijudan 37, Surabaya 60114
Indonesia
Email : juniasrini@ukwms.ac.id / jhunee06@gmail.com / juniasrini@ymail.com

3/29/25, 10:55 PM Universitas Katolik Widya Mandala Surabaya Mail - Re: Final proof of MMEP MM 1 URGENT

https://mail.google.com/mail/u/2/?ik=17bd7acd7a&view=pt&search=all&permmsgid=msg-f:1810967501251514434&simpl=msg-f:1810967501251… 5/5

https://www.google.com/maps/search/Jalan+Kalijudan+37,+Surabaya+60114+%0D%0A+%0D%0A+Indonesia?entry=gmail&source=g
https://www.google.com/maps/search/Jalan+Kalijudan+37,+Surabaya+60114+%0D%0A+%0D%0A+Indonesia?entry=gmail&source=g
mailto:juniasrini@ukwms.ac.id
mailto:jhunee06@gmail.com
mailto:juniasrini@ymail.com
https://www.google.com/maps/search/Jalan+Kalijudan+37,+Surabaya+60114+Indonesia?entry=gmail&source=g
https://www.google.com/maps/search/Jalan+Kalijudan+37,+Surabaya+60114+Indonesia?entry=gmail&source=g
mailto:juniasrini@ukwms.ac.id
mailto:jhunee06@gmail.com
mailto:juniasrini@ymail.com


 

 

7. Paper published (29-09-2024) 

-Final paper 

 



Luh Juni Asrini <juniasrini@ukwms.ac.id>

Your paper has been published in MMEP (Vol. 11 No. 9, 2024)!
1 message

editor.mmep iieta.org <editor.mmep@iieta.org> Sun, Sep 29, 2024 at 8:08 PM
To: Luh Juni Asrini <juniasrini@ukwms.ac.id>

Dear author(s),

 

Thanks for patronizing Mathematical Modelling of Engineering Problems (MMEP) for publishing your research. The electronic
version of your paper published in Volume 11, Number 9, 2024 is attached with this email. To read your paper online, please
click: https://www.iieta.org/journals/mmep/paper/10.18280/mmep.110922

 

Kindly acknowledge the receipt of the same. You must be satisfied with our services.

 

We wish you the best in your research career and hope to have outstanding studies coming from you for publication in MMEP in
the future as well. We would also appreciate your citing the research content published in MMEP in other research papers that you
intend to submit to other journals. This will help raise MMEP’s profile. 

 

If you are interested, you may also apply for being our journals’ peer reviewers or/and editors. We would like to receive your CV
for future cooperation.

 

Last but not least, we shall be grateful if you encourage us by submitting your valuable article(s) for the forthcoming issues and
also promote our journal amongst your colleagues and fellow-workers.

IIETA is calling for papers for its journals:

 

Journal Title ISSN Mainly Indexed by Homepage

1 Traitement du Signal (TS) 0765-0019
Science Citation Index

Expanded, Ei Compendex
etc.

http://www.iieta.org/Journals/
TS

2 International Journal of Heat and Technology (IJHT) 0392-8764

Web of Science, Emerging
Sources Citation Index

(ESCI), Scopus, Ei
Compendex etc.

http://www.iieta.org/Journals/
IJHT

3
Journal of New Materials for Electrochemical Systems

(JNMES)

1480-2422
(Print);

2292-1168
(Online)

Science Citation Index
Expanded, Journal Citation

Reports, Scopus

http://www.iieta.org/Journals/
JNMES

1/23/25, 2:49 PM Universitas Katolik Widya Mandala Surabaya Mail - Your paper has been published in MMEP (Vol. 11 No. 9, 2024)!

https://mail.google.com/mail/u/1/?ik=bbf4c6758e&view=pt&search=all&permthid=thread-f:1811535960605970369&simpl=msg-f:1811535960605970369 1/4

https://www.iieta.org/journals/mmep/paper/10.18280/mmep.110922
https://www.iieta.org/journals/mmep/paper/10.18280/mmep.110922
https://www.iieta.org/journals/mmep/paper/10.18280/mmep.110922
http://www.iieta.org/Journals/TS
http://www.iieta.org/Journals/TS
http://www.iieta.org/Journals/IJHT
http://www.iieta.org/Journals/IJHT
http://www.iieta.org/Journals/JNMES
http://www.iieta.org/Journals/JNMES


4
Mathematical Modelling of Engineering Problems

(MMEP)

2369-0739
(Print);

2369-0747
(Online)

Scopus, Google Scholar,
CNKI Scholar

http://www.iieta.org/Journals/
MMEP

5 Annales de Chimie - Science des Matériaux (ACSM) 0151-9107
Emerging Sources Citation

Index (ESCI), Scopus
http://www.iieta.org/Journals/

ACSM

6
Revue des Composites et des Matériaux Avancés

(RCMA)
1169-7954

Emerging Sources Citation
Index (ESCI), Scopus

http://www.iieta.org/Journals/
RCMA

7 Instrumentation Mesure Métrologie (I2M) 1631-4670
Scopus, SCImago (SJR),

Google Scholar
http://www.iieta.org/Journals/

I2M

8 Ingénierie des Systèmes d’Information (ISI) 1633-1311
Scopus, SCImago (SJR),

Google Scholar
http://www.iieta.org/Journals/

ISI

9 Journal Européen des Systèmes Automatisés (JESA) 1269-6935
Scopus, SCImago (SJR),

Google Scholar
http://www.iieta.org/Journals/

JESA

10 Revue d'Intelligence Artificielle (RIA) 0992-499X
Scopus, SCImago (SJR),

Google Scholar
http://www.iieta.org/Journals/

RIA

11 European Journal of Electrical Engineering (EJEE) 2103-3641
MIAR, EBSCOhost,

Publons, Google Scholar
http://www.iieta.org/Journals/

EJEE

12
International Journal of Sustainable Development and

Planning (IJSDP)

1743-7601
(Print);

1743-761X
(Online)

Scopus, SCImago (SJR), Ei
Geobase, EBSCOhost

http://www.iieta.org/Journals/
IJSDP

13
International Journal of Safety and Security Engineering

(IJSSE)

2041-9031
(Print);

2041-904X
(Online)

Scopus, SCImago (SJR), Ei
Geobase, EBSCOhost

http://www.iieta.org/Journals/
IJSSE

14
International Journal of Design & Nature and

Ecodynamics (IJDNE)

1755-7437
(Print);

1755-7445
(Online)

Scopus, SCImago (SJR), Ei
Geobase, EBSCOhost

http://www.iieta.org/Journals/
IJDNE

15
International Journal of Computational Methods and

Experimental Measurements (IJCMEM)

2046-0546
(Print);

2046-0554
(Online)

Scopus, SCImago (SJR),
DOAJ, CrossRef, Portico,

EBSCOhost etc.

https://www.iieta.org/
Journals/IJCMEM

16
International Journal of Energy Production and

Management (IJEPM)

2056-3272
(Print);

2056-3280
(Online)

Scopus, SCImago (SJR),
DOAJ, CrossRef, Portico,
ProQuest, British Library,

Library of Congress, Google
Scholar etc.

https://www.iieta.org/
Journals/IJEPM

17 International Journal of Transport Development and
Integration (IJTDI)

2058-8305
(Print);

Scopus, SCImago (SJR),
DOAJ, CrossRef, Portico,
ProQuest, British Library,

https://www.iieta.org/
Journals/IJTDI

1/23/25, 2:49 PM Universitas Katolik Widya Mandala Surabaya Mail - Your paper has been published in MMEP (Vol. 11 No. 9, 2024)!

https://mail.google.com/mail/u/1/?ik=bbf4c6758e&view=pt&search=all&permthid=thread-f:1811535960605970369&simpl=msg-f:1811535960605970369 2/4

http://www.iieta.org/Journals/MMEP
http://www.iieta.org/Journals/MMEP
http://www.iieta.org/Journals/ACSM
http://www.iieta.org/Journals/ACSM
http://www.iieta.org/Journals/RCMA
http://www.iieta.org/Journals/RCMA
http://www.iieta.org/Journals/I2M
http://www.iieta.org/Journals/I2M
http://www.iieta.org/Journals/ISI
http://www.iieta.org/Journals/ISI
http://www.iieta.org/Journals/JESA
http://www.iieta.org/Journals/JESA
http://www.iieta.org/Journals/RIA
http://www.iieta.org/Journals/RIA
http://www.iieta.org/Journals/EJEE
http://www.iieta.org/Journals/EJEE
http://www.iieta.org/Journals/IJSDP
http://www.iieta.org/Journals/IJSDP
http://www.iieta.org/Journals/IJSSE
http://www.iieta.org/Journals/IJSSE
http://www.iieta.org/Journals/IJDNE
http://www.iieta.org/Journals/IJDNE
https://www.iieta.org/Journals/IJCMEM
https://www.iieta.org/Journals/IJCMEM
https://www.iieta.org/Journals/IJEPM
https://www.iieta.org/Journals/IJEPM
https://www.iieta.org/Journals/IJTDI
https://www.iieta.org/Journals/IJTDI


2058-8313
(Online)

Library of Congress, Google
Scholar etc.

18 International Journal of Environmental Impacts (IJEI)

2398-2640
(Print);

2398-2659
(Online)

Scopus, DOAJ, CrossRef,
Portico, EBSCOhost,

ProQuest, Cabell's Directory,
British Library, Library of
Congress, Google Scholar

etc.

https://www.iieta.org/
Journals/IJEI

19
Environmental and Earth Sciences Research Journal

(EESRJ)

2369-5668
(Print);

2369-5676
(Online)

Google Scholar, CNKI
Scholar, EBSCOhost

http://www.iieta.org/Journals/
EESRJ

20 Review of Computer Engineering Studies (RCES)

2369-0755
(Print);

2369-0763
(Online)

Google Scholar, CNKI
Scholar, EBSCOhost

http://www.iieta.org/Journals/
RCES

21 Advances in Modelling and Analysis A (AMA_A) 1258-5769 CrossRef, Google Scholar
http://www.iieta.org/Journals/

AMA/AMA_A

22 Advances in Modelling and Analysis B (AMA_B) 1240-4543 CrossRef, Google Scholar
http://www.iieta.org/Journals/

AMA/AMA_B

23 Advances in Modelling and Analysis C (AMA_C) 1240-4535 CrossRef, Google Scholar
http://www.iieta.org/Journals/

AMA/AMA_C

24 Advances in Modelling and Analysis D (AMA_D) 1291-5211 CrossRef, Google Scholar
http://www.iieta.org/Journals/

AMA/AMA_D

25 Modelling, Measurement and Control A (MMC_A) 1259-5985 CrossRef, Google Scholar
http://www.iieta.org/Journals/

MMC/MMC_A

26 Modelling, Measurement and Control B (MMC_B) 1259-5969 CrossRef, Google Scholar
http://www.iieta.org/Journals/

MMC/MMC_B

27 Modelling, Measurement and Control C (MMC_C) 1259-5977 CrossRef, Google Scholar
http://www.iieta.org/Journals/

MMC/MMC_C

28 Modelling, Measurement and Control D (MMC_D) 1240-4551 CrossRef, Google Scholar
http://www.iieta.org/Journals/

MMC/MMC_D

29
TECNICA ITALIANA-Italian Journal of Engineering

Science (TI-IJES)
0040-1846

CrossRef, Portico,
EBSCOhost, Google Scholar

http://www.iieta.org/Journals/
TI-IJES

30
Progress in Solar Energy and Engineering Systems

(PSEES)
Published since 2018

http://www.iieta.org/Journals/
PSEES

 

Kind regards,

 

1/23/25, 2:49 PM Universitas Katolik Widya Mandala Surabaya Mail - Your paper has been published in MMEP (Vol. 11 No. 9, 2024)!

https://mail.google.com/mail/u/1/?ik=bbf4c6758e&view=pt&search=all&permthid=thread-f:1811535960605970369&simpl=msg-f:1811535960605970369 3/4

https://www.iieta.org/Journals/IJEI
https://www.iieta.org/Journals/IJEI
http://www.iieta.org/Journals/EESRJ
http://www.iieta.org/Journals/EESRJ
http://www.iieta.org/Journals/RCES
http://www.iieta.org/Journals/RCES
http://www.iieta.org/Journals/AMA/AMA_A
http://www.iieta.org/Journals/AMA/AMA_A
http://www.iieta.org/Journals/AMA/AMA_B
http://www.iieta.org/Journals/AMA/AMA_B
http://www.iieta.org/Journals/AMA/AMA_C
http://www.iieta.org/Journals/AMA/AMA_C
http://www.iieta.org/Journals/AMA/AMA_D
http://www.iieta.org/Journals/AMA/AMA_D
http://www.iieta.org/Journals/MMC/MMC_A
http://www.iieta.org/Journals/MMC/MMC_A
http://www.iieta.org/Journals/MMC/MMC_B
http://www.iieta.org/Journals/MMC/MMC_B
http://www.iieta.org/Journals/MMC/MMC_C
http://www.iieta.org/Journals/MMC/MMC_C
http://www.iieta.org/Journals/MMC/MMC_D
http://www.iieta.org/Journals/MMC/MMC_D
http://www.iieta.org/Journals/TI-IJES
http://www.iieta.org/Journals/TI-IJES
http://www.iieta.org/Journals/PSEES
http://www.iieta.org/Journals/PSEES


MMEP Editorial Board

Mathematical Modelling of Engineering Problems 

http://www.iieta.org/Journals/MMEP

International Information and Engineering Technology Association (IIETA)

http://www.iieta.org/

mmep_11.09_22.pdf
1294K

1/23/25, 2:49 PM Universitas Katolik Widya Mandala Surabaya Mail - Your paper has been published in MMEP (Vol. 11 No. 9, 2024)!

https://mail.google.com/mail/u/1/?ik=bbf4c6758e&view=pt&search=all&permthid=thread-f:1811535960605970369&simpl=msg-f:1811535960605970369 4/4

http://www.iieta.org/Journals/MMEP
http://www.iieta.org/
https://mail.google.com/mail/u/1/?ui=2&ik=bbf4c6758e&view=att&th=1923de5bb5c3cfc1&attid=0.1&disp=attd&safe=1&zw
https://mail.google.com/mail/u/1/?ui=2&ik=bbf4c6758e&view=att&th=1923de5bb5c3cfc1&attid=0.1&disp=attd&safe=1&zw


Auto-Correlated Multivariate Quality Control for Electronic Products Manufacturing with 

Decomposition Analysis 

Luh Juni Asrini* , Dian Retno Sari Dewi , Irene Karijadi

Department of Industrial Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia 

Corresponding Author Email: juniasrini@ukwms.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.110922 ABSTRACT 

Received: 3 May 2024 

Revised: 17 July 2024 

Accepted: 24 July 2024 

Available online: 29 September 2024 

Many modern industrial processes involve multiple quality measures, and using 

individual control charts for each measure can be misleading if these measures are 

highly related. This paper proposes a new method for statistically controlling electronic 

products with multiple, interconnected quality characteristics. The method utilizes a 

combined model: a multivariate autoregressive (MAR) model with neural networks, to 

handle the presence of both correlation and autocorrelation in the data. The study 

compares the effectiveness of MCUSUM, MEWMA, and T2 Hotelling charts in 

detecting small shifts in the overall process quality. To pinpoint the specific variables 

causing out-of-control signals in the T2 Hotelling chart, we introduce a novel 

decomposition technique. This technique allows us to identify which measures are 

contributing most to these signals. Additionally, the MCUSUM and MEWMA charts 

demonstrate excellent performance in detecting small quality changes, leading to faster 

corrective actions. Overall, these findings suggest that our proposed method can 

significantly improve the reliability and responsiveness of quality control in electronics 

manufacturing. 

Keywords: 

multivariate statistical process control, 

decomposition analysis, residual control chart 

1. INTRODUCTION

The complexity and increasing correlation of product 

features over time have made the requirements of product 

inspection more difficult. Statistical process monitoring is a 

method of quality control since variability is a primary 

indication of poor quality [1]. In many continuous processes 

of the electronic device manufacturing business, statistical 

process monitoring (SPM) typically develops over time to 

handle auto-correlated, multivariate quality data. Any changes 

in a process that may be the consequence of unforeseen and 

uncontrollable factors can be quickly identified by an effective 

SPM system. 

Traditional control charts relied on the idea that the process 

would be dispersed independently across time, but as 

electronic device manufacture has advanced, this assumption 

is no longer valid. Control charts are produced for variables 

that defy one of the primary assumptions, serial-sample 

independence, when autocorrelation is present. The average 

run length (ARL) and stability of the control charts are both 

impacted by the violating of the presumption of independence 

[2]. Furthermore, if there are too many false alarms, the 

process engineer may prefer to completely ignore the control 

charts or misidentify the true source of variation. This explains 

why control charts are used on continuous-flow systems very 

infrequently [3]. 

Due to the fact that the industry that manufactures electrical 

products typically bases its product quality on a number of 

interconnected quality criteria and variables, SPM is also faced 

with multivariate problems [4]. The statistical characteristics 

of classic control charts are greatly impacted by interrelated 

variables, which can also result in a notable rise in the average 

false alarm rate and a fall in the capacity to identify process 

changes. Applying univariate control charts to every variable 

has the potential to mislead in decisions about quality. 

Consequently, multivariate based quality control techniques 

needed to take such characteristics into account at the same 

time. 

As electronic products become more intricate and their 

quality characteristics show stronger connections over time, 

ensuring proper inspection becomes increasingly difficult. 

Traditional statistical process monitoring (SPM) systems 

struggle to keep pace with these complexities in modern 

manufacturing. One major issue is that traditional control 

charts assume data is independently distributed, which is often 

violated due to autocorrelation, leading to instability, and 

increased false alarms. Additionally, traditional control charts 

are not designed to handle multiple interrelated quality 

attributes simultaneously, which can mislead quality decisions 

and reduce the ability to detect process changes. These 

challenges have resulted in a low adoption of control charts in 

continuous-flow systems. This paper aims to address these 

gaps by proposing advanced SPM techniques that account for 

autocorrelation and introducing multivariate-based quality 

control methods to handle interrelated attributes 

simultaneously. Through these enhancements, we seek to 

increase the reliability and practical utility of control charts, 

encouraging their broader adoption in the electronic product 
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manufacturing industry. 

Traditional SPM methods, such as Shewhart, CUSUM, and 

EWMA control charts, assume that process data is 

independently distributed over time. However, this 

assumption is often violated in modern manufacturing 

environments where autocorrelation is prevalent. The 

violation of the independence assumption leads to several 

issues with traditional control charts: increased false alarms, 

decreased sensitivity, and complexity in handling multivariate 

data. Existing multivariate control charts, such as T2 

Hotelling’s, MCUSUM, and MEWMA, address these 

correlations but are often complex to implement and may not 

effectively decompose out-of-control signals to identify 

specific variable contributions. 

To address these limitations, our study proposes a novel 

ANN-based multivariate statistical process control model that 

integrates a multivariate autoregressive (MAR) approach with 

neural networks. This model aims to enhance detection 

sensitivity, improve robustness to autocorrelation, and provide 

detailed decomposition of out-of-control signals. By 

leveraging the capabilities of neural networks, our model 

improves sensitivity to small shifts in the process mean vector, 

ensuring timely detection of quality issues. The integration of 

MAR with neural networks effectively manages 

autocorrelated data, reducing false alarms and improving the 

stability of average run length (ARL). Additionally, our model 

offers a detailed decomposition of out-of-control signals, 

using univariate charts and a decomposition approach to 

identify specific variable contributions. This feature allows 

process engineers to pinpoint and address root causes of 

variations more accurately. By addressing these specific gaps 

and limitations in current multivariate autocorrelated process 

monitoring approaches, our study aims to enhance the 

reliability and practicality of SPM systems in modern 

manufacturing environments, ultimately improving product 

quality and manufacturing efficiency. 

The present study will address the auto-correlated, 

multivariate quality control for electronic product 

manufacturing. We propose a model based on ANN to predict 

and build the residual based control chart for multivariate data 

with autocorrelation order p (AR(p)) processes. 

The rest of this paper is organized as following. Section 2 

discusses relevant literature review, such as SPM of 

multivariate auto-correlated observations, multivariate control 

chart, and ANN for multivariate and auto-correlated 

observations. Section 3 details the research methodology 

including manufacturing process and research variables. 

Section 4 illustrates a practical application and discussion. 

Finally, conclusions are provided in Section 5. 

 

 

2. LITERATURE REVIEW 

 

2.1 Multivariate auto-correlated control charts  

 

Many industrial processes, both continuous and batch 

operations, frequently exhibit autocorrelation in their data, 

leading to ongoing efforts to find solutions [5]. Studies by 

Loredo et al. [6] and Psarakis and Papaleonida [7] highlight 

that even minor autocorrelation can significantly disrupt 

traditional control charts, causing them to signal false alarms 

more often and miss actual process changes. One solution 

involves filtering out autocorrelation using time series models 

and focusing control charts on the resulting uncorrelated 

residuals. This approach allows standard control charts to 

function effectively, as demonstrated by Callao and Rius [8] 

with their AR (1) model-based residual control charts. The 

concept can be extended beyond single variables. Issam and 

Mohamed [9] proposed using multivariate autoregressive 

(MAR) models to handle systems where multiple correlated 

variables exhibit serial dependence. Their work introduces an 

MAR control chart specifically designed for these multivariate 

autocorrelated processes. Their research proposed an MAR 

control chart for multivariate auto-correlated processes. For an 

MAR process with m variables, it is denoted by 𝒙𝒕 =
(𝒙𝟏𝒕, 𝒙𝟐𝒕, … , 𝒙𝒎𝒕) as a (m×1) vector. 

Psarakis and Papaleonida [7] explained that shifts in the 

mean or variance of residuals signal changes in the actual 

process's mean or variance. By plotting residuals on a control 

chart, shifts in the process can be detected. The principle of 

residual charts is that, with a correct time series model, 

residuals become independently and identically distributed 

random variables, satisfying traditional quality control criteria 

and enabling the use of standard SPC charts. Therefore, 

developing an accurate time series model for multivariate 

autocorrelated data is essential in statistical process control. 

Although the ARIMA model is widely used for linear time 

series prediction, it struggles to capture nonlinear patterns. 

Autocorrelation in process data is a persistent challenge, 

prompting researchers to develop solutions. Alwan and 

Roberts [10] addressed this issue by proposing residual-based 

control charts, which rely on data where autocorrelation has 

been removed. Woodall and Faltin [11] investigated the 

impact of self-correlation on control charts and explored 

various strategies to manage it. Their work included 

developing methods like the CUSUM control chart 

specifically designed for autocorrelated data [12-14]. 

Additionally, researchers have explored using exponentially 

weighted moving average (EWMA) control charts for data 

with autocorrelation [15-18]. 

A range of multivariate control charts exist in the literature, 

including T2 Hotelling, multivariate CUSUM (MCUSUM), 

and multivariate EWMA charts [19-22]. Additionally, 

researchers have made advancements in control charts to 

address situations with multivariate data exhibiting 

autocorrelation and time series effects [23-27]. Notably, Jarrett 

and Pan [28] proposed separate approaches for independent 

and autocorrelated processes. They introduced a dedicated 

multivariate autoregressive (MAR) control chart specifically 

designed for handling multivariate data with autocorrelation. 

 

2.2 Residual control chart 

 

2.2.1 T2 Hotelling control chart 

The T2 Hotelling control chart, a more versatile version of 

the Shewhart chart, was introduced by Harold Hotelling in 

1947 to handle multivariate observations. Unlike the Shewhart 

𝑋̅-chart which deals with single variables, the T2 Hotelling 

chart can handle multiple variables simultaneously. It comes 

in two versions: for data grouped by subgroups and for 

individual observations. The Shewhart X-chart is basic tool for 

univariate control charts, where it measures process stability 

against significant changes. It assumes residuals (differences 

between observed values and expected values) have a zero 

mean and a standard deviation 𝜎𝑟 . An observation is 

considered in-control if its residual value falls within control 

limit defined by a factor λ. The T2 Hotelling chart uses a 

different approach. It leverages the Mahalonobis distance [25] 
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to compress residuals from multiple variables into a single 

value. An observation is considered in control if it satisfies a 

specific equation as the following Eq. (1). This equation 

considers factors like the number of observation (n); the 

number of variables (m); the residual vector of each 

observation (𝑅𝑖 ); and a value from the Fisher distribution 

𝐹𝑚;𝑛−𝑚;(𝛼) . The Fisher distribution is chosen based on a 

desired risk level (α), which helps determine the expected 

frequency of false alarms when in-control observations 

flagged as out-of-control. By analyzing the T2 statistic value 

for each observation, the T2 Hotelling control chart can 

effectively monitor processes with multiple interrelated 

variables. 

 

𝑇𝑖
2 = 𝑅𝑖

𝑇 ∑ 𝑅𝑖

−1

𝑅

𝑚(𝑛 − 1)

𝑛 − 𝑚
𝐹𝑚;𝑛−𝑚;(𝛼);  

for 𝑖 = 1,2, ⋯ , 𝑛 

(1) 

 

2.2.2 Multivariate CUSUM control chart 

The CUSUM control chart was developed to overcome a 

weakness in Shewhart and T2 Hotelling charts. These 

traditional charts often miss gradual process changes because 

they only consider the most recent data point [9]. CUSUM 

charts address this by accumulating the deviations from a 

target value across residuals of past observations, making them 

more sensitive to subtle shifts. The most common CUSUM 

control method is Crosier's chart [29]. This method uses a 

statistical procedure defined by Eqs. (2) and (3). It starts with 

𝑆0 = 0, a matrix of zeros representing the initial state. Then, 

for each observation (i), it calculates a new 𝑆𝑖 value based on 

the previous 𝑆𝑖−1, the current residual 𝑅𝑖, a reference value (k) 

and the estimated residual covariance matrix Σ𝑅
−1 . The 

reference value (k) helps determine how quickly the CUSUM 

chart reacts to changes. Crosier's chart signals a potential 

process shift when a statistic called 𝑇𝑆
2 = 𝑆𝑖

𝑇 ∑ 𝑆𝑖
−1
𝑅 , calculated 

using 𝑆𝑖  and the inverse covariance matrix, exceeds a 

predefined limit (H). In simpler terms, the CUSUM scheme 

raises an alarm when the S statistic goes above a certain 

threshold (H), indicating a possible change in the process. 

 

𝑆𝑖 = {

0                                             , if 𝐶𝑖 ≤ 𝑘

(𝑆𝑖−1 + 𝑅𝑖) (1 −
𝑘

𝐶𝑖

)           , otherwise
 (2) 

 

𝐶𝑖 = (𝑆𝑖−1 + 𝑅𝑖)Σ𝑅
−1(𝑆𝑖−1 + 𝑅𝑖)

𝑇 (3) 

 

Crosier’s chart signal a shift when 𝑇𝑆
2 = 𝑆𝑖

𝑇 ∑ 𝑆𝑖
−1
𝑅  

overcomes a predetermined limit H. Thus, if 𝑆𝑖 > 𝐻, the chart 

indicates a process shift. To achieve the desired in-control run 

length (RL) characteristic, the parameters k and H must be 

determined beforehand. In CUSUM procedures, it is standard 

practice to assume a sample size of one. This simplification is 

widely adopted as it allows for the continuous monitoring of 

individual observations, facilitating the prompt detection of 

small shifts in the process. However, in some cases, it might 

be beneficial to consider larger sample sizes to account for 

variations and provide more robust detection capabilities, 

especially in processes where data is naturally grouped or 

collected in batches. Adapting the CUSUM procedure to 

accommodate different sample sizes can enhance its flexibility 

and effectiveness in various industrial and statistical 

applications. The multivariate CUSUM (MCUSUM) statistic 

𝑆𝑖  is designed to detect specific shifts in the process mean 

vector. This capability enables the identification of changes 

across multiple variables simultaneously, making MCUSUM 

particularly useful for monitoring complex processes where 

interactions between variables may signal deviations from the 

expected process behavior. By accumulating deviations from 

the target mean vector over time, the MCUSUM statistic 

provides a sensitive measure for detecting even small shifts, 

thus enhancing the ability to maintain quality control and 

process stability in multivariate settings. Additionally, the 

MCUSUM approach can be tailored to different types of shifts 

and can incorporate various weighting schemes to prioritize 

certain variables or shifts, further improving its applicability 

and effectiveness in diverse industrial and research 

environments: 

 

𝑆𝑖 = 𝑚𝑎𝑥{𝑆𝑖−1 + 𝑎𝑇𝑅𝑖 − 𝑘, 0} (4) 

 

where, 

𝑎𝑇 =
𝛿𝑟

𝑇Σ𝑟
−1

√𝛿𝑟
𝑇Σ𝑟

−1𝛿𝑟

 

 

The residual mean vector is denoted as 𝛿𝑟 , while Σ𝑟  

represents the variance-covariance matrix. In a MCUSUM 

scheme, any deviation from the target mean that exceeds k 

units is aggregated. In this context, k serves as the benchmark 

value for the scheme. The control scheme signals an out-of-

control state when 𝑆𝑖 surpasses a specified decision threshold, 

labeled as H [9]. 

 

2.2.3 Multivariate EWMA control chart 

While CUSUM charts consider all past measurements 

equally, EWMA (Exponentially Weighted Moving Average) 

charts assign weights to recent observations based on their 

significance in depicting process behavior. A higher value of 

λ amplifies the impact of the most recent observation [5]. The 

iterative expression for EWMA statistics is described by Eq. 

(5), 

 

𝑍𝑖 = (1 − 𝜆)𝑍𝑖−1 + 𝜆𝑅𝑖;  for 𝑖 = 1,2, ⋯ , 𝑛 (5) 

 

where, λ is diagonal matrix of value 0 ≤ 𝜆𝑗 ≤ 1, 𝑗 =

1,2, ⋯ , 𝑚.  The multivariate EWMA (MEWMA) scheme 

signals if the 

 

𝑇𝑍
2 = 𝑍𝑖

𝑇 ∑ 𝑍𝑖

−1

𝑍
 (6) 

 

surpasses a predetermined value H, where H>0 is chosen to 

achieve a specified in-control (on-target) ARL0. The 

asymptotic form of the covariance matrix is Σ𝑍 = (
𝜆

2−𝜆
) Σ𝑅  

[30]. 

Reynolds and Lu's study [31] explored the use of AR (1), 

AR (2), and ARMA (1, 1) models with residual X-charts. They 

identified a potential limitation: the residual X-chart might not 

be sensitive enough to detect certain types of process changes, 

specifically mean shifts. Those research, however, considered 

only for processes which has small order of p on 

autoregressive AR (p) model. Whereas real condition 

sometimes autocorrelation with high order (p>5) are occurred. 

Besides that, multivariable with high autocorrelation also must 

considered in one time. This condition usually occurs in the 

manufacturing industry with mass production and fast flow 

production. Therefore, the general multivariate autoregressive 
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(MAR) models should be developed to overcome 

multivariable and autocorrelation problem on statistical 

process monitoring using residual based multivariate control 

chart. 

 

2.3 Applying ANN to SPM of multivariate auto-correlated 

observations 

 

Artificial neural networks (ANNs) are increasingly used as 

powerful tools to estimate and forecast process outputs [32]. 

In particular, the multi-layer perceptron (MLP) is a versatile 

estimator, working for both classification and prediction tasks. 

For forecasting problems, a multilayer feed-forward ANN 

with a continuous output layer is ideal. When dealing with 

quality data exhibiting autocorrelation through an 

autoregressive model of order p (AR(p)), the average values 

for each time period depend on the averages of the previous p 

periods. Consequently, when using an ANN for forecasting, 

the input layer feeds the network with quality characteristic 

data from the past p periods. The output layer then predicts the 

quality characteristic vector for the target time period. During 

implementation, the network processes information from the 

previous p periods through the input layers to generate the 

forecast vector at the output layer. As highlighted by Arkat et 

al. [3], the residual vector for each period is simply the 

difference between the predicted and actual quality 

characteristic values. 

Machine learning has seen growing adoption in statistical 

process monitoring (SPM) research over the past two decades. 

This trend reflects the potential of machine learning to detect 

and diagnose faults in industrial processes and production 

outcomes. ANNs, specifically, have been used for data 

analysis in SPM since the 1980s, as demonstrated by Arkat et 

al. [3]. Research has explored ANN applications in both 

univariate [33-35] and multivariate control charts [36-40]. 

Arkat et al. [3] proposed an ANN-based model for forecasting 

and building residual CUSUM charts for AR (1) multivariate 

processes. Additionally, Khediri et al. [5] explored using 

support vector regression to create control charts for 

monitoring more complex, non-linear, and autocorrelated 

multivariate processes. 

 

2.4 Summary 

 

Traditional methods often assume independence between 

observations, which is violated in continuous-flow 

manufacturing processes due to autocorrelation. This violation 

leads to increased false alarm rates and reduced average run 

length (ARL). While multivariate control charts address 

correlation among variables, they can be complex and 

computationally intensive, and they may not effectively 

identify specific variable contributions in out-of-control 

signals. Our proposed ANN-based model addresses these 

limitations by integrating a multivariate autoregressive (MAR) 

approach with neural networks, improving sensitivity to small 

shifts in the process mean vector and enhancing robustness to 

autocorrelation. The model offers better detection capabilities, 

reducing false alarms and improving ARL stability. 

Additionally, it provides detailed decomposition of out-of-

control signals, allowing process engineers to pinpoint and 

address root causes of variations more effectively. These 

improvements enhance the reliability and practicality of SPM 

systems in modern manufacturing, leading to more timely and 

accurate quality control interventions, ultimately improving 

product quality and manufacturing efficiency. 

In recent years, several studies have advanced the field of 

SPM, particularly in addressing the limitations of traditional 

control charts in handling autocorrelated and multivariate data. 

For instance, Wang and Asrini [41] proposed an enhanced 

EWMA control chart that incorporates machine learning 

techniques to better handle autocorrelated data, demonstrating 

improved sensitivity and reduced false alarm rates. Similarly, 

Yang and Sutrino [42] developed a hybrid SPM model that 

combines neural networks with traditional statistical methods 

to monitor complex manufacturing processes, showing 

significant improvements in detection capabilities and 

robustness to data variability. 

With advancements in many automation processes, such as 

electronic component manufacturing, the assumption of 

independent distribution is frequently violated because the 

high frequency of sample selection results in observations that 

are closely related and dependent. It is crucial to understand 

how to apply and evaluate control charts designed to account 

for autocorrelation. Residual control charts offer valuable 

insights into device behavior over time and have effective 

detection capabilities. However, they do not entirely address 

the needs for handling autocorrelation and multiple variable 

observations. 

 

 

3. METHOD 

 

This study aims to present a residual control chart using 

MAR model with ANN (MAR-ANN) to solve the SPM 

problem related to multivariate with auto-correlated 

observations. Moreover, this study makes diagnostic of out-of-

control signal in multivariate control chart using 

decomposition technique. Comparison of multivariate control 

chart with univariate one is also conducted. Figure 1 shows the 

operational procedure of the proposed mothed. Multiple 

variables are defined as the quality parameter which correlate 

to each other, and each variable is of time series. 

 

 
 

Figure 1. Procedure to build the proposed control chart 
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Correlation test is employed to know the strength of 

correlation between variables. In this study, correlation test 

determines the correlation between quality parameters of a 

product. If there is a correlation between quality parameters, 

then the control chart preparation is based on a multivariate 

control chart approach because it will involve more than one 

quality parameter in one chart. The hypothesis used in testing 

the correlation between quality parameters is as follows. To 

determine whether there is a correlation between quality 

parameters is based on the p-value. 

 

H0: 𝜌 = 0 or there is no correlation 

H1: 𝜌 ≠ 0 or there is a correlation 

 

This study tackles autocorrelation in process data using a 

method developed by Loredo et al. [6]. This method prioritizes 

residual-based control charts, which have proven more 

effective than traditional charts in detecting mean shifts when 

dealing with short-run, autocorrelated data. To identify 

variables potentially affected by autocorrelation, the study 

performs an autocorrelation test on each variable. These tests 

assess whether a variable exhibits a relationship with its own 

past values over time. A helpful tool for visualizing 

autocorrelation is the autocorrelation function (ACF) plot. If a 

variable's ACF plot shows a significant lag, it suggests the 

presence of autocorrelation. To address autocorrelation, the 

study employs time series modeling. This modeling process 

ensures the model's errors (residuals) meet the assumption of 

white noise, meaning they are uncorrelated with each other. 

The autocorrelation coefficient, calculated at a specific time 

lag (k), measures the correlation between a variable's value at 

a given time (t) and its value k periods earlier (t-k). Essentially, 

it indicates how closely the variable's past values influence its 

current value. If the autocorrelation plot dips below the 95% 

confidence interval at a particular lag, it signifies the presence 

of significant autocorrelation at that time lag. 

Figure 1 presents a four-step procedure. First, data are 

checked for each variable by ACF and correlation between 

variables by Pearson’s correlation. Second, MAR modelling 

process determines the model considering autocorrelation and 

multivariate. To estimate MAR, this research proposes an 

ANN with MLPRegressor approach. Third, residual white-

noise checking is conducted to ensure all residual variables can 

be used for the multivariate control chart. White noise residual 

checking involves multivariate normality, independence and 

identical test. Then, fourth step builds a residual-based 

multivariate control chart where residual is the difference 

between actual value and estimated value based on the MAR 

model of each variable. 

If the quality characteristics of an autocorrelated process 

follow an AR (p) model, the mean vector for each period 

depends on the mean vectors from the previous p periods. In 

such cases, the inputs for the desired artificial neural network 

(ANN) consist of the quality characteristic vectors from the 

previous p periods, while the output represents the quality 

characteristic vector to be forecasted for the next period. 

Before constructing the ANN, the multivariate autoregressive 

(MAR) model is typically applied to determine the 

autoregressive order p for each factor in the time series. This 

helps in understanding the dependencies and lagged effects 

among the quality characteristics over time, ensuring that the 

ANN model captures the relevant temporal relationships 

effectively. 

This study, following the work of Khediri et al. [5], utilizes 

time series estimation for a multivariate process using a 

multivariate autoregressive (MAR) model. The MAR model 

considers the influence of past values on each variable in the 

process. Suppose a process with m variables where each 

variable 𝑌𝑖 for i ranges from 1 to m at specific time t denoted 

as 𝑌𝑖𝑡 . The MAR model considers the values of all m variables 

at p previous time steps to influence the current value (t) of 

variable 𝑌𝑖. In other words, 𝑌𝑖𝑡  is determined by the values of 

𝑌𝑗 at times (t-1), (t-2), ..., (t-p) for all j variables (from 1 to m). 

Eq. (7) summarizes this concept mathematically. It represents 

𝑌𝑖𝑡  as a function of the lagged values of all m variables. The 

MAR model then estimates this function, denoted by 𝑓 , 

allowing to predict future values (𝑌𝑖𝑡) for each variable using 

Eq. (8). Eq. (8) essentially replaces the unknown function 𝑓 

with its estimated version (𝑓) to predict 𝑌𝑖 at time t. 

 
𝑌(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)) (7) 

 

𝑌̂(𝑖=1,2,…,𝑚)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−𝑝),⋯,𝑌𝑚(𝑡−1),⋯,𝑌𝑚(𝑡−𝑝)) (8) 

 

If the estimation is accurately performed, the error term 

vector is calculated based on Eq. (9). This vector will be used 

to generate the control chart, which will be time-independent 

and typically distributed with a mean of zero. 

 

𝑒𝑡̂ = 𝑌(𝑖=1,2,⋯,𝑚)𝑡 − 𝑌̂(𝑖=1,2,⋯,𝑚)𝑡 (9) 

 

If a shift occurs in the process, it will no longer be accurately 

described by the function f, and consequently, the estimated 

residual term 𝑒𝑡̂ will also be affected and shifted. To determine 

the residual used for the control chart, this study employs the 

multivariate autoregressive (MAR) model, as specified in Eq. 

(10). 

 

𝑦𝑡 = 𝑐 + ∅(𝐵)𝑦𝑡 + 𝑒𝑡 (10) 

 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝑒𝑡 (11) 

 

where, 

𝑦𝑡 = (𝑦1,𝑡 , 𝑦2,𝑡 , … , 𝑦𝑚,𝑡)′ is (mx1) vector of variable Y 

𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑚)′ is (mx1) vector of constant value 

𝑒𝑡 = (𝑒1,𝑡 , 𝑒2,𝑡 , … , 𝑒𝑚,𝑡)′  is (mx1) vector residual, with 

assumption 𝑒𝑡~IIDN (0, 𝛺) and 𝑣𝑎𝑟(𝑒𝑡𝑒𝑡)=Ω. 

∅ =coefficient of MAR model, matrix (mxm) 

t=1, 2, …, n 

B=backshift operator 

m=number of variables 

p=order of MAR 

In this study, the MAR residual control chart, which 

involves a number of input and output variables and a fitting 

technique to find the satisfied residual, is empowered by a 

multilayer perceptron regressor (MLPRegressor) (Alpaydin, 

2010) to obtain good fitting result. MLPRegressor can 

approximate the nonlinear functions of the input for regression 

by forming higher-order representations of the input features 

using intermediate hidden layer. 

 

 

4. EXPERIMENT RESULT AND DISCUSSIONS  

 

4.1 Manufacturing process 

 

This study applies the MAR-ANN model to electronics 
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product manufacturing processes, encompassing stages like 

stamping, electroplating, injection molding, assembly, and 

packaging (depicted in Figure 2). These processes operate on 

a high-speed continuous production line characterized by 

multivariate and autocorrelated properties. An automatic 

optical inspection (AOI) system is integral to the process, 

facilitating data collection. High-precision instruments, 

regularly calibrated for accuracy, including digital calipers, 

micrometers, and AOI systems, are utilized to measure 

product dimensions and features. Specifically, AOI systems 

record product feature measurements. The MAR-ANN model 

proposed in this study aims to enhance defect detection 

capabilities, leveraging the structured data from AOI and other 

instruments to improve quality monitoring throughout the 

manufacturing stages. 

 
Raw 

Material
Stamping Plating Injecting Assembly Packaging

AOI: detection 

for appearance  
 

Figure 2. Manufacturing process of the product under 

investigation 

 

Table 1. Product feature and variable notation 

 
Feature Variable Notation 

Excess metal material is present at the 

terminal. 
Y1_1 

Excess colloids appear in the hold-

down of the metal. 
Y1_2 

Excess metal material is found on the 

plastic body. 
Y2_1 

Excess plastic material is present on 

the product's edge. 
Y2_2 

Overflow occurs on both sides. Y3 

The root is overflowed. Y4 

 

In this study, the automatic optical inspection (AOI) system 

detects key defect types such as "overflowed", "extra-

materials", and "metal debris". These defects are identified 

based on numerical specifications such as length, width, and 

area measured by the AOI system. Each product is 

characterized by six features, as detailed in Table 1, which 

describes each variable. The data collection process involves 

measuring products in batches, with each batch comprising 

100 units. For the MAR-ANN control chart analysis, this study 

collects samples from 300 such batches. This structured 

approach ensures that a comprehensive dataset is used to 

develop and validate the MAR-ANN model for effective 

quality control in the manufacturing process. 

 

4.2 Residual-based multivariate control by MAR-ANN 

model 

 

The proposed MAR-ANN model is implemented according 

to Figure 1. 

 

4.2.1 Data checking 

The MAR (multivariate autoregressive) model assumes that 

each time series in the system influences others, allowing 

predictions based on past values of all series involved. 

Granger’s causality test is a method used to assess these 

dependency relationships by testing whether past values of one 

series help predict another. In the study, Table 2 presents the 

results of Granger’s causality test for all possible combinations 

of time series in a given dataset, storing the corresponding p-

values in an output matrix. A p-value less than the 5% 

significance level indicates a significant causal relationship, 

where the series in the column influences the series in the row. 

For example, a p-value of 0.0000 in (row 1, column 2) 

suggests that Y1_2 (column) causes Y1_1 (row). Conversely, 

a p-value of 0.000 in (row 2, column 1) indicates that Y1_2 

(row) causes Y1_1 (column). Therefore, Table 2 demonstrates 

that there are significant correlations among the variables 

overall. Specifically, it can be concluded that variables Y1_1 

and Y1_2; Y1_1 and Y2_2; Y1_1 and Y3; Y2_1 and Y2_2; 

Y2_1 and Y4; Y2_2 and Y3 are correlated based on the p-

values obtained from Granger’s causality test. These findings 

help validate the interconnectedness assumed by the MAR 

model in your analysis. 

ACF test of each variable is shown in Figure 3, showing that 

almost all variables have lags over than the red likelihood limit 

(95%), which means every variable has significant 

autocorrelation. Vector autoregressive model found that the 

optimal lag to define order p is 16 (p=16). This order was 

chosen based on the minimum Akaike Information Criterion 

(AIC) value. 
 

4.2.2 MAR modeling process-constructing residuals control 

chart using ANN model 

This approach tackles the challenges of analyzing complex, 

autocorrelated, and multidimensional quality data by 

combining a MAR model with an ANN. The MAR model 

excels at capturing the data's temporal nature and the 

interconnectedness between variables. The ANN, on the other 

hand, is adept at learning non-linear relationships and 

becoming more sensitive to subtle changes in the average 

values of the entire quality measurement process. To train and 

validate the effectiveness of this MAR-ANN model, we 

utilized a dataset gathered from a continuous-flow electronic 

product manufacturing line. The data was meticulously 

divided into training (70%), validation (15%), and testing 

(15%) sets. This methodical split ensures the model's 

robustness and generalizability. The training set serves as the 

foundation for model fitting, while the validation set allows 

for fine-tuning crucial hyperparameters that influence the 

ANN's performance. Finally, the test set provides an unbiased 

assessment of the model's overall accuracy. Selecting the 

optimal hyperparameters is paramount for maximizing the 

ANN's effectiveness. We employed a grid search technique to 

identify the ideal configuration, encompassing factors like the 

number of hidden layers, the number of neurons within each 

layer, the learning rate, and parameters for controlling 

overfitting. This grid search was meticulously conducted using 

cross-validation on the training data. Ultimately, the 

combination of hyperparameters that yielded the best 

performance on the validation set was chosen for the final 

model. 

Eq. (12) represents an autoregressive process with 6 

variables and order p=16. 

 

𝑌(𝑖=1,2,…,6)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) (12) 

 

Estimation of the process using ANN provides 𝑓  which 

allows to predict 𝑌(𝑖=1,2,…,𝑚)𝑡 as Eq. (13). 

 

𝑌̂(𝑖=1,2,…,6)𝑡 = 𝑓(𝑌1(𝑡−1),⋯,𝑌1(𝑡−16),⋯,𝑌6(𝑡−1),⋯,𝑌6(𝑡−16)) (13) 
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Table 2. Pearson’s correlation test between variables 

 
 Y1_1_x Y1_2_x Y2_1_x Y2_2_x Y3_x Y4_x 

Y1_1_y 1 0.000* 0.003* 0.170 0.003* 0.071 

Y1_2_y 0.000* 1 0.000* 0.155 0.813 0.000* 

Y2_1_y 0.145 0.000* 1 0.027* 0.101 0.000* 

Y2_2_y 0.000* 0.2957 0.282 1 0.000* 0.027* 

Y3_y 0.031* 0.7830 0.094 0.000* 1 0.281 

Y4_y 0.085 0.000* 0.381 0.101 0.115 1 
Note: (*) at 5% significance level 

 

The specific ANN model that used to figure out the 

autoregressive model with 6 variables and order p=16 in this 

case is MLPRegressor. The model, trained on 14,000 

observations from an electronic product manufacturing 

process, includes a single hidden layer with 50 neurons and 

uses the 'relu' activation function. Key hyperparameters 

include an alpha of 0.0001 for regularization, a learning rate 

of 0.001, and the Adam optimizer. The model underwent up to 

1000 iterations, with early stopping disabled, and employed 

cross-validation (70% training, 15% validation, 15% test split). 

These details ensure the model's reproducibility and highlight 

the robustness and appropriateness of our approach. Using the 

MLPRegressor which involved multiple outputs, the selected 

optimal model that used in this study is shown as following 

code: 

 

# Simple MLPRegressor with ReLU activation and Adam 

optimizer 

regressor = MLPRegressor( 

    activation='relu'; # Non-linear activation 

    solver='adam',# Efficient optimizer 

    hidden_layer_sizes=(50,);# Single hidden layer with 50 

neurons 

    learning_rate_init=0.001; # Initial learning rate 

    max_iter=1000#Maximum training iterations) 
 

The R-square value of 91.4% indicates that the 

MLPRegressor model explains a substantial portion, 91.4%, 

of the variance in the data, highlighting a strong fit for the 

MAR-ANN model to the observed values. To verify the white 

noise assumption of the residuals, the residuals are computed 

by subtracting the predicted values from the actual 

observations for each Y variable. Subsequent checks include 

ensuring the residuals have a mean close to zero, exhibit no 

significant autocorrelation through plots or tests like the 

Durbin-Watson test, and demonstrate constant variance 

(homoscedasticity) across different values. Meeting these 

criteria indicates that any remaining patterns in the data are 

likely due to random noise, validating the accuracy and 

reliability of the model's predictions. 

Moreover, in terms of white noise checking, residuals 

should follow multivariate normal distributions with mean of 

zero and variance equal to one, and the residuals are free of 

auto-correlation effects. The following step is a checking of 

white noise assumptions of residuals. Firstly, multivariate 

normal distribution checking in this study is done by the 

Henze-Zirkler test [43]. According to this test, we found that 

the p-value is equal to 0.150, which means all of residual 

variables have already followed multivariate normal 

distributions with significance value at 5%. 

Next, independence assumption checking for residuals is 

conducted by ACF, as shown in Figure 4. The lags of residual 

variables Y1_1; Y1_2; Y3 and Y4 are lower than the red 

likelihood limit (95%) and the autocorrelation value is around 

zero. Meanwhile, the lags are over than the red likelihood limit 

(95%) and the autocorrelation value is lower than 0.4 for 

residual variables Y2_1 and Y2_2, which means the 

correlation is weak so the effect can be ignored. Therefore, it 

can be concluded that all residual variables are free of the 

autocorrelation effect. Therefore, those residual variables can 

be used to create multivariate control chart. 

  

  

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Y1_1
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Y1_2
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Y2_1
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for Y2_2
(with 5% significance limits for the autocorrelations)

2519



 

  
 

Figure 3. Autocorrelation test of each variable 

 

Table 3. Descriptive of residual model of each variable 

 
Residual of Variable Mean Variance 

Y1_1 -0.001 0.0234 

Y1_2 0.081 0.3685 

Y2_1 -0.037 0.2193 

Y2_2 0.024 0.148 

Y3 -0.002 0.0004 

Y4 0.052 0.627 

 

Third step is residual white noise checking. Table 3 shows 

that the mean and variance of each residual variable almost 

near zero. Therefore, all residual variables have already 

satisfied the white noise assumption. The application of 

residual data satisfied the assumption of normality distribution 

and absence of autocorrelation effects. 

All quality characteristics are monitored simultaneously. 

Table 4 illustrates the correlation among the six residual 

variables. 

Multivariate T2 Hotelling control chart 

Multivariate T2 Hotelling control chart is constructed. 

Multivariate T2 Hotelling control chart for original data with 

upper control limit (UCL) value equal to 29.2 is illustrates in 

Figure 5(a) showing that there were 50 instances where the 

mechanism failed, which shown by some points are out of 

control. There are oscillating and it fails out at points 

particularly after sample 157th. This behavior comes from the 

dependence of measurements over the time on original data. 

Instead, by using residual data, the number out-of-control 

samples decreases down to 9 samples. Multivariate T2 

Hotteling control chart using residual data is more stable than 

multivariate T2 Hottelling control chart using original data, as 

shown in Figure 5(b). 
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Figure 4. Autocorrelation test of each residual variable 

 

Table 4. Correlation test between residual variables 

 
Characteristics Variables Residual of Y1_1 Residual of Y1_2 Residual of Y2_1 Residual of Y2_2 Residual of Y3 

Residual of Y1_2 
Correlation 0.046 

   

 

  

 

 

 

 

  

 

 

 

 

 

 

  

P-Value 0.431 

Residual of Y2_1 
Correlation -0.092 0.064 

P-Value 0.111 0.266 

Residual of Y2_2 
Correlation 0.105 0.112 -0.019 

P-Value 0.069 0.052 0.743 

Residual of Y3 
Correlation 0.189 0.087 0.035 0.064 

P-Value 0.001* 0.133 0.542 0.268 

Residual of Y4 
Correlation 0.272 0.033 0.131 -0.014 0.144 

P-Value 0.000* 0.571 0.023* 0.808 0.013* 

Note: (*) at 5% significance level 

 

  
(a) by original data (b) by residual data 

 

Figure 5. T2-Hotteling multivariate control chart 

 

Table 5. Decomposed T2 Hotteling value 

 

Sample 
Variables 

Y1_1 Y1_2 Y2_1 Y2_2 Y3 Y4 

42 11.44 0.922 3.919 0.756 41.316 3.766 

90 14.47 0.187 0.007 4.659 0.518 4.742 

151 0.033 0.726 0.312 0.115 1.314 39.02 

154 10.73 0.390 15.44 2.142 0.145 0.559 

158 1.450 0.622 7.821 0.239 0.044 19.47 

208 5.918 8.376 0.967 40.04 1.127 1.883 

221 0.066 0.101 4.608 26.74 1.552 0.113 

231 3.693 24.50 0.721 2.862 7.022 0.302 

278 21.09 1.052 0.119 0.005 2.198 3.815 

Decomposition is a valuable diagnostic technique for 

identifying out-of-control signals in multivariate control charts, 

particularly in T2 Hotelling charts. It breaks down the T2 

statistic into components that represent the contribution of 

each individual variable to the out-of-control signal. This 

approach involves estimating values 𝑑𝑖 for each variable and 

focusing on those variables where 𝑑𝑖 ) values are relatively 

large. Table 5 typically displays the variables with the highest 

𝑑𝑖  values, indicating which variables contribute most 

significantly to the out-of-control signals detected in the 

multivariate T2 Hotelling control chart. This helps pinpoint 

specific factors or characteristics that may need attention or 

correction in the manufacturing or process control 
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environment. Y1_2, Y2_1, and Y3 are responsible for out-of-

control signals on sample 231st, 154th, and 42nd, respectively. 

Y1_1 is responsible for samples 90th and 278th. Y2_2 is 

responsible for samples 208th and 221st. Y4 is responsible for 

samples 151st and 158th. 

MCUSUM and MEWMA control chart 

The study utilized RStudio (version 2020) and the MSQC 

package to create MCUSUM and MEWMA control charts. 

These charts were designed to identify subtle changes in the 

process by setting a specific false alarm rate (chosen to be 5%). 

The configuration also included a reference value (k=0.5) and 

a decision limit (h=5.5). The MCUSUM chart, analyzing the 

data's residuals, proved to be significantly more adept at 

detecting small shifts in the overall process mean compared to 

the standard T2 Hotelling chart. This improved sensitivity is 

evident in Figure 6(a), where the MCUSUM chart detects the 

first process change much earlier (sample 14) compared to the 

T2 chart (which only signals at sample 42) under identical test 

conditions (number of variables: p=6, subgroup size: n=1, and 

desired false alarm rate: ARL0=200). 

Conversely, Figure 6(b) illustrates that the MEWMA 

control chart exhibits comparable sensitivity to the 

multivariate T2 Hotelling control chart in detecting process 

changes. This comparison highlights the effectiveness of 

MCUSUM and MEWMA charts in differentiating their 

capabilities in sensitivity relative to traditional T2 Hotelling 

control charts in process monitoring and quality control 

scenarios. 

 

 
(a) MCUSUM control chart 

 
(b) MEWMA control chart 

 

Figure 6. Multivariate control charts using residuals data 

 

Implementing T2 Hotteling control chart, MCUSUM chart 

and MEWMA chart for the obtained residual data can 

overcome multivariate autocorrelated data effectively. When 

compared with MCUSUM and MEWMA, T2 Hotteling has 

better performance in detecting small shifts in the process. 

Meanwhile, the MCUSUM residual chart and the MEWMA 

residual chart show a large shift from the average. In addition, 

T2 Hotteling also shows stable shifts around the average. 

However, the MCUSUM chart and the MEWMA chart show 

oscillations in shifts and even show a trend. This shows that 

the T2 Hotteling residual chart has better performance than the 

MCUSUM and MEWMA residual control charts. 
 

4.3 Comparison univariate control chart between original 

and residual data 
 

In this section, Figure 7 presents a comparison between 

univariate control charts based on original data and residual 

data. The findings illustrate that the residual control chart 

outperforms the original data-based chart, particularly when 

the original data exhibit significant time series effects 

indicated by high autocorrelation. Specifically, Figure 7 

demonstrates that control charts based on the original data 

exhibit more instances of out-of-control signals compared to 

those based on residual data. This indicates that using residuals, 

which account for the modeled effects and reduce 

autocorrelation, leads to improved performance in detecting 

deviations from the expected process behavior. Thus, 

employing residual-based control charts can enhance the 

accuracy and reliability of quality control measures in 

manufacturing or other monitored processes. Using three 

times of standard deviation from the center line rules, based on 

original data control chart, there are 181 samples, 6 samples, 

6 samples, 16 samples, 18 samples, and 11 samples are out-of-

control for each variable Y1_1, Y1_2, Y2_1, Y2_2, Y3 and 

Y4; respectively. Otherwise, using the same rules for testing, 

based on the residual data control chart, number of samples 

out of control decreasing into 11 samples, 4 samples, 7 

samples, 11 samples, 6 samples and 6 samples for each 

variable Y1_1, Y1_2, Y2_1, Y2_2, Y3 and Y4; respectively. 

Even though variable Y2_1 has increasing number of samples 

out of control in residual data control chat, but there five 

consecutive points of out-of-control samples are getting large 

shift from the centerline. 

The overall impression of process stability shown by control 

charts using residual data are rather different than was 

obtained from the control charts based on the original data. 

Otherwise, univariate control chart by original data for each 

variable, the pattern also shows the trend and large shift from 

the average. It might cause by the autocorrelation effects that 

happened on original data. As shown by the Figure 3, we see 

that the autocorrelation effect of the original data is very high 

which shown by the significant lag. 

To address the practical implications of our proposed model 

in a real-world manufacturing context, we emphasize several 

key benefits. Firstly, the MAR-ANN model enhances 

detection sensitivity, enabling the early identification of 

potential quality issues. This allows for prompt corrective 

actions, reducing the incidence of defective products and 

minimizing rework, ultimately enhancing overall product 

quality. Additionally, the model effectively handles 

autocorrelation, a common challenge in traditional control 

charts, ensuring more reliable monitoring and reducing false 

alarms. This reliability is crucial for maintaining consistent 

product quality in continuous-flow manufacturing processes. 

Furthermore, our model is scalable and adaptable to various 

manufacturing processes with complex, multivariate, and 

autocorrelated data, making it suitable for diverse industries, 

from electronics to automotive. The implementation can be 

seamlessly integrated with existing manufacturing execution 
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systems (MES) and statistical process control (SPC) software, 

allowing manufacturers to leverage advanced analytics 

without overhauling their current systems. This integration, 

coupled with the model's ability to lower operational costs by 

improving detection of process deviations and reducing false 

alarms, highlights its economic impact. Additionally, 

successful implementation requires comprehensive training 

for operators and engineers, demonstrating the model's 

benefits in improving process control and reducing false 

alarms. By promoting a culture of continuous improvement, 

manufacturers can use insights gained from the model to refine 

their processes continuously and maintain a competitive edge. 
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(a) (b) 

 

Figure 7. Univariate control chart: (a) 𝑥̅ control chart of original data; (b) 𝑥̅ control chart of residual data 

 

 

5. CONCLUSION 

 

This case study highlights the importance of checking for 

autocorrelation and analyzing time series data before using 

control charts. Autocorrelation, where observations are 

dependent on previous ones, can negatively impact control 

chart performance. It can lead to more false alarms, as seen in 

charts built with raw data. Furthermore, in multivariate control 

charts, autocorrelation can mask the true relationships between 

variables. Additionally, dependence between variables can 

affect the performance of even univariate control charts. 

Therefore, using multivariate control charts is generally 

recommended. 

To address the issue of autocorrelation in multivariate data, 

the paper suggests employing a combined approach: an ANN-

based MAR (multivariate autoregressive) model. This 

approach aims to mitigate the effects of autocorrelation and 

improve the effectiveness of control charts. While univariate 

control charts are simpler to implement, they can be 

misleading when dealing with correlated variables. In such 

cases, the T2 Hotelling control chart with decomposition 

techniques is a better option. This method helps identify which 

specific variables are contributing to out-of-control signals. 

The residual control charts, derived from the ANN-based 

model, perform significantly better in detecting mean shifts. 

This improvement is particularly evident in terms of 

sensitivity, where residual control charts showed a higher 

capability in identifying small process changes compared to 

traditional control charts. By emphasizing the practical 

benefits of residual control charts in handling autocorrelated 

multivariate data, our study contributes to the field by 

showcasing an effective solution for improved process 

monitoring and quality control. This approach offers valuable 

insights and practical implications for practitioners aiming to 

enhance their process control systems. 

Based on the analysis of the case study, it is evident that in 

scenarios where detecting small changes in process parameters 

is critical, MCUSUM and MEWMA charts offer advantages 

over the T2 Hotelling control chart. These alternative control 

charts exhibit superior run length performance and greater 

sensitivity in detecting minor shifts in the process's mean 

vector. This heightened sensitivity enables quicker response 

and action in maintaining process quality and efficiency. 

Given that the data in this study were derived from product 

specifications measured by an AOI system, which operates on 

numerical values, an intriguing area for future research 

involves exploring the application of P control charts. P 

control charts are pertinent for monitoring defect proportions 

and could provide valuable insights when applied to control 

charts using image data as input. Analyzing and interpreting 

control charts with image data presents a promising avenue to 

enhance quality control methodologies, particularly in sectors 

reliant on visual inspection and image-based measurements. 

This potential research direction could further advance 

understanding and implementation of robust quality control 

strategies in manufacturing and related industries. 

In future studies, we aim to investigate the optimal selection 

and sensitivity of ANN models for handling multivariate time 

series data in industrial processes. This will involve 

conducting comprehensive experiments to compare various 
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ANN architectures (e.g., MLP, RNN, LSTM, GRU) and 

configurations (e.g., number of layers, neurons per layer, 

activation functions) to identify the most suitable models. 

Additionally, we will perform a sensitivity analysis by 

systematically varying key ANN parameters such as learning 

rate, hidden layer sizes, and regularization terms, as well as 

introducing variations in data quality like noise and missing 

data. By evaluating the impact of these changes on 

performance metrics, we intend to determine the robustness 

and stability of the ANN models and identify the 

configurations that produce the most representative and 

reliable residuals for process monitoring. This research will 

provide deeper insights into optimizing ANN models, 

enhancing the effectiveness of residual control charts, and 

offering valuable guidance for practitioners and researchers in 

improving industrial process monitoring and quality control. 
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