

turnitin Originality Report

Poly-15 by Suryadi Ismadji From Hippo (Hippo-03)

Molecular Liquids, 20060330

9

< 1% match (publications)

Processed on 21-Aug-2018 14:47 WIB ID: 991774666 Word Count: 8655

Similarity Index

10%

Similarity by Source

Internet Sources: Publications: Student Papers:

5% 10%

sources: 1% match (publications) 1 Santoso, Shella Permatasari, Artik Elisa Angkawijaya, Felycia Edi Soetaredjo, Suryadi Ismadji, and Yi-Hsu Ju. "Complex equilibrium study of some hydroxy aromatic ligands with beryllium ion", Journal of Molecular Liquids, 2015. 1% match (Internet from 06-Aug-2017) 2 https://www.ajol.info/index.php/sajc/article/download/123120/112660 1% match (publications) 3 Duyqu İnci, Rahmiye Aydın. "Potentiometric Studies on Complexation of Cu(II) Ion with Methyl/Nitro-Substituted 1,10-Phenanthrolines and Selected Amino Acids", Journal of Solution Chemistry, 2016 1% match (publications) 4 "prelims, contents pages", Polyhedron, 2015. 1% match (Internet from 07-Sep-2017) 5 https://repozitorium.omikk.bme.hu/bitstream/handle/10890/1445/ertekezes.pdf? isAllowed=y&sequence=2 < 1% match (Internet from 07-Sep-2017) 6 http://www.producao.usp.br/bitstream/handle/BDPI/50360/Structural%20and%20EPR%20studies%20of%20pyrophos bridged%20dinuclear%20'Cu%20IND.II'%20complexes.pdf;sequence=1 < 1% match (publications) 7 Taha, Mohamed, Imran Khan, and João A.P. Coutinho. "Complexation and molecular modeling studies of europium(III)_gallic acid_amino acid complexes", Journal of Inorganic Biochemistry, 2016. < 1% match (publications) 8 Majlesi, K.. "A modified equation for the calculation of the stability constants of W(VI)-NTA, Mo(VI)-NTA and Mo(VI)-glutamic acid complexes at different ionic strengths", Journal of

complexation of platinum and vanadate metal ions with naringenin and phenolic acids: Theoretical calculations associated with experimental values", The Journal of Chemical Thermodynamics, 2016.

Fazary, Ahmed E., Ayed S. Alshihri, Mohammad Y. Alfaifi, Kamel A. Saleh, Serag Eldin I. Elbehairi, Khaled F. Fawy, and Hisham S.M. Abd-Rabboh. "Gibbs energies of protonation and

< 1% match (Internet from 24-Nov-2017) 10 http://fac.ksu.edu.sa/sites/default/files/alsalme jaafar polyhedron vol 88 2015.pdf < 1% match (publications) 11 Ahmed Eid Fazary. "Nonaqueous Solution Studies on the Protonation Equilibria of some Phenolic Acids", Journal of Solution Chemistry, 09/2008 < 1% match (publications) 12 Remelli, M.. "Copper complexes of dipeptides with I-Lys as C-terminal residue: a thermodynamic and spectroscopic study", Polyhedron, 20001130 < 1% match (Internet from 22-Nov-2017) 13 https://link.springer.com/content/pdf/10.1007/s10953-013-0116-5.pdf < 1% match (publications) 14 Kosmulski, . "Strongly Adsorbing Species", Surfactant Science, 2001. < 1% match (publications) 15 Surendar Tonda, Santosh Kumar, Monika Bhardwaj, Poonam Yadav, Satishchandra Ogale. " g-C N /NiAI-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO into Renewable Fuels ", ACS Applied Materials & Interfaces, 2018 < 1% match (Internet from 24-May-2016) 16 http://docs.di.fc.ul.pt/bitstream/10451/1608/1/18019 ulsd re361 TeseDout SaraLacerda.pdf < 1% match (publications) 17 Go, Alchris Woo, Sylviana Sutanto, Bich Thuyen NguyenThi, Luis K. Cabatingan, Suryadi Ismadji, and Yi-Hsu Ju. "Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions", Energy Conversion and Management, 2014. < 1% match (publications) 18 Mohamed Taha, Imran Khan, João A.P. Coutinho. "Coordination abilities of Good's buffer ionic liquids toward europium(III) ion in aqueous solution", The Journal of Chemical Thermodynamics, 2016 < 1% match (publications) 19 Ceccanti, N.. "Anaerobic and aerobic complexation of Co(II) by a polyamine ditopic ligand containing the phenolic moiety", Inorganica Chimica Acta, 20010910 < 1% match (Internet from 01-Dec-2006) 20 http://www.nanomac.uq.edu.au/nanomac/publications/carbon-2.pdf

10Polyhedron 88 (2015) 29-39 Contents lists available at ScienceDirect Polyhedron journal homepage: www.elsevier.com/locate/poly

paper text:

4Solution equilibria studies of complexes of divalent metal ions with 2aminophenol and 3,4-dihydroxybenzoic acid

4Ivon Kusmijo Chandra a, Artik Elisa Angkawijaya a, Shella Permatasari Santoso a, Suryadi Ismadji b, Felycia Edi Soetaredjo b, Yi-Hsu Ju

a,î a

1Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei 106-07, Taiwan b Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia

10article info Article history: Received 1 August 2014 Accepted 28 November 2014 Available online 27 December 2014 Keywords:

3,4-Dihydroxybenzoic acid 2-Aminophenol pH-potentiometry Hyperquad2008 UV-Vis spectrophotometry abstract The chelation abilities of

42-aminophenol and 3,4-dihydroxybenzoic acid with divalent metal ions

(Cu2+, Be2+, Zn2+, Ni2+, Co2+ and Mn2+) in binary and ternary systems at 37 ± 0.1 °C and an ionic strength of 0.15 mol dm?3 NaCl were systematically investigated by using the potentiometric titration method. The chelating abilities of these complexes were obtained by processing the titration data using the Hyperquad2008 program and the results are presented as stability constants. In a binary system, it was shown that metal complexation involving 3,4-dihydroxybenzoic acid (ligand D) is more stable than the one with 2-aminophenol (ligand A). The stability of the formed metal complexes, both in binary and ternary systems, decreases in the following order: Cu2+ > Be2+ > Zn2+ > Ni2+ > Co2+ > Mn2+. The

3tendency of these metals and ligands to form binary or ternary complexes was also evaluated and discussed by cal-culating their Dlog

KM and log X values.

3In addition, the distribution of complex species in these systems was graphically presented using the

HySS2009 program. UV-Vis spectrophotometry was also performed to qualitatively verify the protonation of these ligands and to confirm the model of the complex formed.

6Ó 2014 Elsevier Ltd. All rights reserved. 1. Introduction The

earth is rich in various metals which are distinguished by their electronic distributions, that in turn affect their physiological and pathological characteristics. Several metals, which are part of dietary minerals, are found in every living organism and they take part in the functionality of body systems; in particular as stabiliz- ers of biological structures, components of control mechanism (in nerves and muscles) and activators or components of redox sys- tems [1,2]. In other words, some metals are categorized as essential elements, meaning the lack of them will affect the biological func- tions of the human body. In contrast, their presence in excess levels is toxic and may have adverse effects on human health. Chelation therapy has been known as one of the medical treat- ments that is able to reduce excess metal levels in the human body and indirectly prevent carcinogenesis and cancer development. This therapy has been applied historically and it commonly employs certain chelating agents to reduce the body's burden ↑ Corresponding author at:

11Chemical Engineering Department, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan. E-mail address: yhju @mail.ntust.edu.tw (Y.-H. Ju).

6http://dx.doi.org/10.1016/j.poly.2014. 11.040 0277-5387/Ó 2014 Elsevier Ltd. All rights reserved.

towards metal toxicity [3-5]. However, commercial chelators still bring some adverse effects and it sometimes leads to death [1,6–9]. Several new potential chelators, including vitamin, phenolic compounds and amino acids, are found to increase metal mobilization, which means they could minimize the possibility of the interaction of the metal ions with important bio-substances [10–12]. Several studies have reported that combining a chelating agent and an antioxidant may be beneficial for metal poisoning antidote therapy, by protecting the human body from reactive oxygen species and oxidative stress [1,12,13]. In this study, two phenolic compounds (2-aminophenol and 3,4-dihydroxybenzoic acid) were investigated for their potential as chelating agents. Both phenolics are known to possess different binding sites that may play important roles in their chelating activ- ity. 2-Aminophenol contains neighboring N and O donor atoms in the aromatic ring, which allow the compound to form stable five- membered-ring complexes with metal ions [14]. The compound was also found to have antibacterial activity against gram-negative Bacillus [15,16]. Its administration into animals also showed no toxic effects and the compound was excreted in conjugation with both sulfuric acid and glucuronic acid [17]. Another potential che- lator, 3,4-dihydroxybenzoic acid, was reported to have chemopre- vention activity against carcinogenesis [18-20]. This compound was found to be effective in inhibiting colon, skin and liver cancers, either in the initiation phase or in the promotion/progression of carcinogenesis. It also shows antioxidant activity due to the occur- rence of a carboxylic group and two adjacent hydroxyl groups. These functional groups may act as inhibitors of free radical reac- tions by forming complexes with transition metal ions (Cu2+ and Fe2+) and thus may lower the activity of enzymes that catalyze the reactions of free radical formation [21,22]. In order to gain an initial understanding and basic information on metal chelation for further research in chelation therapy, this study investigated the complexation of

42-aminophenol and 3,4- dihydroxybenzoic acid with divalent metal ions

(Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Be2+) in binary and ternary systems. While many stability constants of metal ions and 3,4-dihydroxybenzoic acid have been reported before, only very limited information can be found regarding the metal complexing abilities of the 2-aminophe- nol ligand. In addition, the usefulness of these chelating agents to reduce excess metal ions in ternary system with both ligands has never been investigated before. Therefore, it is necessary to under- stand the possible chelation processes and stable complexes formed between these chelators and certain metal ions. While most reported works were carried out at 25 °C and with an ionic strength 0-0.2 mol dm?3 NaCl, all the experimental studies in this work were carried out at physiological conditions which mimic body fluids (37 ±

20.1 °C and 0.15 mol dm?3 NaCl)

to gain reliable results for further research in drug development for chelation ther- apy. The stability constant study helps to understand the interac- tion strength between the chelating agent and metal ion in forming complexes. The complexing abilities were investigated using a potentiometric method and the Hyperquad2008 program. The speciation model was determined using the HySS2009 pro- gram.

15UV-Vis spectrophotometry was performed to determine the first protonation constant of the

3,4-dihydroxybenzoic acid, to qualitatively verify the protonation of the ligands and to confirm the model of the complexes formed.

202. Materials and methods 2.1. Materials The chemicals used in this study and their suppliers are as

fol- lows: 2-aminophenol (MW = 109.1; 0.99 purity) and 3.4-dihy- droxybenzoic acid (MW = 154.1, 0.97 purity), Alfa Aesar (Lancashire, UK); nickel chloride hexahydrate (MW = 237.7, 0.98 purity) and beryllium sulfate tetrahydrate (MW = 177.1, 0.98 pur- ity), Alfa Aesar (Lancashire, UK); zinc nitrate hexahydrate (MW = 297.5, 0.98 purity) and manganese chloride tetrahydrate (MW = 197.9, 0.998 purity), Acros Organics (Morris Plains, NJ); cobalt nitrate hexahydrate (MW = 291.0, 0.98 purity), copper chlo- ride dihydrate (MW = 170.5, 0.99 purity), potassium hydrogen phthalate (MW = 58.45, 0.99 purity), Sigma Aldrich (Steinheim, Germany); sodium hydroxide (MW = 40, 0.96 purity), Yakuri Pure Chemicals (Kyoto, Japan); sodium chloride (MW = 58.44, 0.995 purity), Showa (Tokyo, Japan); hydrochloric acid (MW = 63.01, 0.376 purity), Fisher Scientific (Hampton, NH). All chemicals were directly

6used without further purification. Solutions were prepared daily in distilled deionized water (resistance >18

M X). In particu- lar, solutions of metal salts,

1NaOH and HCI were standardized before used, 2.2. Potentiometric

measurement The following solutions, each with a total volume of 50 cm3, were prepared in a 100 cm3 double walled equilibrium cell for pH-potentiometric measurements and each was titrated against standard carbonate-free NaOH (0.10 mol dm?3). (a) 3

```
1910?3 mol dm?3 HCl + 1. 5 10?1 mol dm?3 NaCl. (b) Solution a + 1 10?3 mol
dm?3
```

2-aminophenol (A) or 3,4-dihydroxybenzoic acid (D). (c) Solution a + 1 10?3 ? 1.2 10?3 mol dm?3 A or

```
14D + 4 10? 4 ? 1 10?3 mol dm?3
```

metal salt. (d) Solution a + 5 10?4?

```
51 10?3 mol dm?3 A + 4 10?4 ? 1 10?3 mol dm?3 D + 4 10?
```

4 ? 1 10?3 mol dm?3 metal salt. Prior to titration, each solution was kept at 37 ± 0.1 °C for 15 min by connecting the equilibrium cell to a refrigerated circu- lating bath equipped with a thermocouple to closely monitor the reaction temperature. During potentiometric measurements, the

```
13temperature and ionic strength of the system were maintained at
```

a constant 37 ±

```
20.1 °C and 0.15 mol dm?3 NaCl,
```

respectively. At least three repetitions for the pH-potentiometry procedure were carried out for each experiment, with a reproducibility of ±0.02 in pH units. The potentiometric

1titrations were performed using a meter- ohm 888-Titrando Autotitrator equipped with a Dosimat

model 805, 802 rod stirrer and 804 Ti stand,

```
1and an Ecotrode Plus pH glass electrode
```

was used for potentiometric measurements. The instrument

1was connected to a personal computer equipped with Tiamo 2.3 computer software to control the titration

condi- tions and record the experimental data. The glass electrode response was able to give a pH reading

13with a precision of ±0.001. Prior to use, the electrode was calibrated with standard buffer solutions (pH

4.00, 7.00 and 10.00) at the same tempera- ture used for the main experimental work (37 ± 0.1 °C). Since the determination of metal-ligand stability constants was carried out

14at high ionic strength (0. 15 mol dm?3

NaCl), it was necessary to carry out a strong acid-strong base titration for the glass elect trode calibration. For this purpose, the titration curve of solution a was processed using the Glass Electrode Evaluation (GLEE) pro- gram to evaluate the calibration of the glass electrode and to estimate carbonate contaminant for each investigation [23]. The titration curve of solution b was later processed by the Hyperquad2008 program in order to determine the protonation constant of the ligands. In contrast, the investigations of metal ligand stability constants in the binary and ternary systems were carried out by processing the titration curves of solutions c and d, respectively. As shown in Table 1, the metal ligand complexation studies in the binary system were done at four different metal- to-ligand ratios, while ternary studies were done at three different metal:ligand A:ligand D ratios, to cover all possible complex species that may occur in the system. Table 1 Concentrations of metal and ligand in solution c

9that were used to determine the overall formation constants of binary complexes.

Ratios Concentration (mol dm?3) Metal Ligand A Ligand D Binary [M]:[L] 1:1 1:2 1:2.5 1:3 1.0 5.0 4.0 4.0 Ternary [M]:[A]:[D] 1:1:1 1.0 1:1:2 5.0 1:2:1 5.0 10?3 1.0 10?4 1.0 10?4 1.0 10?4 1.2 10?3 1.0 10?4 5.0 10? 4 1.0 10?3 10?3 10?3 10?3 10?3 1.0 10?4 1.0 10?3 5.0 10?3 10?3 10?4 2.3. Software analysis Hyperquad2008 was used to determine the formation constants of the complex species formed in the system using a non-linear least-squares algorithm.

9Various models with possible composi- tions of complex species were proposed in the program and the one that gave the best

fitted model was chosen [24,25]. The good-ness of fitting was statistically presented as a sigma (r) value and was obtained from the following equation: r 1/4

and n refer to the weight at the ith data point, the residual at the ith data point, the number of titration data points and the refined parameters, respectively. In this study, the number Table 2 Protonation constantsa (log Kn) of ligands A and D at 37 ±

 $20.1 \,^{\circ}\text{C}$, | = $0.15 \, \text{mol dm}$?3 NaCl.

Ligand log K1 \pm SDb log K2 \pm SDb log K3 \pm SDb r A 9.58 \pm 0.01 (9.87c) 4.53 \pm 0.01 (4.74c) 1.22 D 12.75 \pm $0.02 (12.80d; 13.10e) 8.62 \pm 0.01 (8.70d; 8.67e) 4.42 \pm 0.01 (4.50d; 4.25e) 1.17$ a All measurements were carried out by potentiometric measurements and with the Hyperquad software, except for the log K1 value of ligand D, which was inves- tigated by UV-Vis spectrophotometry measurements and the HySpec software. b

1Standard deviation value of the last decimal place; ±95% confidence interval. c Ref.

[33],

```
8T = 25 \,^{\circ}C; I = 0.1 \,\text{mol dm}?3 KCl. d Ref. [30], T = 25 \,^{\circ}C; I = 0.02 \,\text{mol dm}?3
KNO3. e Ref. [35], T = 25 °C; I = 0. 2 mol dm?3
```

KCI. of points used for each refinement was between 80 and 200 points. The residual at the ith data point is defined as the difference between the observed and the calculated pH values. The fitting model is considered to be good if the sigma (r) value is in the range 1.17-1.35. It specifically represents 95% goodness of fitting [24]. The result of refinement is generally expressed as the overall formation constant (bpqrs) which is described in Eq. (2): pM b qA b rD b sH \$ MpAqDrHs bpqrs 1/4 ½M½MŠp½pAAŠqqD½DrŠHr½sHŠŠs ð2Þ where the variables

```
7p, q, r and s represent the stoichiometric coef- ficients of the
```

metal ions (M), 2-aminophenol (A), 3,4-dihydroxy- benzoic acid (D) and hydrogen ions (H), respectively. A higher value of this constant indicates greater stability of the complex [26,27]. All standard deviations are provided directly from refine- ment of the Hyperquad software. In order to support the result from the Hyperquad2008 program, HySS2009 was used to simulate and illustrate the possible species distribution of ligand protonation and metal-ligand complex at different pH values [28]. 2.4. UV-Vis spectrophotometric measurement All spectrophotometric measurements were carried out in stan- dard 1 cm quartz cells at 200-800 nm by using a JASCO V-550 spectrophotometer. Prior to the measurements, the following solutions were prepared with a total volume of 50 cm3: (i) 1.5 10?1

```
5mol dm?3 NaCl + 2 10?4 mol dm?3 ligand D. (ii) 1. 5 10?1 mol dm?3 NaCl + 2
10? 4 mol dm?3
```

ligand A or

```
14D + 1 10? 4 mol dm?3 metal salt. (iii) 1.
```

```
55 10? 1 mol dm?3 NaCl + 2 10? 4 mol dm?3 ligand D + 2 10? 4 mol dm?3 metal
salt. Fig. 1.
```

Protonation equilibria for: (a) 2-aminophenol (A); and (b) 3,4-dihydroxybenzoic acid (D). Fig. 2. Species distribution acid disassociation of a solution containing 0.001 mol dm?3 of (a) 2-aminophenol (A); (b) 3,4dihydroxybenzoic acid (D) at 37 ± 0.1 °C and I = 0.15

```
5mol dm?3 NaCl. (iv) 5 10? 2 mol dm?3 ligand A + 5 10? 2 mol dm?3 ligand D + 5
10? 2 mol dm?3
```

metal salt. The temperatures of these solutions were maintained at 37 ± 0.1 °C. The spectra of solution (i) between pH 2.5 and 13.5 were used to determine the protonation constant of ligand D. While solutions (ii) and (iii) were used to determine the stability constants of the complexes in the binary and ternary systems, respectively. The values will be used later to support the stability constants obtained from potentiometric measurements. The UV- Vis spectra of solutions (i)-(iii) at pH 2.5 to 11.0 then were pro-cessed in the Hypspec2006 program to refine the constants [28]. Further confirmation of the d-d block transition spectrum of the complexes was performed on the ternary system. For this purpose, the spectra of solution (iv) were scanned at pH 2.5 and 11.0. Three repetitions were done for each measurement and each system was maintained with conditions similar to that used in the potentio- metric titration. NaOH was used to adjust the system pH to the desired value. 3. Results and discussion 3.1. Protonation constants Protonation constants are used in metal chelation studies to predict at which pH the ligand is ionized and able to form com- plexes with metal ions. In this work, the protonation of 2-amino- phenol (ligand A) and 3,4-dihydroxybenzoic acid (ligand D) was studied by using a potentiometric titration method and their pro- tonation constants, expressed as stepwise association constants (log K), were determined using the Hyperquad2008 program. As presented in Table 2, the log K values of ligands A and D obtained in this study are comparable to those reported in the literature, after taking into consideration the differences in experimental con- ditions [29,30]. Ligand A possesses two functional groups, the first protonation occurred at log K = 9.58, followed by a second protonation at log K = 4.53. The amino group (-NH2) is known to be more acidic than the phenol group (–OH), thus it was suggested that the first Fig. 3. UV–Vis spectra of 2-aminophenol (A), where [A] = 0.001 mol dm?3, $T = 37 \pm 0.1$ °C, I = 0.15 mol dm?3 NaCl. Fig. 4. UV–Vis spectra of 3,4-dihydroxybenzoic acid (D), where [D] = 0.001 mol dm?3, T = 37 \pm

```
20.1 °C, I = 0.15 mol dm?3 NaCl. Fig. 5. Experimental curves of the
```

binary system containing: (a) 2-aminophenol (A), (b) 3,4-dihydroxybenzoic acid (D) and divalent metal ions, where m is the

```
1moles of base added per mole of ligand. Table 3 Logarithms of
```

overall stability constants of 2-aminophenol (A) with several metals (log bpgs) at 37 ±

```
20.1 °C, | = 0.15 mol dm?3 NaCl.
```

Complex species p q s log bpqsa ± SDb Hyperquad Hypspec Ref. M = Cu2+ [MAH]2+ [MA]+ [MA2] (r = 1.22)d 1 1 1 1 1 2 1 0 0 $12.61 \pm 0.04 \cdot 8.48 \pm 0.01 \cdot 14.84 \pm 0.04 - 8.61 \pm 0.01 \cdot 14.94 \pm 0.08 - 8.36c - M =$ Be2+ [MAH]2+ [MA]+ [MA2] [MA3]? $(r = 1.29)d 1 1 1 1 1 1 2 3 1 0 0 0 13.08 \pm 0.02 8.12 \pm 0.01 14.86 \pm 0.03$ $19.62 \pm 0.06 \ 14.03 \pm 0.03 \ 8.04 \pm 0.03 \ 14.47 \pm 0.08 - - - - M = Zn2+ [MA]+ [MA2] (r = 1.33)d \ 1 \ 1 \ 1 \ 2 \ 0 \ 0$ $0.018.57 \pm 0.024.76 \pm 0.028.66 \pm 0.03 - M = Co2 + [MA] + [MA2] (r = 1.33) d 1 1 1 2 0 0 4.08 \pm 0.027.63$ $\pm 0.034.27 \pm 0.037.96 \pm 0.04 - M = Mn2 + [MA] + [MA2] (r = 1.30)d 1 1 1 2 0 0 3.52 \pm 0.116.64 \pm 0.07$ $3.36 \pm 0.05 6.91 \pm 0.04 - - a$

```
7p, q, and s represent the stoichiometric coefficients of the
```

metal ions, 2-ami- nophenol (A) and the proton of the ligand, respectively, b

1Standard deviation value of the last decimal place; ±95% confidence interval. c Ref.

[35],

```
8T = 25 °C: I = 0. 2 mol dm?3 NaClO4. d The
```

sigma (r) value expresses the goodness of potentiometric data fitting using Hyperquad2008. protonation of ligand A occurred at its phenol site [31]. While for ligand D, due to its vicinal diol and carboxylic functional groups, this ligand has been shown to have three protonation constants (log K1 = 12.75, log K2 = 8.62 and log K3 = 4.42). Deprotonation of ligand D starts at its carboxyl group, followed by second and third acid deprotonations at its less acidic para and meta hydroxyl groups, respectively [32]. The hydroxyl substitute in the para posi- tion is much easier to deprotonate due to a resonance effect [33]. This effect is particularly influenced by the occurrence of the neg- ative-charged carboxylic group, which results in electron delocal-Table 4 Logarithms of overall stability constants of 3,4-dihydroxybenzoic acid (D) with several metals (log bprs) at 37 ±

```
20.1 \,^{\circ}\text{C}, | = 0.15 \, \text{mol dm}?3 NaCl.
```

Complex species p r s log bprsa ± SD Hyperquad Hypspec Ref. M = Cu2+ [MDH2]+ [MDH] [MD]? [MD2]4? $(r = 1.21)e 1 1 1 1 1 1 1 2 2 1 0 0 23.94 \pm 0.02 19.09 \pm 0.01 13.77 \pm 0.01 24.49 \pm 0.01 24.99 \pm 0.09 19.31 \pm 0.01 24.49 \pm 0.01 24.99 \pm 0.09 19.31 \pm 0.01 24.49 \pm 0.01 24.99 \pm 0.01 24.99 \pm 0.09 19.31 \pm 0.01 24.49 \pm 0.01 24.99 $0.07 + 13.92 \pm 0.04 - 19.22b + 13.95b + 25.02b + M = Be2 + [MDH] [MD]? [MD2]4? [MD3]7? (r = 1.21)e + 1.1.1 +$ $1\ 2\ 3\ 1\ 0\ 0\ 0\ 19.60\pm0.01\ 13.52\pm0.01\ 22.71\pm0.02\ 28.12\pm0.06\ 19.91\pm0.03\ 13.74\pm0.04\ 22.47\pm0.06$ --- M = Zn2+ [MDH] [MD]? [[MMDD23]]47?? (r = 1.28)e 1 1 1 1 1 1 2 3 1 0 0 0 -8.71 ± 0.01 15.56 \pm $0.01\ 21.93 \pm 0.02\ 18.00 \pm 0.05\ 8.65 \pm 0.02\ 15.27 \pm 0.04\ 21.88 \pm 0.09\ 8.91c\ 15.62c - M = Ni2 + [MD]?$ [[MMDD23]]47?? (r = 1.19)e 1 1 1 1 2 3 0 0 0 8.06 ± 0.01 12.65 ± 0.05 17.05 ± 0.09 8.08 ± 0.07 - - 8.27c $12.98c - M = Co2 + [MD]? [MD2]4? (r = 1.30)e 1 1 1 2 0 0 7.76 \pm 0.01 12.52 \pm 0.02 7.85 \pm 0.03 - 7.96c$ 13.36c M = Mn2+ [MD]? [MD2]4? (r = 1.21)e 1 1 1 2 0 0 7.36 \pm 0.02 12.52 \pm 0.04 7.52 \pm 0.04 - 7.43d 12.64d a

```
7p, q, and s represent the stoichiometric coefficients of the
```

metal ions, 3,4- dihydroxybenzoic acid (D) and the proton of the ligand, respectively. b Ref. [35], T = 25 °C;

```
16I = 0. 2 mol dm?3 KCI. c Ref. [35], T = 30 °C; I = 0.1 mol dm?3 KNO3. d Ref.
[35], T = 25 °C; I = 1.0 mol dm?3
```

NaClO4. e The sigma (r) value expresses the goodness of potentiometric data fitting using Hyperquad2008. ization along the benzene ring. The system then tends to lose one proton of the para-hydroxyl group and rearrange the electron distribution [34]. According to these descriptions, the protonation equilibria of the ligands A and D are depicted in Fig. 1(a) and (b), respectively. Fig. 6. Species distributions for binary system of 2-aminophenol (A) and the metal(II) ion: (a) Cu2+; (b) Be2+; (c) Zn2+; (d) Ni2+; (e) Co2+; and (f) Mn2+;

```
12at a 1:2. 5 metal to ligand ratio,
```

T = 37 ± 0.1 °C and I = 0.15 mol dm?3 NaCl. The obtained protonation constants were then introduced into the HySS2009 program to obtain the speciation diagrams of the deprotonated ligands (Fig. 2). These species distribution diagrams will be used to explain the occurrence of shifting on the UV-Vis spectra obtained for the qualitative investigation of ligand proton- ation. As presented in Fig. 3, ligand A has two optimum peaks (216 and 272 nm) at pH 2.5. As the pH of the solution was increased to 4.0, these peaks shifted to 213 and 278 nm, followed by the appearance of shoulder peaks at increasing wavelengths. Assessed by the species diagram in Fig. 2(a), these shifts are likely to be caused by the ionization of [AH2]+ species, which started to deprotonate, and 22.60% were converted into [AH] species. With increasing pH, more [AH] species were formed in the system (approximately 48.0% at pH 4.5) and a larger bathochromic shift to 226 and 282 nm can be observed in its spectra. Both peak heights kept increasing until pH 7.0, when 92.23% of ligand A appeared as [AH] species. At pH 9.5, about 45% of this ligand lost its second proton to form [A]? species, thus its maximum peaks shifted to 214 and 291 nm. UV-Vis spectra showing the shifts for the ligand D between pH 2.5 and 10.0 are presented in Fig. 4. At pH 2, three distinct opti- mum peaks at 221, 265 and 298 nm can be observed. These peaks are hypsochromically shifted to 218, 256 and 293 nm, respectively, as the pH is increased to about 5. Compared to the species that are formed at this pH (Fig. 2(b)), it is suggested that the alteration is caused by the presence of 79.24% of ligand D which has lost one proton and formed [DH2]? species. When the pH is increased to 7.0, most species (97.42%) appear as [DH2]?, thus no change of the maximum wavelengths was found, instead an increase of the absorbance can be noticed. Another significant spectral change of ligand D can be observed at pH 9, where 70% of the ligand in the solution exists in its monobasic form [DH]2?. At this pH, the spec- tra showed the disappearance of peak at 256 nm that previously occurred at pH 5.0. A new third peak at 301 nm also shows a red shift and has higher intensity. [DH]2? is predominant in the system at pH 10.0 and a new second peak occurred at 288 nm. In addition, its first peak has a broader shoulder, whereas its third peak has higher intensity. Fig. 7. Species distributions for the binary systems of 3,4-dihydroxybenzoic acid (D) and the metal(II) ions: (a) Cu2+; (b) Be2+; (c) Zn2+; (d) Ni2+; (e) Co2+ and (f) Mn2+;

12at a 1:2. 5 metal to ligand ratio,

 $T = 37 \pm$

20.1 °C and I = 0.15 mol dm?3 NaCl.

3.2. Binary system of metal-ligand complexes Several metal ions, where their atomic number increases following the trend: Be2+ < Mn2+ < Co2+ < Ni2+ < Cu2+ < Zn2+, were used in this study. For the determination of the metal complex for- mation constant (log b) of the binary system, solution c, that consists of metal ions and ligand A or D in various molar ratios (1:1, 1:2, 1:2.5 and 1:3) was titrated against carbonate free NaOH solu- tion. Typical titration curves

12at a 1:2. 5 metal to ligand ratio are shown in Fig.

5. For both ligands, it can be observed that there is a shifting of the buffer region to lower pH when metal ions are introduced into the system. The largest shifting occurred in the system containing Cu2+, followed by systems containing Be2+, Zn2+, Ni2+, Co2+ and Mn2+. This shifting suggests that the formation of the metal-ligand complex begins as the ligand starts to deprotonate. Several combinations of complex species that may have occurred during the complexation reaction were introduced into the Hyperquad2008 program and the one that best fitted the experimental titration data was chosen. The results obtained from the

refinement were expressed as overall formation constants (log bMpAqHs or log bMpDrHs) and are summarized in Tables 3 and 4 for the systems with ligands A and D, respectively. In the binary system of the ligand A, Cu2+ appears to have the highest stability (log bCuA = 8.48 ± 0.01). The stability constants for the metals in the binary system follow the order: Cu2+ > Be2+ > Zn2+ > Ni2+ > Co2+ > Mn2+. For the binary complexes of ligand A with metal ions, most cases showed that the maximum numbers of substituents attached to the metal ion ([MA2]) is two. The presence of [MA3]? occurred only in the system with Be2+, which is due to the physical proper- ties of this metal ion. Be2+ is known as a hard acid and has great coordination with hard bases, such as R-OH and R-NH2 that are part of the ligand A [36]. In addition, Be2+ has the smallest ionic radius among all metal ions used in this study [37]. Its size allows other ligands that still have a lone electron to approach close

```
9Table 5 Logarithms of the overall stability constants of
```

ternary systems involving several metals (log bpgrs) at 37 ±

```
20.1 °C and I = 0.15 mol dm?3 NaCl.
```

Complex species p q r s log bpgrsa,b ± SDc Hyperquad Hypspec M = Cu2+ [MADH]? [MAD]2? (r = 1.19)d 1 1 1 1 1 1 1 0 26.27 \pm 0.05 19.58 \pm 0.03 28.24 \pm 0.05 20.65 \pm 0.07 M = Be2+ [MADH]? [MAD]2? (r = 1.23)d 1 1 1 1 1 1 1 0 27.20 \pm 0.02 19.12 \pm 0.03 27.23 \pm 0.02 19.12 \pm 0.04 M = Zn2+ [MADH]? [MAD]2? (r = 1.23)d 1 1 1 1 1 1 1 0 22.44 \pm 0.04 14.29 \pm 0.02 25.22 \pm 0.04 14.96 \pm 0.06 M = Ni2+ [MADH]? [MADI2? (r = 1.21)d 1 1 1 1 1 1 1 0 22.20 \pm 0.02 13.17 \pm 0.02 22.96 \pm 0.03 13.70 \pm 0.03 M = Co2+ [MADH]? [MAD]2? (r = 1.15)d 1 1 1 1 1 1 1 0 21.61 \pm 0.01 13.11 \pm 0.01 20.99 \pm 0.05 13.26 \pm 0.03 M = Mn2+ [MADH]? [MAD]2? (r = 1.19)d 1 $1.11111021.00 \pm 0.0211.56 \pm 0.03 - 11.96 \pm 0.03$ a

```
7p, q, r and s represent the stoichiometric coefficients of the
```

metal ion, 2-ami- nophenol (A), 3,4-dihydroxybenzoic acid (A) and proton ion, respectively. b No references were found for these complexes. c

```
1Standard deviation value of the last decimal place; ±95% confidence interval.
d
```

The sigma (r) value expresses the goodness of potentiometric data fitting using Hyperquad2008. enough to cause a strong ionic interaction. This interaction follows Coulomb's Law, where the force of attraction increases as the attracting species gets closer [38]. According to its speciation diagram (Fig. 6), the system with Cu2+ was able to form [CuA]+ species in more acidic pH (pH 3.5) compared to systems with other metal ions, where [BeA]+, [ZnA]+, [NiA]+, [CoA]+ and [MnA]+ species were found to form at pH 4.0, 5.5, 6.0, 7.0 and 7.5, respectively. Similarly, [CuA2] species also started to form at pH 5.0 and achieved about 95% of [MA2] at pH 8.0, while other metals started to form [MA2] species at a higher pH (5.0, 7.0, 7.5, 8.0 and 8.5 for [BeA2], [ZnA2], [NiA2], [CoA2] and [MnA2], respectively). A similar observation was also noticed in binary systems of the ligand D. As presented in Table 4, the largest stability value was obtained in the system containing Cu2+ (log bCuD = 13.77), followed by other metal-ligand systems (log bMD = 13.52, 8.71, 8.06, 7.76 and 7.36 for Be2+, Zn2+, Ni2+, Co2+ and Mn2+, respectively). Specia- tion diagrams of the binary systems containing ligand D (Fig. 7) confirm that these systems have at least two ligands attached to the

metal ion. Ligand D begins to form [MD2]4? complexes at pH values of about 6.0, 7.0, 8.0, 9.0, 9.0 and 9.0 for systems containing Cu2+, Be2+, Zn2+, Ni2+, Co2+ and Mn2+, respectively.

18In this work, the formation of complex species

in a stepwise manner was also investigated. The log value of the stepwise asso- ciation constants (log KMLn) were calculated from the following equations [27]: MLn?1 b L \$ MLn ½MLnŠ ¼ KMLn½MLn?1нLŠ ð3Þ log K MLn ¼ log bMLn ? ðlog bMLn?1 þ log bMLn?2 þ . . .Þ ð4Þ where L refers to ligand A or D, and the subscript n denotes the number of ligands attached to the metal ion. It can be seen that the log K value of [MA2]2? species is smaller than that of [MA] species, for example log KCuA2 (6.36) < log KCuA (8.48). A similar trend was also observed in the system containing ligand D (log KML3 < log KML2 < log KML). Thus it can be concluded that the stepwise for- mation constant decreases with the increasing number of ligands attached to the metal ion. This phenomenon occurs possibly due to the reduction of the coordination number and the occurrence of steric effects at the metal ion after attachment of the first ligand. Besides [ML], [ML2] and [ML3] species, it was also observed that at low pH, both ligand A and D may form a complex with Cu2+ and Be2+ in the protonated form, [MLHn]. From the species distribution diagrams (Figs. 6 and 7), it is obvious that [CuAH]2+ and [BeAH]2+ species can be found between pH 2 and 6, while the species [CuDH2]+, [CuDH] and [BeDH] can be found between pH 3.0 and 8.0. The log K value of the [MLHn] species was found to be smaller than the log K value of the [ML] species (log KCuAH = 3.03; log KBeAH = 3.50; log KCuDH = 6.34; log KCuDH2 = 2.57; log KBeDH = 6.85). This confirms the basic theory that complexation of a bidentate ligand with a five-membered ring gives better stabil- ity, since the formation tendency achieves more by the enthalpy effect than by the entropy effect [39,40]. This greater enthalpy effect increases the crystal field strength, which means it increases the point of attachment of the ligand to the metal ion, imparting a higher chelating tendency to the latter [39,40]. Since the [MLHn] species has a significantly weaker stability than the [ML] species, in the systems with less stable [ML] species, particularly the sys- tems that contain Zn2+, Ni2+, Co2+ and Mn2+, the [MLHn] species did not appear in the early pH range. According to the observations, both ligands A and D form com- plexes with divalent metal ions in a similar manner. The overall result shows that the stabilities of the binary ligand-metal system decrease in the following order: Cu2+ > Be2+ > Zn2+ > Ni2+ > Co2+ > Mn2+. This trend in stability constants coincides with the order in the magnitude of the buffer region shifting, shown in Fig. 5. More- over, this stability order agrees with the Irving-William series [41] and the results of Ahrland et al. [42], where a-type metals, including the divalent metals used in this study, will form stable com- plexes with ligands that possess N, O and F atoms as the coordinating binding site. However, in terms of coordination abil- ity, the binary systems with ligand A showed less stable coordina- tion than the systems involving ligand D. 3.3. Ternary system of metal-ligand complexes The obtained

18protonation constants of the ligands A and D, along with their complex stability constants with

metal ions (Cu2+, Be2+, Zn2+, Ni2+, Co2+ and Mn2+)

3in the binary systems were introduced into the Hyperquad2008 program for determination of the stability constants of complexes in ternary systems. The refinement results are presented as the overall formation constants (log bMpAqDrHs) in Table 5. Again, the

results suggest that the system with Cu2+ has the highest stability among all the ternary systems studied.

3The overall stability of the complex formed by the

metal ion with two ligands (Cluo2g+b>MBADe)2+d>ecZrne2a+se>sNini2+a >siCmoi2l+ar> oMrdne2r+.asThtheatstianbtihlietybicnoanrsytasnysttevmal:- ues were supported by the refinement from the spectrophotomet- ric method using Hypspec, where the value differences are very small from the Hyperquad refinement results. These obtained sta- bility constants of complex species in both binary and ternary systems then were used as the input in the HySS2009 program to predict the distribution of the involved species within the experi- mental pH range (Fig. 8). It turns out that most metal ions in the ternary systems started to form MADH at almost the same pH Fig. 8. Species distribution for ternary systems involving: (a) Cu2+, (b) Be2+, (c) Zn2+, (d) Ni2+, (e) Co2+ and (f) Mn2+ at a 1:1 metal to ligand ratio, $T = 37 \pm$

20.1 °C and I = 0.15 mol dm?3 NaCl, where the

coordination of the binary ligand D began. The formation was quite small, but it played a role in initiating the formation of the ternary complex (MAD). Fig. 8 also shows that ligand A coordinated to metal ions and formed [MAH] or [MA] species at a lower pH than ligand D, which suggests that ligand A acted as the primary chelating compound in the systems. This is because amino group (-NH2) in ligand A makes it a hard Lewis base which leads to early deprotonation. At higher pH, some metal-ligand A complexes appeared to lose their coordi- nation, leading to the formation of metal-ligand D. This ligand sub- stitution process was expected since in the binary system studies ligand D showed larger stability constant values which suggests stronger metal-ligand coordination than for ligand A. Therefore, the interaction of the metal with the primary ligand was initiated at the beginning, then coordination of these donor groups was replaced by the secondary ligand (ligand D). Spectral measurements for all ternary systems involving one divalent metal ions (Cu2+, Be2+, Zn2+, Ni2+, Co2+ or Mn2+) and two ligands (A and D) have been performed in the UV–Vis range wave- length and the results are given in Table 6. The spectral bands were observed at an initial pH of 2.5 and pH 11.0, where at pH 11.0 the formation of MAD species was observed at the highest concentra- tion, based on the speciation diagram. The observed change in the spectral bands also confirmed the formation of the MAD complex in the system. At an initial pH of 2.5 some peaks were observed: (1) the aro- matic ring of the ligand gives a spectrum which was observed at 210-244 nm; (2) the observed band at 260-267 nm for all systems refers to the p-p/electronic transition of the O donor atom from the ligand D to the metal ion, while the N donor atom from ligand A give rises to a band at 298-312 nm - both ligands used are weak field ligands, in which the ligand donates an electron to bind with the metal ion; (3) the d-d transition band of the metal ion was clearly observed at the initial pH since the free metal ion was still of a high concentration. For Cu2+ (d9) the bands observed at 414 and 620 nm are due to the electronic transitions 2A1g? 2B1g and Table 6 UV-Vis data of ternary systems involving several metals. Metal ions kmax (nm) pH 2.5 pH 11.0 Assignment Cu2+ 210-239 266 301 414 620 211-241 270 316 440 aromatic ring p-p/p-p/2A1g? 2B1g 2Eg? 2B1g Be2+ 210-238 266 300 436 211-238 275 308 444 aromatic ring p-p/p-p/red shifting Zn2+ 212-239 260 312 439 212-240 264 319 442 aromatic ring p-p/pp/red shifting Ni2+ 210-237 267 298 446 521 210-241 274 300 451 - aromatic ring p-p/p-p/3A2g(F)? 3T1g(P) 3A2g(F) ? 3T1g(F) Co2+ 211-244 267 299 445 654 211-250 270 311 436 - aromatic ring p-p/p-p/4A2g(F) ? 4T1g(P) 4A2g(F) ? 4T1g(F) Mn2+ 210-239 265 310 447 211-250 268 307 430 aromatic ring p-p/ p-p/6A1g(S)? 4T1g(G) Table 7 The Dlog KM and log X values of ternary systems involving

42-aminophenol (A) and 3,4- dihydroxybenzoic acid (D). Metal ions

Dlog KM log X Cu2+ ?2.67 Be2+ ?2.52 Zn2+ 0.33 Ni2+ 0.37 Co2+ 1.27 Mn2+ 0.67 ?0.19 0.68 3.31 5.12 6.06 3.96 2Eq ? 2B1g, respectively. Be2+ (s2) and Zn2+ (d10) were found not to have any orbital transition. The observed bands at 446 and 521 nm for Ni2+ (d8)

15are attributed to the transitions 3A2g(F) ? 3T1g(P) and 3A2g(F) ? 3T1g(F), respectively.

For Co2+ (d7), the orbital transition 4A2g(F)? 4T1g(P) was observed at 445 nm, while the transition 4A2q(F) ? 4T1q(F) was observed at 654 nm. For Mn2+ (d5), the tran-sition 6A1q(S) ? 4T1q(G) was observed at 447 nm. At pH 11.0, the MAD species in all systems were found in high concentration and caused a shifting of the bands. The changes of the spectra were observed as follows: (1) the aromatic ring band shifts to higher wavelength (210–250 nm); (2) the band corre-sponding to the p-p/electronic transition of the O donor atom of the ligand shifts to 264-275 nm, while the band corresponding to the N donor atom shifts to 300–316 nm; (3) shifts for the elec- tronic transitions of the metal ions. For Cu2+ (d9), the band for the 2A1g? 2B1g transition shifts to 440 nm, while the band of 2Eg? 2B1g disappears. For Ni2+ (d8), the band attributed to the tran- sition 3A2g(F) ? 3T1g(P) shifts to 451 nm and the other band also disappears. For Co2+ (d7), the orbital transition 4A2g(F)? 4T1g(P) shifts to a lower wavelength (436 nm). For Mn2+ (d5), the transition 6A1g(S)? 4T1g(G) also shifts to a lower wavelength (447 nm). Some of the d-d transition bands disappear, possibly due to their low intensity, the bands being overlapped by the ligand donor band which has a higher intensity. Further analysis of the complexation equilibria in the ternary systems was done by calculating Dlog KM (Eq. (5)), which is the rel- ative stability of the ternary complex (MAD) compared to the com- plex stability in the corresponding binary system (MA and MD) [43]. D log K M 1/4 log K MMAAD ? log bMD 1/4 log K MMDAD ? log K MA ð5Þ A positive value of Dlog KM indicates the tendency of the metal to form a ternary complex rather than a binary complex [44]. The calculated Dlog KM values of ternary systems involving ligand A, ligand D and several divalent metal ions (Cu2+, Be2+, Zn2+, Ni2+, Co2+ and Mn2+) are given in Table 7. From this table, it can be seen that the Dlog KM values for all the systems are negative. These val- ues indicate that formation of a binary metal complex (MA or MD) is preferred over that of the ternary complex (MAD). One possible reason is the occurrence of steric hindrance, where attachment of the primary ligand to the metal ion increases the bulkiness of the complex structure. Thus it prevents the secondary ligand from coordinating and forming a ternary complex. Besides, the second- ary ligand has less of a chance to interact with the chelated-metal ion due to reduction of the coordination sites at the metal ion and electrostatic effect between the metal and secondary ligand. It is also observed that some divalent metal ions which show a higher stepwise stability with ligand D (log bMD) tend to have a more negative Dlog KM. The order of stability in the binary system (both log bMD or log bMA) was found to be almost opposite to the order of Dlog KM (Co2+ > Mn2+ > Ni2+ > Zn2+ > Be2+ > Cu2+). It suggests that the formation of stable ternary complexes is more diffi- cult in systems with a very stable binary complex. However, once a ternary complex is formed, it has greater stability than those of the binary systems. The stability of ternary complexes can also be quantitatively analyzed by their log X values, which were calculated using Eq. (6). This parameter was used to predict the tendency of one mole of the binary complex MA2 and one mole of the binary complex MD2 to form two moles of the ternary complex MAD [45,46]. MA2 b MD2 \$ 2MAD 86b The results for log X are given in Table 7. Positive values of log X were found for most metal ions, which suggests that the formation of ternary complexes containing two different ligands (MAD) is more favorable than complexes with two similar ligands (MA2 or MD2). Formation of a ternary complex containing two similar ligands (MA2 or MD2) has greater strain of coordination, thus the system prefers to form ternary complexes with different ligands (MAD). In contrast, the Cu2+ ion was the only metal ion that gave a negative value, which means it also has a strong tendency to form MA2 or MD2 complexes. As shown in Fig. 8, CuA2 and CuD2 were stable and formed together along with CuAD. 4. Conclusions Two chelating agents, 2-aminophenol (ligand A) and 3,4-dihy- droxybenzoic acid (ligand D), were employed in this work to study the complex formation of these ligands with divalent metal ions (Cu2+, Be2+, Zn2+, Ni2+, Co2+ and Mn2+) at 37 °C and with an ionic strength of 0.15 mol dm?3 NaCl. Ligand A possesses an amino group (-NH2) and a hydroxyl group (-OH) that were protonated at log K 4.53 and 9.58, respectively. In contrast, ligand D has three protonation sites, occurring at log K 4.42, 8.62, and 12.75, which

correspond to the carboxylic, para-hydroxyl and meta-hydroxyl groups, respectively. Divalent metal ions, forming binary complexes with ligands A or/and D in both binary and ternary systems, have stability in the following order: Cu2+ > Be2+ > Zn2+ > Ni2+ > Co2+ > Mn2+. This order is in agreement with the buffer region shifting that occurred in potentiometric titration curves, where the furthest and closest shifting can be seen in systems containing Cu2+ and Mn2+, respec- tively. Based on its overall formation constant values, ligand D showed a better chelating ability with metal ions than ligand A. However, based on speciation diagrams of the complexes in the ternary systems, it is suggested that ligand A acted as the primary ligand in these systems and was coordinated to metal ions at lower pH. Investigations of the stability of the ternary complexes relative to their corresponding binary complexes were also carried out in this work by calculating Dlog KM and log X values. Negative values of Dlog KM were obtained in all the systems studied, which indicated that formation of binary metal complexes (MA or MD) is more preferable than formation of ternary complexes (MAD). How- ever, larger values of log bMAD compared to log bMA and log bMD sug- gests that the metal-ligand complexes that are formed in the ternary systems have greater stability than those of the binary sys- tems. On the other hand, calculation of log X gave positive values for most metal ions studied, which indicates that the formation of ternary complexes containing two different ligands (MAD) is more preferable than complexes involving two similar ligands (MA2 or MD2). Acknowledgements Financial support by the

17National Science Council of Taiwan (NSC 102-2221-E-011-079) and the **National Taiwan University of Science and Technology**

(101H451403) is greatly appreciated. References [1] S.J.S. Flora, V. Pachauri, Int. J. Environ. Res. Public Health 7 (2010) 2745. [2] S.J.S. Flora, M. Mittal, A. Mehta, Ind. J. Med. Res. 128 (2008) 501. [3] C.R. Baum, Curr. Opin. Pediatr. 11 (1999) 265. [4] B. Guldager, P.J. Jorgensen, P. Grandjean, Clin. Chem. 42 (1996) 1938. [5] L. Fournier, G. Thomas, R. Garnier, A. Buisine, P. Houze, F. Pradier, Med. Toxicol. 3 (1988) 499. [6] R. Peters, L. Stocken, R. Thompson, Nature 156 (1945) 616. [7] C.D. Klaassen, in: L. Goodman, A. Gilman (Eds.), The Pharmacological Basis of Therapeutics, McGraw Hill, New York, 2006, p. 1825. [8] O. Andersen, Chem. Rev. 99 (1999) 2683. [9] K. Grasedyck, Z. Rheumatol. 47 (1988) 17. [10] P. Pachauri, G. Saxena, A. Mehta, D. Mishra, S.J.S. Flora, Toxicol. Appl. Pharmacol. 240 (2009) 255. [11] S.J.S. Flora, M. Pande, A. Mehta, Chem. Biol. Interact. 145 (2003) 267. [12] M. Pande, S.J.S. Flora, Toxicology 177 (2002) 187. [13] D. Mishra, S.J.S. Flora, Biol. Trace Elem. Res. 122 (2008) 137. [14] A. Škríba, S. Janková, J. Váňa, P. Barták, P. Bednář, P. Fryčák, L. Kučera, O. Kurka, K. Lemr, P. Macíková, E. Marková, P. Nováková, B. Papoušková, J. Skopalová, H. Švecová, J. Roithová, Int. J. Mass Spectrom. 337 (2013) 18. [15] B. Mary, G.A.D. Haslewood, Br. Med. J. 2 (1944) 754. [16] B. Mary, G.A.D. Haslewood, Biochemistry 39 (1945) 285. [17] R.T. Williams, Biochem. J. 32 (1938) 878. [18] T.H. Tseng, J.D. Hsu, M.H. Lo, C.Y. Chu, F.P. Chou, C.L. Huang, C.J. Wang, Cancer Lett. 126 (1998) 199. [19] T. Tanaka, T. Kawamori, M. Ohnishi, K. Okamoto, H. Mori, A. Hara, Cancer Res. 54 (1994) 2359. [20] R. Suzuki, H. Kohno, S. Sugie, T. Tanaka, Asian Pac. J. Cancer Prev. 4 (2003) 319. [21] G.I. Panoutsopoulos, C. Beedham, Cell Physiol. Biochem. 15 (2005) 89. [22] G. Schmeda-Hirschmann, A. Tapia, C. Theoduloz, J. Rodriguez, S. Lopez, G.E. Feresin, Z. Naturforsch. C 59 (2004) 345. [23] P. Gans, B. O'Sullivan, Talanta 51 (2000) 33. [24] P. Gans, A. Sabatini, A. Vacca, Talanta 43 (1996) 1739. [25] A. Braibanti, G. Ostacoli, P. Paoletti, L.D. Pettit, S. Sammartano, Pure Appl. Chem. 59 (1987) 1721. [26] D.P. Mellor, in: F. Dwyer (Ed.), Chelating Agents and Metal Chelates, Elsevier, Academic Press, New York, 1964, p. 1. [27] J. Bjerrum, Metal Ammine Formation in Aqueous Solution: Theory of the Reversible Step Reactions, P. Haase and Son, Denmark, 1941. [28] L. Alderighi, P. Gans, A. Lenco, D. Peters, A. Sabatini, A. Vacca, Coord. Chem. Rev. 184 (1999) 311. [29] A.E. Martell, R.M. Smith, Critical Stability Constants, Second Supplement, Plenum Press, New York, 1989. [30] K. Zavitsanos, K. Tampouris, A.L. Petrou, Bioinorg. Chem. Appl. 2008 (2008) 1. [31] P. Dasgupta, R.B. Jordan, Inorg. Chem. 24 (1985) 2717. [32] A. Galano, A.P. González, Theor. Chem. Acc. 131 (2012) 1265. [33] C.T. Abichandani, S.K.K. Jatkar, J. Indian Inst. Sci. 21A (1938) 417. [34] D. Hatzipanayioti, A. Karaliota, M. Kamariotaki, V. Aletras, P. Petropouleas, Chem. Phys. 325 (2006) 341. [35] L.D. Pettit, H.K.J. Powell, IUPAC Stability Constants

Database, Royal Society of Chemistry, Academic Software, Timble, 2003. [36] R.G. Pearson, J. Chem. Educ. 45 (1968) 581. [37] K.A. Walsh, E. Dalder, A. Goldberg, D.L. Olson, E.E. Vidal, Beryllium Chemistry and Processing, ASM International, Ohio, 2009. [38] W. Raith, T. Mulvey, Constituents of Matter: Atoms, Molecules, Nuclei, and Particles, CRC Press, London, 2001. [39] G. Schwarzenbach, Helv. Chim. Acta 35 (1952) 2344. [40] A.W. Adamson, J. Am. Chem. Soc. 76 (1954) 1578. [41] H. Irving, R.J.P. Williams, J. Chem. Soc. (1953) 3192 [42] S. Ahrland, J. Chatt, N.R. Davies, J. Chem. Soc. (1958) 264. [43] H. Sigel, Coordination Chemistry, Pergamon Press, Oxford, 1980. [44] M.M. Khalil, A.E. Radalla, F. Qasem, R. Khaled, Korean J. Chem. Eng. 31 (2014) 109. [45] R.B. Martin, P. Prados, J. Inorg. Nucl. Chem. 36 (1974) 1665. [46] R.B. Martin, Metal Ions in Biological Systems, Marcel Dekker, New York, 1979. 30 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 31 32 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 33 34 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 35 36 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 37 38 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 I.K. Chandra et al. / Polyhedron 88 (2015) 29-39 39