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26.1 Development of medical textile and its waste:
industrial versus environmental viewpoints

Medical textile is generally a material of textile-based equipment used to protect the
users from any body fluids (e.g., blood, saliva, urines and sweats). In medical facilities,
body fluids can be a medium for transmitting infectious diseases through direct or in-
direct contact (Galante et al., 2020). Hazmat suits, coveralls, scrubs, scrub hats, face
masks, face shields, medical gowns, gloves and foot covers are classified into one
of the medical textile types called personal protective equipment (PPE) (Karim
et al., 2020). Moreover, sutures, wound dressings and bandages, as well as beddings,
mattress covers, towels, wash clothes and wipes in health facilities are also categorized
as medical textiles (Morris and Murray, 2020). The importance of health to global
communities causes the high demand for PPE and other health care necessities, partic-
ularly during the emergence of (unexpected) outbreaks such as the COVID-19
outbreak at the end of 2019, which is still ongoing in 2022. During the COVID-19
outbreak, the recommendation to wear a face mask on a daily basis, especially in pub-
lic areas, has been issued by government officials such as the World Health Organiza-
tion (WHO), Centers for Disease Control and Prevention (CDC) of the US, National
Health Service (NHS) of the UK and Health and Safety Executive (HSE) of the UK. It
was reported that single-use or disposable PPE has a broader market than reusable ones
(Rowan and Laffey, 2021), with only 3% of the face mask global production intended
for reuse, as the remaining 97% are disposable face masks (Ammendolia et al., 2021).

The medical textile demand has currently exceeded the global production capacity
and its supply chain (Derraik et al., 2020). It is also predicted that the production of
medical textile continues to be encouraged to meet its needs. The increasing demand
for the production of medical textiles leads to an increase in their waste generation.
Generally, most medical textile wastes come from medical facilities, such as hospitals
and clinics, but they are also commonly found in household wastes, for example, dis-
carded masks, gloves and wipes (Ammendolia et al., 2021). With the higher disposal
rate of medical textiles compared to their reuse/recycle rate, this puts an excessive
burden on waste management systems and infrastructures, and consequently, this
causes a large amount of medical textile wastes improperly handled.

Due to the presence of pathogens, toxins and many other (potentially hazardous)
chemicals, medical textile wastes are classified as an infectious and hazardous waste
that can potentially infect humans and pollute the environment (NHS, 2020). Patho-
gens are harmful microorganisms that can cause various diseases through infection
in the human body, while toxins are toxic substances commonly found in the form
of small molecules or proteins. Toxins are classified as dangerous components
due to their interacting abilities with enzymes or cellular receptors in the human
body (Padmanabhan and Barik, 2019). Contact with the medical textile waste may
lead to the entry of pathogens and toxins into the human body via ingestion, inhalation,
eyes, dermal absorption and contact with mucous membranes (Karim et al., 2020;
Padmanabhan and Barik, 2019). Bacteria or viral infections may cause the initial infec-
tion of various pandemics (e.g., COVID-19, HIV/AIDS and Ebola) through food or

830 Medical Textiles from Natural Resources



animals, but further transmission mostly occurs through the exposure to body fluids of
the infected individuals. As medical textile wastes contain many types of body fluids,
their waste management and processing become an important issue that requires spe-
cial attention.

Most medical textiles, particularly disposable ones, are generally designed from
nonwoven fabrics, engineered from synthetic polymers, and are very suitable for
disposable PPE due to their durability, strength and ability to relieve disease transmis-
sion among people (De-la-Torre et al., 2021). This type of medical textile poses a big
dilemma between the health care side and the environmental side. The disposable med-
ical textiles provide more effective protection and reduce the rate of disease transmis-
sion. However, their high disposal rate provokes many adverse impacts on the
environment and public health. The polymers constructing the textiles are the materials
that are difficult to be decomposed; they only fragment themselves into microplastics.
The disposal of these medical textile wastes promotes plastic pollution in the environ-
ments (Ammendolia et al., 2021), threatening the land and marine ecosystems, food
chains, floras, faunas and human life (De-la-Torre et al., 2020).

During the current pandemic, medical textile wastes have significantly increased
their presence in the environment. A study revealed that there were 1.56 billion face
masks discarded into the ocean during 2020 (De-la-Torre et al., 2021). Moreover, it
is estimated that there are 129 billion face masks and 65 billion gloves per month
consumed by the world population during the pandemic, which may overload the in-
frastructures and further contaminate the entire global environment if the wastes are
mismanaged (Prata et al., 2020). The careless disposal of medical textiles poses
many direct or indirect risks to the environment, and certainly brings harmful impacts
on human health (Padmanabhan and Barik, 2019). In landfills, the pathogens and
toxins can be transferred from the leachate produced into the soil, further polluting
the groundwaters. Meanwhile, the presence of these pollutants may endanger marine
life.

The emergence of new diseases requires the development of medical textiles with
enhanced protection capabilities and a lower amount of wastes. The resulted wastes
must, as well, have lower health and environmental risks. Recent studies have devel-
oped more advanced materials for various medical textiles needed in health facilities.
Many techniques are employed to modify medical textiles, such as surface coating,
loading and implantation (Akpek, 2021; Bengalli et al., 2021; Fouda et al., 2018).
Silver, copper, titanium and zinc, in the form of metal or metal oxide and also synthetic
polymers, are commonly used to develop the properties of medical textiles, as shown
in Table 26.1.

Several properties, that is, antimicrobial, antifouling, UV protection, body fluids re-
pellent, water-resistant and washable/reusable, are desirable for medical textiles to
offer more protection to the patients, health care workers and other individuals under
health threats (Ye et al., 2020). Silver nanoparticles and graphene oxide are known to
have antiviral properties (Kumar et al., 2020); therefore, these components can be used
to upgrade the medical textile for various medical textiles. Moreover, it has been inves-
tigated that both silver and graphene oxide nanoparticles are able to destroy SARS-
CoV-2, the main etiological agent of COVID-19. Quaternary ammonium salts are
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Table 26.1 The development of medical textiles.

Innovation Products Abilities References

Superhaemophobic and
antivirofouling
coated medical
textile

Polytetrafluoroethylene
nanoparticles coated
medical textile

• blood, protein and
virus repellent

• wash-stable
medical textile

Galante
et al.
(2020)

Superhydrophobic and
antibacterial coated
medical textile

F/Q-MSNsa coated
medical textile

• water-resistant
• acid- and alkaline-
resistant

• bacterial shielding
and killing
function

• breathable and
deformable textile

Ye et al.
(2020)

Antibacterial and
ultraviolet (UV)
protective medical
textile

ZnO loaded medical
textile

• high antibacterial
activities

• UV protection

Fouda et al.
(2018)

Antimicrobial medical
textile

CuO and ZnO coated
medical textile

• excellent antibac-
terial, antiviral and
antifungal
activities

• bacterial and viral
killing function

Bengalli
et al.
(2021)

Conductive and UV
protective medical
textile

Polyaniline-graphene
oxide coated medical
textile

• excellent antimi-
crobial activities

• high electrical
conductivity for
sensors

• UV protection
• washable and
reusable

Tang et al.
(2015)

Antimicrobial medical
textile

Ag-graphene oxide
coated medical textile

• excellent antimi-
crobial activities

• washable and
reusable

Noor et al.
(2019)

Antibacterial medical
textile

Ag and TiO2 implanted
medical textile

• excellent antibac-
terial activities

• UV protection
• washable

Akpek
(2021)

Release-killing medical
textile

Polyelectrolyte
multilayers coated
medical textile

• excellent contact-
killing properties

• excellent release-
killing properties

Junthip
et al.
(2020)

aF/Q-MSNs ¼ fluorinated-/quaternary ammonium-functionalized mesoporous silica nanoparticles.
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also reported to possess an excellent antibacterial property, which can be used to coat
the medical textiles and protect the users from the bacteria transmission (Ye et al.,
2020). These innovations are very beneficial for the development of medical textiles
that possess excellent protection. The implementation of the innovations has to
consider various aspects, namely production steps, costs and the environmental and
health impact of the wastes.

From the industrial viewpoint, the addition of the loading or coating materials
directly affects the production costs. Additional processes will be required to realize
these modifications. The stakeholders in the medical textile industries will have to
consider these issues carefully, as supplementary materials, especially with the utiliza-
tion of metal or metal oxide nanoparticles, and extra processes lead to an increase in
the selling price of the medical textile products. Although the medical textile demand
during the current pandemic is exceptionally high, medical textiles with affordable
price must be provided and maintained because it speaks of human health and
humanity.

Meanwhile, from the environmental viewpoints, several modifications of medical
textile, by loading or coating with additional components, may directly imply to the
extra burden in the medical textile waste management. Many metals and metal oxides
are easily detached from the medical textiles via the leaching process (Noor et al.,
2019). This may occur when the waste of the washable textiles is in contact with
the water or solvent in the environment. Another issue is the presence of antimicrobial
agents, which can increase the resistance of medical textile from the external factors,
leading to a condition where the existence of its waste in the environment is long and
difficult to handle (Noor et al., 2019). The impact of medical textile waste on public
health may also occur directly via dermal contact with the waste and indirectly via
environmental pollution, which adversely affects human health. A study stated that
the additional components used to modify the medical textiles could damage skin tis-
sue through direct exposure (Bengalli et al., 2021). Therefore, the advancement of
medical textiles has to consider several important aspects, ranging from industrial
and environmental to human health aspects.

This chapter aims to discuss the medical textile waste management, the impacts of
the management options and the regulatory frameworks. A wide discussion is empha-
sized from the environmental and human health viewpoints. This chapter is also
intended to provide broad insight into the medical textile waste management and
how the management practice will influence the development of medical textiles.

26.2 Current situation and emerging issues of medical
textile waste management

The textile industries have expanded their products in several sectors, including med-
ical and health care applications. Medical textiles, also known as health care textiles,
are primarily used for first aid, clinical and hygienic purposes. Based on their fibre
sources and applications, medical textiles are divided into five categories as follows
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(Azam Ali and Shavandi, 2016): (1) implantable material, (2) nonimplantable material,
(3) health care/hygiene, (4) extracorporeal devices and (5) intelligent medical and
health care textiles.

Implantable material helps tissue healing and repair processes, such as wound
closure, cardiovascular grafts, artificial tendons, ligament and cartilage. Meanwhile,
nonimplantable material is mainly used for external applications to protect against
infection, for example, protective dressing, bandage and adhesive tapes. Health
care/hygiene products can be found in our daily life, like masks and surgical gowns.
Extracorporeal devices are used for mechanical equipment for purification, filtration
and circulation of blood. These devices are designed to assist human life, especially
in artificial respiration. Artificial organs are mainly made from cellulose, polyester,
polypropylene fibres or silicon membranes, which is also a part of medical textiles.
Intelligent medical devices will be the future of the medical industries that can inspect
human well-being using embedded chemical sensor-based textiles through simulta-
neous body fluid or odour interactions. Among the aforementioned categories, three
of them (i.e., nonimplantable material, health care/hygiene products and intelligent
medical devices) contribute to the medical waste (WHO, 2018); most of them are clas-
sified into hazardous waste, specifically infectious waste (e.g., contaminated bandages
and health care products).

In this chapter, the discussion of health care waste will be limited only to medical
textile waste. The health care waste generated from each country is different, depend-
ing on their economic condition. Developing and emerging countries usually have a
lower rate of waste production than developed countries. However, there is a steady
increase in health care waste production globally, even in middle and low-income
countries, due to improved health care services and increased system usage (Minoglou
et al., 2017). Among the health care products, the most general product found in our
daily life is the mask, especially since the outbreak of COVID-19. The demand for the
mask as a health care/hygiene product increases due to government instruction to wear
masks in daily life to prevent the transmission of the virus via droplets. The COVID-19
pandemic has completely changed our routines; activities are limited and affected
countries’ economic growth globally. The amount of PPE produced increased signif-
icantly; 40% more disposable PPE was requested by WHO. Wuhan, as the centre of
the COVID-19 outbreak, generated six times more medical waste (240 tonnes per
day) at the peak of the pandemic than the average daily use of PPE (45 tonnes) (Adyel,
2020). Medical textile waste management needs to be taken seriously to minimize the
effect on human life and sustain the environment.

26.2.1 Environmental and health risk of medical textile waste
and its improper disposal

The ease of plastic usage in human life has led to massive wastes, especially in the
medical textile industries. It is agreeable that disposable medical textiles are cheap
and can reduce the risk of pathogens infections; however, the increasing quantity of
their usage is problematic. The demand for synthetic polypropylene in industrial fibre

834 Medical Textiles from Natural Resources



is the second most significant demand in Europe in 2012 (Galloway, 2015). As one of
the precautionary actions to lower the transmission rate of COVID-19, many types of
medical textiles, including face masks, gloves, medical gowns and other PPEs are in a
high-reaching demand (WHO, 2020). PPE mainly consists of synthetic textiles, which
has various compounds such as polypropylene, polyesters, polyethylene and polyvinyl
chloride. All of these materials will degrade in the waste stream as microplastics, a sig-
nificant part of anthropogenic marine debris, with smaller particles size (less than
5 mm) (Galgani et al., 2015). Microplastics’ impact causes aggravating environmental
contamination of wildlife; 557 species among all wildlife groups have been affected by
either entanglement or ingestion of plastic debris, especially marine fauna (K€uhn et al.,
2015). The persistence of plastics waste in the environment ends up creating a threat
cycle in the ecosystem. The distribution coefficient of microplastic as persistence
organic pollutants ranges between 10�4 and 10�6; this relates to low mass fractions
of microplastics to transport a disproportionately high concentration of microplastic
ingested to small organisms such as zooplankton, which eventually involves in the
entire food chain (Andrady, 2015), as shown in Fig. 26.1. Notably, this also indirectly
influences human health; in consequence of contaminated fish uptake in human causes,
there are several damages due to the cumulative effect. Apart from that, microplastics
can also enter the human body through inhalation and skin contact. Overall, microplas-
tics lead to the nervous system’s problematic condition, respiratory, skin, kidney,
placental barrier, digestive and excretory organs (Campanale et al., 2020).

The standard practice of waste management performed in a hospital is either by
dumping or incineration, but the implementation is different for each country. Only
58% of facilities from 24 countries have safe disposal for their health care wastes in

Figure 26.1 Domino effect of medical textile waste mismanagement.
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2015 (WHO, 2018). Most of the developing countries in Asia rely on open dumping,
landfills and open burning systems. Open dumping and landfills are low-cost options
for emerging countries, but they pose a high health risk due to uncontrolled and inad-
equate disposal. Dumping exhibits many disadvantages, particularly for infectious
wastes, as it leads to water pollution, air pollution from anaerobic decomposition
and emission of carcinogen or teratogen compounds (Chua et al., 2020; Ferronato
and Torretta, 2019). Studies show that the area with exposure to landfill sites is
more prone to a low congenital disability and reproductive disorders (Rushton, 2003).

Open burning is also considered as a way to reduce the amount of medical waste
and its infectious effects; however, it causes detrimental outcomes in the atmosphere.
The open burning results in a significant amount of contaminants such as polychlori-
nated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and poly-
chlorinated biphenyls (PCBs) (Ferronato and Torretta, 2019). Not limited to those
components, open burning contributes to greenhouse gases (GHG), which is a relent-
less issue worldwide. This method also produces small-size particulate matter (PM) in
the category of PM1 as the majority output, whose particle size is less than 1 mm. It is
considered to be the most harmful PM since it can go into the most profound site of our
lung, enter the bloodstream and spread to organs, thus make it contribute to several
diseases such as heart attacks, lung cancer, dementia, emphysema, oedema and even
premature death (Camfil, 2018). Incineration also produces toxic dioxin gas and mer-
cury emissions from its disposal (Kaiser et al., 2001). Medical-waste incineration
needs to have a specific furnace design, gas-temperature reduction program and air-
pollution control device. These point toward user choice to adopt the best devices to
create a suitable incinerator for handling medical waste (National Research Council
(US) Committee on Health Effects of Waste Incineration, 2000).

26.2.2 Environmental actions to reduce medical textile

Wearing a face mask becomes a compulsory habit of protecting ourselves from
COVID-19. However, the massive amount of medical textile waste generated during
the pandemic demands the attention of the international and local government
agencies. This waste should be considered infectious and disposed of properly during
the pandemic, including many types of PPE (public face mask, gloves and others). The
role of citizens in handling waste is necessary since every community is responsible for
its waste. Taiwan, one of the best countries in handling pandemic, has a strict regula-
tion to sustain their environment. Taiwan’s Ministry of Health and Welfare and Envi-
ronmental Protection Administration even educate the public to properly dispose of
face mask via press conferences, official websites and social media platforms (Yeh,
2020). During the outbreak, many countries have insufficient quantities of surgical
three-ply masks for the public. Reusable masks made of fabric or cloth become an
alternative for citizens and progressed into a fashion and modern necessity in daily
life during the pandemic (Shruti et al., 2020). As an international benchmark, the
WHO set specific criteria for fabric masks, where they should have three-layer ar-
ranged of (1) innermost layer of hydrophilic material, (2) hydrophobic middle layer
and (3) outermost layer made of hydrophobic material (WHO, 2020). Nonmedical
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masks are recommended for people who are not at risk of severe complications from
COVID-19 while maintaining physical distancing. The utilization of reusable masks
can help to suppress the amount of medical waste during the pandemic.

The practice of reducing, reuse and recycling must be complied with government
regulations to work smoothly. For example, the government of Managua developed
a project of sustainable waste management in the neighbourhood of Acahualinca in
2009. This project aimed to implement the technological improvement of municipal
solid waste treatment and to improve the life quality of the local population. Spanish
Agency handles this project on behalf of the Managua’s municipal government and
International Cooperation for Development (AECID), which also collaborates with
a public Spanish engineering company called Tragsa (Hartmann, 2018). Nongovern-
ment organizations (NGOs), private companies and international fund agencies also
support sustainable waste management by promoting 4Rs (reduce, reuse, recycle
and recover; Ferronato and Torretta, 2019). NGOs’ role can also be widened to the
health care waste management in inaccessible areas, certainly with the appropriate pro-
posals (Khan et al., 2019).

Several possible methods to reuse PPE can be applied on a large scale, such as
vapour infusion of hydrogen peroxide, ultraviolet or gamma-irradiation, ethylene ox-
ide gasification and application spray-on disinfectant (Rowan and Laffey, 2021; Singh
et al., 2020). In 2016, a project of decontamination of N95 filtering facepiece respirator
(FFR) was conducted by Battelle Memorial Institute. This project is a part of extra-
mural medical countermeasures funded by the United States Food and Drug Admin-
istrations (US FDA). Battelle shows satisfactory decontamination results of N95
FFR using hydrogen peroxide vapour up to 50 cycles; however, degradation occurred
in the elastic straps after 30 cycles (Battelle, 2016). During the public health emer-
gency in March 2020, the US FDA issued an Emergency Use Authorization (EUA)
for Battelle to decontaminate compatible N95 FFR, to be reused by medical profes-
sionals on the front lines of COVID-19 (US FDA, 2020).

The urge to have better management of waste is related to the strict regulation of the
government. The hospital and household waste management trajectory generally in-
volves several sectors, but most importantly, formulating the waste management
guidelines and scheming the process need to have a synchronous collaboration among
the related aspects (Sangkham, 2020). Economic viewpoint shows that reusable med-
ical textiles have better cost efficiency than disposable ones. Using reusable materials,
the hospital can save $100,000 more than using disposable products (Sun, 2011).
Reusable surgical gowns made of polyester or cotton-polyester can be used after laun-
dering and disinfection with bleaching agents; it can withstand more than 50 cycles
(Cao and Cloud, 2011; Sun, 2011). This practice has already been implemented by
Ronald Reagan UCLA Medical Center and Carilion Clinic in Roanoke, Virginia.
Reusable gowns demonstrated less energy and water consumption, also the production
of GHG emissions and solid waste (Baker et al., 2020). The reusable medical textiles is
currently more attractive in the European Union countries than other countries since
their policies give more attention to environmental protection (Sun, 2011). Hence, it
is critical for governments to implement policies to improve the life-cycle of plastics,
develop alternative materials and educate the public about 4R (Zhang et al., 2021).
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26.3 Impact assessment of medical textile waste
management options

As medical textile waste is considered hazardous waste due to its serious health and
environmental risks, safely managing the waste is crucial to successfully containing
the pollutants. Mismanagement could provoke increasing environmental pollution,
as this type of waste usually carries a large number of viruses, germs, chemical and
radioactive materials. In recent years, with the viral crises happening around the globe,
there has been an increase in public awareness and social responsibilities about the per-
formance evaluation as well as the improvement of the medical textile waste manage-
ment system. All countries should incorporate the disaster risk into the regulatory
framework of their medical textile waste management to enhance their readiness
and resilience, specifically against the current pandemic. Currently, the available op-
tions to administer medical textile waste include landfill, incineration, composting
and reusing, where every technique offers both benefits and risks to the environment
and human health. In this subchapter, the environmental and health issues associated
with all four solid waste management options will be critically assessed.

26.3.1 Medical textile waste landfills: health and environmental
impact

With the huge waste masses, landfill is considered one of the significant solutions
for waste disposal within the waste management system (Gopikumar et al., 2021;
Maghmoumi et al., 2020; Mishra et al., 2020; Torkayesh et al., 2021). A landfill is
an engineered land construction to dispose the solid or hazardous waste in an environ-
mentally secure and protective manner. Frequently, both domestic or municipal and
health care wastes, including medical textiles, are buried in the same area without
any clear segregation (Heidari et al., 2019; Mardani et al., 2019). However, the current
pandemic brings a great challenge in the disposal of medical textiles from the infected
patients, which requires the government to establish a separate, secure and sustainable
landfill construction, as improper disposal of such materials causes serious health and
environmental issues. The selection of landfill site itself is a challenging task as it in-
volves several factors, including the land use, geological-hydrogeological, operational,
economic and social aspects (Gorsevski et al., 2012; Sumathi et al., 2008). Many
epidemiologic shreds of evidence for the potential health effects of landfill sites are
reported, provoking the authorities to properly determine and design the landfill site
and its remediation to respond to the public concern in a satisfactory way (Fazzo
et al., 2017; Njoku et al., 2019; Vrijheid, 2000).

During the landfill process, the waste degradation via biological, chemical and
physical routes results in the production of leachate and gases. Due to this reason,
the construction design of landfills has to include several elements to control the emis-
sion according to the environmental regulations, for example, the liner, final cover,
leachate and gas management facilities (Fig. 26.2). The liner system usually consists
of multiple layers of clay and geomembrane, with a leak detection system placed
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between every layer to observe any water leaks from the top liner. The leachate is
continuously transferred through the drainage layer and perforated collection pipe to
the on-site treatment facilities to reduce the contaminant present in the leachate before
being discharged via deep well injection, or evaporation. Meanwhile, the final cap of a
landfill, consisting of compacted soil, geomembrane, geocomposite drainage net, pro-
tective soil and vegetation, is placed to minimize rainwater infiltration and exfiltration
gaseous contaminants. Similar with the leak detection in the liner system, the gas con-
trol system is placed in the final cap layer to monitor the resulting gas emissions from
the landfills (Reinhart and McCreanor, 2000). Moreover, a series of extraction wells
with a vacuum system have been installed to direct the collected gas to the gas treat-
ment facilities.

However, regardless of how safe the landfill management is, its operation is still
commonly associated with the contamination of water bodies by leachate, unpleasant
odour, bioaerosol emissions and volatile organic compounds (VOCs) (De Feo et al.,
2013; Garrod and Willis, 1998; Njoku et al., 2019). WHO reported how residing close
to landfills negatively affects health (WHO, 2007). Moreover, many epidemiology
studies revealed that residents living close to landfills site are closely associated
with chronic health disorders, particularly on the respiratory and digestive systems
and dermatological and neurological symptoms (Dongo et al., 2012; Fazzo et al.,
2017). This is likely due to the resulting liquid and gas emissions caused by the com-
plex chemical and microbiological reactions within the landfills, including dioxins,
PAHs, heavy metals and other VOCs (Okeke and Armour, 2000; Palmiotto et al.,
2014; Yu et al., 2010). A WHO report mentioned that exposure of individuals to a
high level of dioxins, although in a short duration, results in skin disorders, for
example, chloracne and dark spots, and an alteration in liver function. Additionally,
a long exposure deteriorates the immune, endocrine and nervous systems, as well as
the reproductive functions. Classified as a human carcinogen by the WHO Interna-
tional Agency for Research on Cancer (IARC), a risk of cancer may result from

Figure 26.2 Schematic diagram of a landfill design.
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chronic exposure to dioxins. IARC, however, emphasizes that dioxins would not
genetically affect human health and the cancer risk would be negligible when an expo-
sure level is lower than the harmful degree (WHO, 2016).

Meanwhile, often observed in the leachate generated by sanitary landfills, PAHs are
known as the most environmentally persistent and carcinogenic pollutants (Burchiel
and Luster, 2001; US EPA, 2008). PAHs possess acute toxicity towards aquatic organ-
isms via direct metabolism and photooxidation, and are more toxic in the presence of
UV light. While PAHs are unlikely to pollute the soil and the living invertebrates,
plants can absorb them through their roots and transfer these compounds to the other
parts. Moreover, as PAHs can be bioaccumulated, their concentration in the living
biota is predicted to be much higher than that found in the soil environment. Several
studies reported that the uptake of PAHs by mammals and humans by inhalations,
dermal contacts and ingestions causes adverse effects, for example, skin irritation,
breathing problems, tumours, reproduction and growth abnormality, and immune sys-
tem disorders (Beyer et al., 2010; Dong et al., 2012; Veltman et al., 2011).

Besides dioxins and PAHs, landfill leachate also consists of many forms of heavy
metals, including chromium, lead, cadmium, mercury and several other metals. Expo-
sure to heavy metals in the leachate increases the risk of the damaged nervous system,
reduced lung function, ataxia, paralysis and cancer (Njoku et al., 2019). The United
States Environmental Protection Agency (US EPA) stated that these metals belong
to the priority metals that are of great public health significance, as they are all known
as systemic toxicants and possess a high degree of toxicity, even at lower exposure
levels. They have been found to interact with DNA and protein, causing damage
and conformational alteration, leading to cell cycle modulation, carcinogenesis or
apoptosis (Beyersmann and Hartwig, 2008; Cohen et al., 1996; Tchounwou et al.,
2003; Wang and Shi, 2001). In addition, IARC classifies heavy metals as probable hu-
man and animal carcinogens due to their associated link between their exposure and
cancer incidence in both humans and animals (IARC, 1990).

Meanwhile, continuous inhalation of VOCs causes nausea, vomiting and coordina-
tion loss due to neuro-disruption; and moreover, high concentration can be very lethal
to human (Macklin et al., 2011; Njoku et al., 2019; Sharma et al., 2018; Shen et al.,
2012). The gaseous VOCs, for example, nitrogen oxide, sulphur dioxide, hydrogen
chloride and hydrogen fluoride, cause thoracic irritations and respiratory infections
when inhaled continuously. It also increases human vulnerability to respiratory disor-
ders. Moreover, these symptoms can trigger the asthma attack in the asthmatic patients
(Kampa and Castanas, 2008; Macklin et al., 2011; WHO, 2003). From the environ-
mental viewpoint, these acidic gases also react with the surrounding moisture to pre-
cipitate as acid rain, which is widely known for its adverse impact on the soils, water
bodies, aquatic and land ecosystems, and corrosion of infrastructures (Magaino, 1997).
In addition, sulphur dioxide is also reported to negatively affect the productivity and
growth of the plants (Padhi et al., 2013).

In addition to the inorganic and organic materials, comprehensive studies have
shown that pathogenic microorganisms can be associated with landfill leachates, espe-
cially when medical textiles are involved. These wastes are often described as bio-
hazardous materials that have to be immediately disposed of and treated, due to the
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presence of infectious bacteria or viruses, and harmful substances that cause further
health and environmental damages. Several studies reported that a number of patho-
genic bacteria had been detected in the commercial general and medical landfills
(Grisey et al., 2010; Mherzi et al., 2020; Yang et al., 2017). Bacteriological pollution
such as faecal coliforms, Streptococci and also parasites of intestinal roundworms, for
example, Enterobius vermicularis, Ascaris lumbricoides, Trichuris and Hymenolepis
nana is found in the raw leachate, which pose a risk for the environmental safety
and human health (Mherzi et al., 2020). However, a report mentioned that an increase
in bacterial mortality had been observed along with the waste age and leaching time
(Ware, 2004). A relatively high temperature during the aerobic stage of waste degra-
dation also inhibits bacterial growth (Lu et al., 1985). Moreover, the low pH caused by
the production of short carbon chain and CO2 gas accelerates the bacterial inactivation
(Engelbrecht et al., 1974). Therefore, many landfills operate at an elevated temperature
to reduce the organic strength, the viral and bacterial activation rate, and reach the
mature landfill faster (Reinhart and McCreanor, 2000).

With the aim to decrease the environmental and health risk in the landfill sites, the
US EPA releases several design standards for the modern hazardous landfills,
including (1) double liners and double final covers; (2) double leachate collection,
removal systems and leak detection system; (3) drainage way; (4) ground water
monitor system; (5) gas extraction wells and gas management facilities; (6) storm wa-
ter run-on, run-off and wind dispersal controls; and (7) construction quality control
programme to ensure the units are well selected and designed to minimize the release
of hazardous waste into the surrounding environment (US EPA, 2020a). The modern
landfills also require the leachate to be treated before discharge and the landfill gas to
be connected to a central blower system and captured for power, steam or heat gener-
ation (Reinhart and McCreanor, 2000).

26.3.2 Incineration of medical textile waste and its risk
assessment

As the annual generation amount of medical textile waste is projected to grow during
the pandemic, incineration has become one of the most convenient methods to manage
medical textile waste. The United States alone has almost 7000 existing medical-waste
incinerators, with some are combined with autoclaving, microwaving, chemical disin-
fection via chlorination or hydrogen peroxide bleaching and other techniques. Medical
textile waste is mainly considered as infectious (red) wastes due to its pathogenic na-
ture. Studies stated that the infectious medical waste in the hospitals is commonly
treated by on-site incineration, on-site steam sterilization and off-site treatment, with
the distributional values of 60%, 20% and 20%, respectively (Hyland, 1993; Hyland
et al., 1994). Currently, many medical-waste legislations from the developing and
developed countries encourage the use of on-site incineration. According to the US
EPA Office of Research and Development, the on-site incineration of medical waste
has many advantages; it may (1) sterilize pathogenic waste, (2) reduce the mass and
volume of the waste up to 95%, (3) provide heat recovery (which complies to the
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Energy Policy Act of 1992, and the Resource Conservation and Recovery Act) and (4)
be used simultaneously for hazardous chemical and radioactive waste disposal
(US EPA, 1992).

While incineration of wastes, including medical textile waste, has been widely prac-
ticed, inadequate incineration results in the release of toxic air pollutants and excess ash
residue. These toxic residues that are generally discharged to landfills have the potential
to leach into groundwater. A report by US EPA has also identified medical waste,
including its textile waste, as one of the biggest mercury emission contributors, counting
for almost 10%of the totalmercury released to the environment fromhuman activities (US
EPA, 1997). Therefore, incineratingmercury-containingwastewill promote the direct en-
try of airborne mercury into the global distribution cycle in the environment, polluting the
aquatic biota and wildlife in general. It is also widely known that mercury is strongly
neurotoxic andharmful to thedigestive and immune systems, lungs andkidneys.Exposure
to high levels ofmercurymay cause a fatality, as it can cross theblood andbrain barriers, as
well as placenta (Gautam et al., 2010). The incineration ofmedical waste is also an impor-
tant source of other heavy metals, such as cadmium and lead (Thornton et al., 1996).

Medical wastes incinerations are also the major source of dioxins in the environ-
ment (Gautam et al., 2010). The US EPA estimated that the total dioxin emission
from the country’s medical-waste incinerators reaches 5100 g (toxicity equivalent
[TEQ] of polychlorinated dibenzo-p-dioxin/polychlorinated dibenzofuran [PCDD/
PCDF] per year; US EPA, 1994). The incinerating process also releases additional
quantities of dioxin in ash, slag and scrubber effluent (Thornton et al., 1996). More-
over, many medical-waste incineration units are operated in combination with further
chlorination treatment, which is known to generate dioxins and furans. Both compo-
nents are considered human carcinogens, and have been linked to many adverse health
effects, for example, cancer, immune system disorders, diabetes, birth defects and dis-
rupted sexual development (Emmanuel et al., 2001). The California Air Resources
Board also reported that the PCDD/PCDF emissions from medical waste, including
the medical textiles, incinerators increase the cancer risks from 1 to w250 per million
of persons in neighbouring communities (California Air Resources Board, 1990). With
the air emission affecting the surrounding environment and local communities living
hundreds or thousands of miles away, dioxins clearly raise the health and environ-
mental issues and a challenge for the government institutions and professionals to
manage the sources. An approach to avoid the dioxin production is by prohibiting
the use of chlorinated plastic collection bags (Gautam et al., 2010; US EPA, 1994).

Additional hazards may also be posed by the release of PM and the incomplete com-
bustion products, for example, carbon tetrachloride, vinyl chloride, polychlorinated bi-
phenyls, chlorobenzenes, chloroform and chlorophenols that comes from the medical
textile materials, including the retained chemical and biological waste on their surface.
Both short and long PM exposures may lead to a variety of health effects. Short-term
exposure to this pollutant causes acute bronchitis, aggravated asthma, lung function dis-
orders and respiratory symptoms (i.e., irritation of the airways, coughing and breathing
difficulty). Meanwhile, long exposures, for example, those communities living near the
medical incinerator facilities, have been linked to chronic bronchitis, heart attacks and
premature death of people with lung, heart or diabetic diseases. Some healthy
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individuals may also experience temporary symptoms, for example, mild eye, nose and
throat irritations, phlegm and shortness of breath, due to the elevated levels of PM in the
surrounding air (US EPA, 2020b). From the environmental viewpoint, PM can be car-
ried by wind and settle on the ground or water surface. This may (1) increase the acidity
and change the nutrient balance in the water bodies (lakes, streams, rivers and coastal
waters), (2) decrease the soil nutrients, (3) destroy the agricultural crops, trees and sen-
sitive forests, (4) leads to the diversity shift of the ecosystems and (5) contributes to the
occurrence of the acid precipitation/rain (US EPA, 2020c). The chlorinated components
as the incomplete combustion products may be the initial promotor for the formation of
dioxins, which causes severe health and environmental issues.

Aside from the problems induced by chemical components in the medical textile
waste, incineration of this type of waste, particularly ones with retained pathogenic mi-
croorganisms, can lead to other pathological problems. While incinerators are gener-
ally able to sterilize most microbial pathogens, some studies reported that this
method is unable to inactivate the heat-resistant pathogenic bacteria; and those bacteria
are released via the stack, bottom ash residue (Arciola et al., 2007; Blenkharn, 2005;
Sawalem et al., 2009) and the quench (scrubbing) water. The US EPA mentioned that
the survival pattern of pathogens in the solid, liquid and gas emissions from the incin-
eration process indicates the inadequate design and operation of the incinerators (US
EPA, 1971). The presence of these bacterial agents would certainly be harmful to the
health and environment. Therefore, the medical textile waste classification, proper
incinerator design and operation must be employed and strictly regulated by the gov-
ernment. The sterilization of all types of health care waste prior to its disposal is rec-
ommended to eliminate nosocomial infections and environmental pollution from
clinical waste (Hossain et al., 2013). Another approach to minimize the formation
and release of hazardous emissions from this process is installing the air-pollution con-
trol equipment (APCE), which can destroy the infectious and toxic components and
effectively control the emissions to the atmosphere (Fig. 26.3). The most commonly

Figure 26.3 The overview of an incineration system fully equipped with the APCE.
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used APCE systems are fabric filters and wet scrubber systems. While fabric filters
collect the PM, trace metals and organic solids, the wet scrubber system captures
the gaseous pollutants and neutralizes acid and toxic gases produced during the com-
bustion process (Lauber and Drum, 1990; US EPA, 1990). In several incinerator sys-
tems, a combination of dry-sorbent (e.g., carbon) injection (DSI) and spray dryer
absorbers have been used to control the acidic gas emission, while electrostatic precip-
itators are installed to control the release of particulate matters. Studies show that the
concentration of toxic components (e.g., dioxins and furans) emitted from the APCE-
installed incinerator stack in the ground level have been found to be very low and pose
an insignificant risk to human health and environment (Hasselriis et al., 1991; Hasselriis
and Kasinathan, 1992; Konheim et al., 1993). The bottom ash residue is also generally
tested below the harmful levels.

26.3.3 The composting process of medical textile waste
and its emission

Composting is one of the safest methods for waste management, as both incineration
and landfilling are considered more expensive and less eco-friendly because of their
negative impact on the environment. A study also reviewed a significant reduction
of microbial and chemical pollutants during the in-ground composting process; there-
fore, this composting process is able to protect the groundwater from becoming
polluted (Ayilara et al., 2020). However, not all medical fabrics can be composted,
particularly the ones manufactured from synthetic fibres. This method is also generally
performed in the open air, resulting in several shortcomings, including pathogen detec-
tion, long duration of composting and odour production. Some other challenges from
this composting technique are the release of carbon dioxide and hydrogen sulphide
(caused by microbial activity via partial anaerobic route) into the atmosphere and
the depletion of oxygen (Ayilara et al., 2020).

The detection of the pathogenic bacteria during the particular composting process
of medical textile waste is majorly attributed to the nature of the medical textile itself.
The life-cycle of a medical textile shows that its waste may be composed of pathogenic
bacteria, viruses, hydrochloric acid, dioxins and furans, and toxic/heavy metals (Sun,
2011). Although studies show a declining trend of the numbers of pathogenic bacteria
during composting (Dumontet et al., 2001; Jakobsen, 1995), both Escherichia coli
(E. coli) and Salmonella spp. are observed to regrow in active compost during its
mature thermophilic phase (at the elevated temperature of >50�C) (Bustamante
et al., 2008; Elving et al., 2010; Grewal et al., 2007; Hess et al., 2004; Millner
et al., 2014; Pourcher et al., 2005; Wichuk and McCartney, 2007). The reasoning
for the survival of both bacteria is explained by the nonhomogenous heated areas of
the compost piles (Elving et al., 2010) and also the incomplete inactivation associated
with the process dryness (Soobhany et al., 2017). The presence of these pathogens
poses potential health hazards, and their occurrence is of particular significance in
the handling and storage of composts, as it will provide adverse effects to the surround-
ing communities and environment.
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To ensure the pathogenic activity reduction, a modification of the composting tech-
nique can be realized by employing the vermicomposting using earthworms. Several
studies reported that the vermicomposting process could effectively maintain the exis-
tence of pathogenic organisms under the safety levels (Hait and Tare, 2011a, 2011b;
Soobhany et al., 2017; Yadav et al., 2011). Another study also elaborately described
that the contact between the earthworms and the community of microbes decreases
some bacterial pathogens indicators (Monroy et al., 2009). Moreover, a quicker and
more complete pathogen removal has been achieved via vermicomposting using
high densities of earthworms than thermophilic composting of the same materials
(Eastman et al., 2001). This shows that vermicomposting can be considered a prom-
ising sanitation technique compared to the common composting processes. Moreover,
a categorical separation of the infectious and noninfectious medical textile waste prior
to the composting process should be performed to minimize the health and environ-
mental risks due to the pathogenic microorganisms. As previously discussed in this
chapter, the acidic gases, heavy metals and dioxins/furans retained on the medical
textile surface may also bring a lot of harmful effects to human health and the environ-
ment. Although these components will be digested during the composting, but as this
treatment requires an extended processing time, then there would be some components
that will be released to the atmosphere (Jackson, 2020).

26.3.4 The health and environmental impacts of reusing the
medical textile

With the growing demand for medical textiles due to the current pandemic, many
countries see an increasing trend of their waste amount and are currently looking
for a sustainable practice to leave a smaller environmental footprint. As previously
mentioned, the widely used waste management systems, for example, landfills and in-
cinerations, generate adverse impacts on the health and environmental sectors. There-
fore, many health care organizations recently encourage the use of reusable protective
textiles (e.g., gowns, drapes, masks, underpads, dressings and others), which can be
sterilized and laundered for reuse. The lifetime of reusable medical textiles is predicted
to be more than 50 cycles, resulting in fewer resources (including raw material and en-
ergy), and at the same time, less waste generation (Cao and Cloud, 2011; Sun, 2011).
Similar arguments were observed in many studies, where they highlighted the sustain-
ability of reusable medical textile, noting that they are more cost-effective throughout
their life-cycle, specifically in terms of cost, waste and carbon footprints (Baykaso�glu
et al., 2009; Overcash, 2012; Vozzola et al., 2018). The emitted carbon dioxides are
found to be 10 times lower with reusable textiles relative to the disposable products
(Zimmer, 2009). The same study also found 20 times fewer carcinogenic compounds
were released by the first as compared to the latter. With the biologically degradable
final waste (if cotton and/or biodegradable polyester fibres, e.g., polylactic
acid [PLA], is used as the major component), reusing the medical textiles will defi-
nitely produce fewer pollutants, compared to the other waste management systems
(Sun, 2011).
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However, the mentioned advantages do not fully cover the challenges faced by us-
ing these reusable textiles. While the surgical gowns, drapes and their accessories are
known as the apparel intended to protect the patients and health care personnel, the
used fabrics could be the ones that promote infection, as they contain retained patho-
logical and infectious materials after use. Improper handling during the laundering and
transfer of biological waste (i.e., fluids, tissue, blood) to the treatment system will
induce bacterial spread and is potentially detrimental to public health and environ-
mental safety. It was, moreover, reported that the laundering activity reduced the capa-
bility of the fabric to prevent the transmission of the bacteria (Leonas, 1998),
indicating that the reusable medical textiles still require many improvements, particu-
larly on their protective ability.

From the environmental viewpoint, reusable medical textiles in health care facilities
also demand a large volume of water for laundering, and consequently, generates the
same wastewater amount. Several chemicals, for example, sodium hypochlorite and
hydrogen peroxide, are also used for disinfection and bleaching, adding toxic pollut-
ants into the resulting wastewater. Although this wastewater can be fully treated and
recycled to reduce the adverse effect on the environment, both laundry operation
(which follows the CDC Guidelines; CDC, 2003) and its associated transport consume
additional energy, which could negatively impact the environment as well.

26.3.5 Future perspectives of medical textile waste
management

The future perspective for waste management of medical textiles will focus on waste
minimization, material substitution, waste segregation and the improvement of current
waste treatment technologies. Medical textile waste minimization can be achieved via
source reduction and reusing practice. The measures to (1) change the clinical practices
of the medical staffs to ones that use fewer materials and (2) shift the use of disposable
protective textile to the reusable ones shall be promoted to the health care facilities and
their staffs to implement a continuous act of waste minimization process. These actions
are considered economically beneficial to the waste producers as both costs of pur-
chased goods and waste treatment will be reduced. The environmental and health lia-
bilities of the medical textile waste, which is usually regarded as the infectious and/or
hazardous waste, are lower. However, along with the extensive use of reusable medical
textiles, it is expected that the facilities require additional energy and chemicals for
disinfection, sterilization and laundering purposes. As the use of chemical generally
induce the formation and release of pollutants, the guidelines on best available tech-
niques and provisional guidance on best environmental practices, known as the
BAT/BEP guidelines, named several techniques, including steam sterilization, dry-
heat sterilization and microwave treatment, as the alternative technologies to minimize
the infection transmission to an acceptably low probability (UNEP, 2006).

Another approach to reduce the impact of the waste is by employing the environ-
mentally preferable purchasing (EPP) policy. This policy describes the purchase of
products and services that generate the least environmental impact and from suppliers

846 Medical Textiles from Natural Resources



implementing the environmental management system. A WHO report stated that the
application of EPP helps the health care facilities to reduce their impact on the envi-
ronment, decrease the expenditure of the waste disposal and its liabilities, and at the
same time, contribute to create safer conditions for both patients and medical staffs
(Chartier et al., 2014). This programme also encourages the replacement of high-
risk products to the low-risk ones, for example, substituting the halogen-embedded
medical textiles to the ones with the natural antibacterial or the other chemicals with
low toxicity, which echoes with the material substitution scheme. A similar solution
has been proposed via life-cycle thinking and green procurement, where the health
care facilities are required to evaluate the health and environmental risks of a product
or service during its life-cycle (including its waste management), and only purchase
ones that can be safely recycled, reused and is low in toxicity (Kaiser et al., 2001).

As medical textiles are found in many forms, a proper segregation system is also
mandatory for all health care facilities, and it shall be clearly set up in the waste man-
agement policy. Within the major categories, for example, nonhazardous, potentially in-
fectious, highly infectious and hazardous, further segregation to reusables/recyclables,
nonreusable/recyclables and biodegradable may be advantageous (Chartier et al.,
2014). This practice is very important in the waste management system, specifically
to determine a suitable process for each type of medical textile waste, predict the plau-
sible risks that may occur, and plan the preemptive remedial action to a particular risk.

Besides the aforementioned plausible pathways, the improvement of the treatment
technologies becomes one of the focuses for the prospects of waste management, spe-
cifically medical textile waste. The current technologies have been associated with
emission of toxic pollutants that will incur health and environmental risks, as well
as additional liability issues. To considerably reduce the pollution, the regulated incin-
eration facilities, fully equipped with high efficiency APCE and appropriate ash
disposal, can be one of the alternative options to replace the waste landfills and off-
site nonincineration technologies. It is claimed that the newer waste incineration sys-
tems run in a cleanlier manner and result in fewer environmental problems (Tait et al.,
2020); several upgraded features and proper maintenance to sustain the emission levels
are required in these systems. A risk analysis correlating between the type of the waste,
the incinerator design, siting location and the emission exposure pathways (ingestion,
inhalation, dermal exposure) might also give valuable input to the management of
waste. Based on the aforementioned discussions, these four acts (waste minimization,
material substitution, waste segregation and the improvement of current treatment
technologies) are expected to reduce the adverse impacts on public health and the envi-
ronment, as well as to develop a better medical textile waste disposal.

26.4 Importance of the regulatory frameworks

The use of medical devices in health care practices inevitably leads to the generation of
wastes that may be hazardous to health. Fig. 26.4 shows the proportion and type of
wastes generated from the health care activities, wherein the hazardous wastes contrib-
uted to 15% of the total wastes (Hayleeyesus and Cherinete, 2016; WHO, 2018).
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According to WHO, medical textile wastes are included in the category of hazardous
waste. Furthermore, medical textile wastes are considered to be biohazards since they
contain various infectious substances, such as contaminated fluids from laboratory
work (e.g., waste from infected animals and autopsies), used-devices (e.g., swabs
and bandages), pharmaceuticals and chemicals, and other bodily fluids (Chartier
et al., 2014). Due to the high risk of biohazard, there must be adequate and appropriate
handling methods for the medical textile wastes to reduce their impact on public health
and the environment. Medical textile waste management guidelines and methods are
not available explicitly for this waste alone but are covered by various regulations
regarding hazardous and infectious wastes.

New knowledge and technology, as well as changes in people’s lifestyles, have
become a powerful impetus for research, manufacture, development and marketing
of various types of medical textiles. While those are good at meeting people’s needs,
which are continually changing, they also drive a continuous-update to the national
policy and legal frameworks (Rathinamoorthy and Rajendran, 2019; Yalcin-Enis
et al., 2019). The high-dynamics in updating the regulatory frameworks can be a major
issue for medical textile manufacturers and all related organizations. Unlike other reg-
ulations that apply to most health care practices, the medical-waste regulations are set
at the state level rather than at the federal level. The waste regulations are often regu-
lated by multiple agencies within a state, thus creating another layer of complexity to
the regulation (Dumez, 2019). Despite the highly dynamics update of the policy and
regulatory framework, the global and comprehensive guidance for the regulatory
frameworks has been developed and available internationally. The guidance must be
taken into consideration as the basis for developing national policy and legislation.

26.4.1 Available guidelines for developing regulatory
frameworks

26.4.1.1 International agreements and conventions

The handling of medical textile wastes requires multi-sectoral cooperation at all
levels. This action is not only subjected to the medical textile wastes but also other

Figure 26.4 The proportion of wastes generated from health care activities.
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medical-related wastes. The establishment of a national policy and legal framework is
a must to ensure efficient waste management, create sustainable coordination between
each sector, raise public awareness and finally achieve successful medical-waste man-
agement. Legislation and supporting bodies concerning waste management should be
developed once the national policy has been prepared.

The regulated national policy might differ for each state by considering the regional
differences and the region’s socioeconomic conditions. Despite the contrast of each
state’s policy due to the several regional allowances, the international agreements
and conventions (Table 26.2) relevant to medical-waste management must be consid-
ered when preparing the policy. The international agreements and conventions are usu-
ally followed by the development of coordination centres spread across different
countries. The centres are responsible for delivering training and facilitating technol-
ogy transfer regarding waste management to assist the implementation of the agree-
ments and conventions.

26.4.1.2 The guiding principles

The guidance documents for aiding a state to establish the national policy related to
medical-waste management are available internationally. The creation of the docu-
ments involves several world organizations, such as WHO, UN organizations and
NGOs. The documents are not specific to the medical textile and medical-related waste
but can also be implemented to other types of waste. There are five principles, as sum-
marized in Table 26.3, which underlies effective waste management and must be
implemented every time a national policy is created.

26.4.1.3 Regulated medical waste

In 1980, the medical waste’s regulatory framework was developed by the US EPA. But,
since the composition of the waste was different between each state, the US EPA no
longer plays a central role in regulating the medical waste. The waste regulations are
now enacted as State Medical-Waste Regulations, and nearly all 50 states have their
own regulations. Even so, the US EPA still actively regulates the regulation governing
the emissions from the incineration of medical or infectious wastes (ENTeR, 2016). The
other regulatory scheme related to the medical waste are as follow:

• Occupational Safety and Health Administration (OSHA) Regulations. The Regulations are
concerning several aspects of medical-waste management, such as categorizing the waste,
containers requirement for holding or storing the medical waste, labelling the waste container
and employee training.

• Department of Transportation (DOT) Regulations: The regulations are mostly concerning the
transportation or shipping of medical wastes.

26.4.2 European Union directive regulations

The WHO and European Union (intrinsically the WHO’s European Centre for Envi-
ronment and Health) are known as the two big-organizing bodies that set up an
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Table 26.2 International agreements and conventions governing the medical-waste
management.

Treaty name Remarks References

The basel conventiona Provided by UNEPb, the protocol’s main
objective is to protect public health and the
environment against the adverse effect of
medical wastes and other hazardous
wastes. According to the protocol, the
textile and medical textile wastes are
classified as B3 wastes (Annex IX), that is,
wastes containing principally organic
constituents and should not be mixed with
other wastes. The transboundary
movement of such wastes only can be
permitted when their disposal and transport
are environmentally sound.

Peiry
(2013);
UNEP
(2019)

The bamako conventionc The convention aims to protect African
nations by prohibiting the import of
hazardous waste into Africa from any
route. The bamako convention was created
as a response to the basel convention (i.e.,
Article 11), which prohibits the trade of
hazardous waste to less developed
countries, especially the African continent.
The convention was provided by UNEP
and had 25 parties, which mostly came
from African nations.

UNEP
(1991)

The stockholm
conventiond

The stockholm convention is a global treaty
created to protect public (human) health
and the environment, especially from
persistent organic pollutants (POPs). The
convention is mainly emphasized industrial
sectors, including the textile industries. The
development of the convention was in the
assistance of UNIDOe, which was
responsible for assisting the countries in
implementing the treaty.

UNEP
(2006)

The environment and
sustainable development
conferences

The report was formulated to propose long-
term strategies for achieving sustainable
development. The report’s main concept is
the development to meet current needs
without causing damage to the
environment that can possibly hinder future
generations from meeting their own needs.
The full text can be found in the world
commission on environment and
development report.

Chartier
et al.
(2014)
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international working group to establish various practical guides addressing health
care waste management in developing countries. The group was established in 1995
and embraced private sector representatives involved in waste management-related ac-
tivities. The European Union (EU) has published a document Strategic Agenda on
Textile Waste Management and Recycling as a practical document to accommodate
the vision of the expert network on textile recycling (ENTeR) on textile waste manage-
ment into tangible elements (ENTeR, 2016). The management of the medical textile is
included as one element in ENTeR’s strategic agenda. As stated in the agenda, medical
textile wastes cannot be placed in the bins of undifferentiated-waste, and therefore,
their management has directly affected the cost plan for the companies or organizing
bodies (e.g., hospitals or medical centres).

Table 26.2 Continued

Treaty name Remarks References

United Nations committee
of experts on the
transport of dangerous
goods

This United Nations (UN) regulation was
prepared by the subcommittee on UN
Economic and Social council (ECOSOC).
While the regulations were not obligatory,
they have received international acceptance
and serve as the basis of several
international agreements. The regulations
cover the transport of almost all dangerous
goods models but do not cover the use or
disposal of the dangerous goods. The
dangerous goods must meet the regulated
packing and labelling requirement before
internationally transported.

UNECE
(2011)

United Nations Economic
commission for Europe
(UNECE)

The agreement concerning the International
carriage of Dangerous Goods by Road
(ADR). The ADR briefly declared that the
dangerous goods carried by road vehicles
must be packed and labelled according to
the codes in the regulations’ annexes.

UNECE
(2017)

Aarhus Convention of the
UNECE

The agreement is made to connect
environmental rights and human rights.
The agreement also encourages the
embodiment of the sustainable
development through active participation
of all stakeholders, including people and
government.

UNECE
(2000)

aIn full: Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal.
bUNEP stands for United Nations Environment Programme.
cIn full: Bamako Convention on the Ban on the Import into Africa and the Control of Transboundary Movement and
Management of Hazardous Wastes within Africa.
dIn full: Stockholm Convention on Persistent Organic Pollutants.
eUNIDO stands for United Nations Industrial Development Organization.
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26.4.2.1 Legal and policies area

Disposable and reusable medical textile are two highly used products in health-related
activities. However, direct political involvement and strife have increased controversy
over the use of disposable and reusable medical textiles. Each of its proponents claims
competitors’ products weaknesses and the advantages of their products for economic
gain purposes. Regardless of its disposable or recyclable form, the medical textile and
textile wastes cannot be disposed of as a general solid waste; further sorting shall be
applied to the wastes. The policies related to the waste management (including the
medical textile waste) by EU has the main objective to protect the natural resource
by avoiding the generation of waste and recycling the waste (Healthcare Environ-
mental Resources Center, 2015). The regulations by the EU are directly applicable
to the member-states, and therefore, should be implemented into the national policy,
which is as follow:

• The EuropeanWaste Framework Directive (Directive, 2008/98/EC), a central directive in the
waste management field. The Directive proposed several principles related to waste manage-
ment, which has the main objective of minimizing and preventing waste generation to reduce

Table 26.3 The five principles underlying an effective and controlled waste management
(Chartier et al., 2014).

Principle Remarks

Polluter pays The principle regulates that waste’s producers are responsible for
the safe disposal of the produced waste, including legally and
financially responsibility.

Precautionary The principle is persuasively governing the health and safety
protection defined under the 15th principle of the 1992 Rio
declaration on environment and development (United Nations,
1992). The principle disallows the lack of full scientific
certainty reasoning for postponing cost-effective measures to
prevent environmental damage.

Duty of care The engagement of all parties at all levels (i.e., production,
storage, transfer, treatment and final disposal of the waste) is
crucial in the effective employment of this principle. The
parties should be appropriately licensed to handle the
categories of waste. The principle is engaging the ethical
responsibility of the waste handling and managing personnel.

Proximity It is recommended to appoint the closest possible location (inside
the territorial limits) to the waste source for disposal to
minimize the risk involved in the transportation unless there
are several safety considerations.

Prior informed consent
principle

The principle obliges that consent from the affected communities
and other stakeholders must be obtained. They require to be
informed regarding the hazards and risks of waste management
at all levels.
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the adverse effect of the waste on humans and the environment (i.e., water, soil, plans and
animals). The Directive also sets up a five-stage waste management hierarchy (Fig. 26.5)
that the EU Member States shall apply to prepare the national policy.

• Regulation (EC) No. 1013/2006 of the European Parliament and Council related to the ship-
ment or transportation of waste. The wastes should be labelled and should meet the specific
conditions before shipped between countries.

• Decision 2000/532/EC is related to the waste list, including the hazardous and general waste.
As listed in Annex III of the Decision, the hazardous waste should be managed according to
the above-mentioned Waste Framework Directive.

• EU Circular Economy Package by the European Council. The package is launched with the
principal objective to prevent waste generation and promote recycling in Europe.

26.4.3 England and Wales hazardous waste regulations

The Hazardous Waste Regulations was developed in July 2005 to regulate and control
hazardous waste in England and Wales (Environmental Protection of England and
Wales, 2005). The waste directive regulations were developed to ensure safe disposal
and recovery of the waste that the waste management processes do not endanger the
environment and human health. According to regulations, the waste producers who
produce more than 500 kg of hazardous waste should register their existence to the
Environment Agency. The producer of hazardous wastes should provide a detailed
description of the waste to facilitate the later waste management, that is including
the quantity of the waste, the chemicals composition and their concentrations, the haz-
ard code according to the List of Waste (LoW) code, the container specification and the
destination of the disposal. According to the regulations, the medical textile wastes can
be categorized as the H9, H13 and H14 (as mentioned in Schedule 3-Annex III about
the properties of wastes which render them hazardous), that is the wastes which are
potential to cause adverse effect to human or other living organisms. The waste’s haz-
ardous properties were made based on the criteria given in the Regulations of Council
Directive 67/548/EEC of 27 June 1967 and 79/831/EEC(38).

Figure 26.5 The five-stage waste management hierarchy in the European Waste Framework
Directive.
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26.4.4 British Columbia hazardous legislation guide

The legislation guide consists of 22 chapters that describe the definition, identification,
handling, storage, transportation and disposal system of hazardous wastes. According to
the guide, hazardouswastes arewastes that potentially harmful to human health or the envi-
ronment (Oliver, 2016). A special techniquewas then required to eliminate orminimize the
hazard. The guide was developed on the basis of several acts and regulations, including the
EnvironmentalManagement (EM)Act, hazardouswaste (HW)Regulation, Environmental
Assessment Act, and Reviewable Projects Regulations. A comprehensive framework
related to the regulation of the hazardous wastes in British Columbia (BC) was specially
set up in the EM Act and detailed in the HW Regulation, which includes: (1) registration
of any activities which involve the generation of hazardous waste, (2) requirements of
the hazardous waste facilities, (3) the sets up of containers for storing and transporting
the wastes, (4) licensing of the waste carriers and (5) requirements for specific types of haz-
ardous waste. The regulation’s main objective is to prohibit the exposure of wastes that can
potentially cause pollution to the environment, except the hazardous wastes which are in
accordance with the regulations (The Government of British Columbia, 2008).

26.5 Conclusion

The regulatory frameworks and national policies for the management of hazardous
waste, includingmedical textiles, have the same primary objective: to prevent andmini-
mizewaste generation. The prevention andminimization of waste generation are to pro-
tect human health and the environment from the adverse effects of the waste. The
regulation regarding the medical textile wastes may not specifically be written, but their
managements are implied in the regulations. Medical textile wastes should be differen-
tiated from the general solid wastes since they contain infectious matters that are poten-
tially harmful to humans and the environment. And therefore, special techniques should
be applied to their disposal according to the available directives in each state. Several
waste management options are available, including landfilling, incineration, compost-
ing and reusing. The effectiveness and success of the waste management cannot be
achieved in the absence of all stakeholders’ full-involvement, that is the government,
health care related bodies, NGOs and households. Although standard regulations for
medical textile waste management may differ from country to country, every country
should have aminimumapproach to regulate theirmedicalwaste. The regulatedmedical
wastes (RMW) need to be rendered noninfectious before they can be disposed of as
general-solid wastes to minimize their impacts on the public health and environment.
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