
BAB I

PENDAHULUAN

I.1. Latar Belakang

Minyak kelapa sawit adalah salah satu minyak yang diproduksi dalam jumlah yang cukup besar di dunia. Hingga tahun 2005, Indonesia merupakan negara pengekspor minyak kelapa sawit terbesar kedua di dunia setelah Malaysia. Mulai tahun 2006, Indonesia menjadi negara pengekspor minyak kelapa sawit yang terbesar di dunia. Hal ini dapat dilihat pada Tabel I.1. [1].

Produksi dan ekspor minyak kelapa sawit di Indonesia terus meningkat dari tahun 1964 hingga 2007 seperti yang terlihat pada Gambar I.1. Hal ini disebabkan karena manfaat minyak kelapa sawit yang sangat banyak, sehingga permintaan pasar akan minyak kelapa sawit semakin meningkat. Oleh karena itu, areal untuk perkebunan kelapa sawit di Indonesia terus diperluas.

Gambar I.1. Pertumbuhan Produksi dan Ekspor Minyak Kelapa Sawit Indonesia 1964-2007 [1]

Tabel I.1. Produsen CPO Dunia [1]

Tabel 1.1. Flouusen CFO Duna [1]										
Beberapa negara penghasil minyak kelapa sawit terbesar di dunia ('000 ton)										
Negara	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Indonesia	5.100	6.250	7.050	8.080	9.370	10.600	12.380	14.100	16.050	16.800
Malaysia	6.320	10.554	10.842	11.804	11.909	13.355	13.976	14.962	15.881	15.824
Thailand	475	560	525	625	600	690	735	700	860	1.020
Nigeria	690	720	740	770	775	785	790	800	815	835
Colombia	424	500	524	548	528	527	632	661	713	780
Papua Nugini	210	264	336	329	316	326	345	310	365	395
Equador	200	263	218	228	238	262	279	319	352	385
Ate d'Ivoire	269	264	278	205	265	240	270	320	330	320
Costa Rica	105	122	137	150	128	155	180	210	198	215
Honduras	92	90	101	130	126	158	170	180	195	205
Brazil	89	92	108	110	118	129	142	160	170	190
Guatemala	47	53	65	70	86	85	87	92	125	137
Venezuela	44	60	70	52	55	41	61	63	65	76
Lainnya	855	833	873	883	895	906	940	969	1.023	1.064
Total	16.920	20.625	21.867	23.984	25.409	28.259	33.846	33.846	37.142	38.246

Pada tahun 2007, total produksi minyak kelapa sawit mentah (CPO) di Indonesia adalah 16,8 juta ton/tahun, tetapi kebutuhan konsumsi CPO di dalam negeri hanya mencapai 6 juta ton/tahun dan sisanya diekspor. Kebutuhan konsumsi CPO dalam negeri semakin lama semakin meningkat dengan persentase peningkatan adalah 7,5%/tahun. Minyak ini diproduksi dalam jumlah besar karena dapat diolah menjadi berbagai macam bahan kebutuhan sehari-hari, baik bahan pangan maupun non pangan. Untuk bahan pangan contohnya: minyak goreng, margarin, ice cream, dan cacao butter substitute, sedangkan untuk non pangan contohnya: sabun, detergen, kosmetik, gliserin, dan pelumas. Namun, CPO yang nantinya akan diolah menjadi bahan pangan (terutama minyak goreng) tidak dapat langsung digunakan. Hal ini disebabkan karena warna CPO yang gelap, sedangkan salah satu parameter yang terpenting dalam mengukur kualitas edible oil adalah warnanya. Warna minyak kelapa sawit yang oranye kemerahan disebabkan karena adanya kandungan karoten yang tinggi, yaitu antara 500-700 ppm [2].

Selain itu, penyebab warna gelap pada CPO juga dapat terjadi selama proses pengolahan. Jika metode yang digunakan untuk memperoleh minyak kelapa sawit adalah metode press dengan cara *expeller*, maka suhu pemanasan yang terlalu tinggi dapat menyebabkan sebagian minyak teroksidasi dan warna minyak menjadi gelap. Disamping itu, pengepresan bahan yang mengandung minyak akan menghasilkan warna yang lebih gelap bila tekanan dan suhu yang digunakan lebih tinggi. Jika yang digunakan adalah metode ekstraksi, maka warna minyak yang dihasilkan tergantung pada pelarut yang digunakan. Misal, pelarut yang digunakan petroleum-benzena akan menghasilkan warna yang lebih cerah jika dibandingkan dengan pelarut trichlor etilen, benzol dan heksan. Hal lain

yang dapat menyebabkan warna minyak menjadi gelap adalah adanya kandungan logam seperti Fe, Cu, dan Mn [3]. Warna dari minyak sangat penting untuk digunakan sebagai ukuran apakah minyak tersebut dapat diterima di pasaran. Warna minyak yang gelap biasanya tidak disukai oleh konsumen. Oleh karena itu, perlu dilakukan proses pemucatan agar minyak tersebut dapat diterima di pasaran dan memiliki nilai jual yang lebih tinggi. Pemucatan CPO biasanya melalui beberapa tahap, yaitu netralisasi, degumming, bleaching, dan deodorisasi. Pada tahap bleaching, proses yang efektif dan umum dilakukan adalah adsorpsi. Adsorben yang biasa digunakan adalah bleaching earth (BE). Tetapi, pada penelitian ini ingin dicari alternatif adsorben lain yang lebih ekonomis dan ramah lingkungan.

Saat ini daun intaran telah banyak digunakan untuk penelitian-penelitian, salah satunya adalah untuk proses adsorpsi. Dari berbagai hasil penelitian yang telah dilakukan, daun intaran dapat mengadsorpsi berbagai jenis logam berat dan warna. Untuk menyerap warna, daun intaran telah terbukti dapat menyerap *Brilliant Green* [4], *Congo Red* [5], *Methylene Blue* [6], dan Remazol Blue RR [7]; sedangkan, untuk adsorpsi logam berat dapat digunakan untuk menyerap logam Pb (II) [8], Cd (II) [9], Cu (II) [10] dan Cr (VI) [11]. Dari penelitian-penelitian di atas, terlihat bahwa daun intaran dan bentuk modifikasinya sudah dikenal dapat menjadi adsorben yang efektif untuk menghilangkan banyak komponen organik dan logam berat dari cairan. Sejak daun ini diketahui memiliki kapasitas adsorpsi yang baik untuk beberapa komponen organik, maka daun ini diharapkan dapat menjadi adsorben yang potensial dalam pemucatan minyak kelapa sawit (CPO).

Kelebihan daun intaran bila dibandingkan dengan BE adalah pada proses penanganan limbah setelah adsorpsi, BE yang telah digunakan untuk proses adsorpsi tidak dapat langsung dibuang ke lingkungan karena BE akan membentuk gel yang tidak bisa didegradasi. Akan tetapi, daun intaran dapat didegradasi oleh lingkungan secara alami karena daun intaran merupakan bahan organik. Selain itu, pada proses penetralan BE setelah aktivasi lebih susah bila dibandingkan dengan daun intaran, sehingga BE lebih membahayakan lingkungan. Kelebihan lain dari daun intaran adalah untuk memproses daun intaran menjadi bentuk bubuk dibutuhkan grinder yang tidak memerlukan pemakaian listrik yang berlebihan. Selain itu, untuk mengeringkan daun intaran pada negara tropis hanya dibutuhkan sinar matahari [8].

Pada penelitian ini, daun intaran yang digunakan adalah daun intaran yang rontok dan telah kering karena sinar matahari. Oleh karena itu, pada metode penelitian ini tidak didahului dengan proses pengeringan daun. Kelebihan yang didapatkan dengan menggunakan daun intaran yang telah kering adalah dapat menghemat waktu untuk mengeringkan daun sebelum digunakan dan dapat memanfaatkan limbah yang dihasilkan oleh pohon intaran, sehingga dapat menaikkan nilai guna dari daun intaran kering yang telah rontok tersebut.

I.2. Tujuan

 Mempelajari pengaruh pre-treatment daun intaran menggunakan asam khlorida dan proses delignifikasi/non-delignifikasi terhadap karakteristik dan kemampuan daun intaran sebagai adsorben alternatif untuk memucatkan warna minyak kelapa sawit mentah. 2. Mempelajari mekanisme penyerapan zat warna β-karoten, *Peroxide Value* (PV) dan *Free Fatty Acid* (FFA) dalam minyak kelapa sawit mentah (CPO) pada permukaan adsorben.

I.3. Pembatasan Masalah

- 1. Daun intaran yang digunakan berasal dari Probolinggo.
- 2. Minyak yang digunakan adalah minyak kelapa sawit mentah (CPO).