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A Note on Eigenvalue of Matrices over The Symmetrized
Max-Plus Algebra

Gregoria Ariyanti*

Department of Mathematics Education, Widya Mandala Surabaya Catholic University,
Indonesia

*Email: ariyantigregoria@gmail.com

Abstract. Max-plus algebra is the structure that doesn't have an inverse of additive. Therefore,
there exists an equation that doesn't have a solution. For example, equation 3@x=2 has no
solution because there is no x such that max(3,x) = 2.The max-plus will have an inverse
element of addition if that structure is extended to the symmetrized max-plus algebra. The
expansion into a larger system is the same as the expansion of the natural number into an
integer number.This paper describes the necessary or sufficient condition of the eigenvalue of
matrices over the symmetrized max-plus algebra using the linear balance systems AQxV b
with V as a balance relation.

1. Introduction
In the max-plus algebra R,, there is a linear equation system one of which form A ® x = b. Farlow

the linear system does not necessarily have a solution. Therefore, the greatest subsolution is not a
sufficient condition for the solution of a linear system over max-plus algebra.

Each element in R, does not have an inverse of the @, so it can not be defined as a determinant on
max-plus algebra. Whereas, every element in the symmetrized max-plus algebra has an inverse to @,
so it can be defined as a determinant which can then be used in determining the solution of a linear
system over the symmetrized max-plus algebra, especially for a square matrix.

With the limitations in R,, which does not have an inverse element in @, so R, extended into the
set S that divided into three parts, they are S®, $© ,and S*. Thus, the linear systems over the
symmetrized max-plus algebra do not have the equation form but the balanced form. Therefore, the
linear systems over S have the form A @ xVb with A € My, (S), b € M1 (S), x € Mpx1(S), and
V as a balance relation. Furthermore, the linear system is called Linear Balance Systems. The purpose
of this paper is to determinethe necessary or sufficient condition of the eigenvalue of matrices over the
symmetrized max-plus algebra using the linear balance systems A@xV b.

In this paper, we will mainly concern linear balance systems over the symmetrized max-plus,
especially the homogeneous linear systems. We show that the solution of linear balance systems on
S® USO US" is given by the partitioned matrix. Some information about symmetrized max-plus
algebra is given in section 2. In Section 3, we discuss the existence of the eigenvalue of matrices over
the symmetrized max-plus algebra. The necessary or sufficient conditions of the linear balance
systems over S has a nontrivial solution is given in Section 3.
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2. The Symmetrized Max-Plus Algebra

based on [2-4]
null element and e: = 0 as the unit element. For all a, b € R, , the operations b and ® are defined as
follows:
a®b=max(a,b)anda @b =a+b

and then, (R.,®,®) is called the max-plus algebra.

Definition 2.1. [1,2,6]

Letu = (x,y),v = (W, 2) € R2

1) Two unary operators © and (.)* are defined as follows:© u = (y,x) and u* =u S u.

2) An element u is called balances with v, denoted by uVv, if x @z =y @ w.

3) A relation A is defined as follows :

) . (6, VW, 2)ifx # yandw # z
x ) Bw,2) if { (x,¥) = (W, z),otherwise

According to De Schutter and De Moor, % is an equivalence relation based on [1] and [2].
Therefore, we can form a factor set S = (Ré)/.%’. The structure(S,,&)is called the symmetrized
max-plus algebra. The addition and multiplication operations on § are given as follows:

(@b)®(c,d)= (a@c,b®d) and

@h)®@(cd)= (aQ@chdbh®da®@dDbQc)

for (a, b),m € S. The structure (S, @, @) is semiring because of S with & associative, S with
® associative, and S with @ and@Q satisfies the distributive properties [2].

Lemma 2.2. [1-3]

Given(S,®,Q) be the symmetrized max-plus algebra. The following statements hold.

1) The structure (S,D,®)satisfies commutative.

2) An element (g, €) is both a null element and an absorbent element.

3) An element (e, €) is a unit element.

4) The structure (S,D, & )satisfies idempotent of addition.

The structure S consists of three classes, that are :

1)S® = {(t, )|t € R Jwith(t, &) = {(t,x) € RE|x < t}.

2) SO = {(&,0)|t € R Jwith(g, 1) = {(x,t) € RE|x < t}.

3)$ = {mk € R Jwith(t, t) = {(t,t) € RE}. The elements of S* are called balanced.
The setS®is isomorphic with R,. Therefore, it is clear that fora € R,can be shown with(a, €) € S©.
Furthermore, it is easily shown that for a € R, we have :

1) a = (a, &)where(a, €) € S®.

2)©a=0 (a¢) =0 (a,¢) = (5 a)where(e, a) € SC.

a"=aBa=(ae)O(ae)=(aa)ES".

Lemma 2.3. [1]

Leta,b € R.. Wehavea © b = (a,b) .

Lemma 2.4. [1]

Let (a,b) € S with a, b € R,. The following statements hold :

1) If a > b then (a,b) = (a, €).

2) If a < b then (a, b) = (¢, b).

3)Ifa = bthen (a,b) = (a,a) or(a,b) = (b,b).

Proof:

1) Let a > b.We have that a®b = a or a®e = a @ b. The result that (a, b)V(a, €).

Its mean that (a, b)#(a, €). Therefore (a,b) = (a, ).
2) Let a < b and we have that a@®b = b or a @ b = b®e¢. The result that (a, b)V(e, b).
Its mean that (a, b) B (g, b). Therefore (a,b) = (e, b).
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3) Leta = band we have that a @ b = b@a. Its mean that(a, b)V(a, a).
So it follows that (a, b)#(a, a). Thus, (a,b) = (a,a).
Corollary 2.5. [1]

a,ifa>b
For a,b ER;,,a© b= {Ob,ifa<bhb
a’,ifa=b
Given S be the symmetrized max-plus algebra, a positive integer n and M,,(S) be the set of all
n X n matrices over S. Operations @ and @ for matrix over the symmetrized max-plus algebra are
given as follows :C = A @ B = ¢;; = a;;@®b;; and € = AQB = ¢;; = G?au®blj.
The nxn zero matrices over S is &, with (&,);; = € and an nxn identity matrix over § is E, with
e,ifi=j
(Endij = {s,ifi #j
Definition 2.6.
The matrix A € M, (S) is invertible of S if A @ BVE, and B @ AVE,, for any B € M, (S).
The properties of balance relation, i.e. the operator V, are given in the following lemma.
Lemma 2.7. [2,7]
1. Foralla,b,c €S, a © cVb if and only if aVbh @ c.
2. Foralla,beS®PuUS®,aVb=a=».
Let A € M,,(S). The homogeneous linear balance systems A @ xVe,4 has a nontrivial solution in
S® or SO if and only if det (A) Ve,y1.

3. Main Results

Poplin stated that the existence and uniqueness of a solution of the linear balance systems for a square
matrix over the symmetrized max-plus algebra S® U $© can be solved by Cramer's rule [6]. Solution
with Cramer's rule can be done because every element of the symmetrized max-plus algebra is
invertible on @ so it can be defined as a determinant of a matrix. The relation between determinant
and an adjoint matrix is given in the following lemma.

Lemma 3.1.

Let the symmetrized max-plus algebra(S,D,&) with € as the null element, e as the unit element, a

positive integer n, and A € M, (S). Then the following statement holds:

det(4) ® E,,VA ® adj(A)V adj(A) ® A.

Poplin stated that if A € M, (S)and b € My, (S) then every solution on $® U §© from A ® xVb
consistent of det(4) @ xV adj(A) @ b [6]. Poplin's statement can be explained as follows. According
to Lemma 3.1., for A € M,,(S), det(4) ® E,Vadj(A) ® A, by the linear balance systems A ® xVb, so
(det(4) ® E,) @ xV(adj(Ad) @ A) ® x.

Furthermore, det(4) ® (E, ® x) Vadj(A) ® (A ® x) . Obtainable, det(4d) ® xVadj(A) ®Db.
Poplin stated that if it is assumed adj(A) ® b has an entry of S® U $© and det A has an inverse, then
a solution of Cramer's rule x? = (det4)® ! ® adj(A) ® b is a unique solution with x € S® U
$©[6]. While De Schutter and De Moor stated that the homogeneous linear balance systems 4 @
xVepx1 With A € M,,(S) has a nontrivial solution in $® U $© if and only if det A Ve [2]. De Schutter,
De Moor, and Poplin stated that the given linear balance systems have a solution of $® U §° ([21,[6]).
While in this paper, we expand the solution of linear balance systems that on S® U $© U S*. A matrix
A can be partitioned by rows and columns, as in the following definition.

Definition 3.2.

Let A € M,,(S). Partitions of the matrix A4 are defined as follows:

1) Ann is the (n — 1) X (n — 1) matrix obtained by deleting the n-th row and the n-th column of
A.

2) A,y is a matrix obtained from the n-th row but is not located on the n-th column of A.



3) A(nn) is a matrix obtained from the n-th column but is not located on the n-th row of A.
The following example illustrates Definition 3.2.
Example 3.3.
11 Q12 433
a a a
LetA = a;i aiz a;z . We have,
Qg1 Qa2 Q43

a1 g3 a1

A2y = (@31 @33), Ap1) = (A1 J3), Ay ) = <a21 azs) ,and A q) = <a31>.

az1 ass Q41

Lemma 3.4. [4]

Fora € S,x,b,d € Mp,»1(S), and C € M5, (S), we have this statement:if a @ xVb and C ®

xVdthenC ® bVa ® d.

Each element of the symmetrized max-plus algebra has an inverse to @), so it can be defined as the
determinant of a matrix over the symmetrized max-plus algebra. The determinant of a matrix over the
symmetrized max-plus algebra can be expressed as a determinant of the partition of the matrix, as in
the following lemma.

Lemma 3.5. [4]

For a matrix A € M,,(S)

Aom Aan) _ gora A dj(A A
A[n,n) A, > - Et( (n,n)) ® Apn e [nn) ® a ]( (n,n)) ® (n,n]

Consequently, the solution of linear balance systems A ® xV b can be developed for a square
matrix A as in Theorem 3.6.

Theorem 3.6.

Givend € M, (S),b € M1 (S). A solutionx € M,«1(S) of A @ xV b satisfies

det (4A) ® xV adj(A) ® b

det(4) = det

Proof:
A A
Suppose A = ( AE::; é::]>x = (2) and b = (g:) with Agny is @ (n—1) x (n—1)
matrix, Ay is @ 1 X (n — 1) matrix, and x;,b; is a (n — 1) X 1 matrix. Consequently, for the
linear balance systems A @ xV b we have
A(n,n) ® X1 @ A(n,n] ® XZVbl (1)
and
A[n,n) ® X1 69 Ann ® xZVbZ (2)
From (1), we have Apn) @ x,Vby © A(nn ® X, . According to Lemma 3.1. we have
det (Agn)) ® En-1V adj (A(nny) ® Agnny- Consequently
det (Agnmy) ® 1V adj (Anny) @ Ammy @ *1.
We have
det (A(n,n)) ® xlv adj (A(n.n)) ® bl e A(n,n] ® X2- (3)
We conclude from (2) that
A[n,n) ® X1Vb2 e Apn ® X2 (4)
According to Lemma 3.4., the form (3) and the form (4), we have
A[n,n) ® adj(A(n,n)) ® bl e A(n,n] ® XZVdet (A(n,n)) ® bZ e Ann ® X2.
Consequently,
det (A(n,n)) ® Ann S} A[n,n) ® adj(A(n,n)) ® A(n,n] ® XZVdet (A(n,n)) ® bz S} A[n,n) ®
adj(A(n,n)) ® bl (5)
According to Lemma 3.5. and the form (5), we have



A A A b
(n,n) (nn] (n,n) 1\ _ .
det <A > ® xﬂdet( b2> = (adj(Agnn) ® b)2

[nn) Ann A [n,n)
Finally, that det (4) ® xV adj(A) @ b. This completes the proof.
The next example shows determining the solution of the linear balance systems.
Example 3.7.

Let A ® xVb with 4 = (@12 62.3), andb = (925) We have det(4) =6 5,
1 ©2

(adj(A)®b); = det(ezs %,3) =08, and (adj(A)®b), = det (@ o 5) -oe.

According to Lemma 3.4., we have det (4) @ xV adj(A) ® b. In fact,© 5 Q xV (2) We have

xV (i) The value x satisfying A @ xVb is an element of S. This can be is indicated by taking

3 1 ©63 3 5° 2

1= () Wenae (5, 57)® () =(g5)"(5s)

Furthermore, we will discuss the existence of eigenvalues of a matrix over the symmetrized max-
plus algebra. The necessary and sufficient conditions of the linear balance systems over S has a
nontrivial solution, as stated in the following theorem.

Theorem 3.8.

GivenA € M, (S). The linear balance systems A @ xVe, x; has a nontrivial solution in S if and

only if det (A) Ve.

Proof:

(=) SupposeA = (‘:‘”'") A

A Q@ xVe,q , we have

_ 1 _ (& .
), X = (Xz)’ and € = (52)' From the linear balance systems

[nn) Ann

Amn Qx @ Amn ® x,Vey (6)
and
A[n,n) ® X1 @ Ann ® XZVSZ (7)
From (6) we have A ny) @ x,V O A n) ® 3.
According to Theorem 3.6., we have
det (A(n,n)) ® xlv S} adj (A(n.n)) ® A(n,n] ® X2 (8)
From (7) we have
A[n,n) ® x,V S Ann ® X2 (9)
According to Lemma 3.4., from (8) and (9) we have
A[n,n) RO adj (A(n.n)) ® A(n,n] ® XZV S} Ann ® X2 ® det (A(n,n))
The result is
det (A(n,n)) ® Ann e A[n,n) ® adj (A(n.n)) ® A(n,n] ® xzv8 (10)
Now, according to Lemma 3.5., from (10) we have
det <A<n.n> A

[nn) Ann

>®x2V£ (11)

Let x is a nontrivial solution, it means that x is not balance with &, and because of x = (xi),

without loss of generality, we can be assume that x, is not balance with €. As a result of (11) we
have det (4)Ve .

(<)Suppose A @ xVe has only the trivial solution, which is xVe. As a result, the reduced echelon
form of a matrix A does not have a row that balance with ¢, so rank(4) = n. This means that the
matrix A is invertible, so det(A) is not in balance with €. The result shows that there is a
contradiction with the previous result. Thus, the linear balance systems A @ xVe has a nontrivial
solution.

The eigenvalues of a matrix in the symmetrized max-plus algebra are defined as follows.



Definition 3.9.

Let A € M,,(S). A € S is called eigenvalues of A if there is v € M1 (S), v is not in balance with

€nx1 such that A @ vVA @ v. The vector v is called the eigenvectors of A corresponding to A.

Furthermore, the characteristics form of a matrix in the symmetrized max-plus algebra is given in
Definition3.10.

Definition 3.10. [2]

Let A € M,,(S). The characteristic form of A is defined as det (A © 1 ® E,) Ve .

According to Theorem 3.8. and Definition 3.10, the following necessary and sufficient conditions
developed eigenvalues of a matrix in the symmetrized max-plus algebra.

Theorem 3.11.

LetA € M, (S). Scalar A € S is an eigenvalue of A if and only if Asatisfies the characteristic form

det(AB© AR E, )Ve.

Proof:

(=)Sincel € S is an eigenvalue of 4, from Definition 3.9., for A @ vVA & v, we have that A @

VWARE,Qv, or AQ E, ® VWA Q v. Consequently, (1 Q E, v O A Q v )Ve, so we have

(A Q® E, © A) ® vVe. Consequently, according to Theorem 3.8., we have det (A © 1 Q E,, )Ve.

(&)SinceA satisfies the characteristic form det (A © 1 @ E,, )Ve, so according to Theorem 3.8.,

there exists the linear balance systems(4 © 1 Q E,, ) Q vVe, 4 that have a nontrivial solution in

S. Consequently A @ vVA @ v, so according to Definition 3.9., 4 € S is an eigenvalue for A.

For an invertible matrix, we can show that & is not an eigenvalue, and conversely, as discussed on
Lemma 3.12.

Lemma 3.12.

A matrix A € M, (S) is invertible if and only if € is not an eigenvalue for A.

Proof:

(=) Consider 4 is an invertible matrix. Assume that € is an eigenvalue for 4, then 4 @ vVe Q v.

Consequently, A @ vVe. According to Theorem 3.8., det (4) Ve, so, we have 4 is not an invertible

matrix, and show that this leads to a contradiction. Thus ¢ is not an eigenvalue for A.

(&) Proof by contrapositive. Since A is not an invertible matrix, consequently det (4) Ve.

Furthermore, according to Theorem 3.8., because det (A) Ve so the linear balance systems A ®

v Ve, 1 has a nontrivial solution, or, equivalently A @ v Ve @ v. Thus ¢ is an eigenvalue for A.

This completes the proof.
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