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Preface 

Organized by Beijing Jiaotong University, the 2020 International Symposium on 

Automation, Information and Computing (!SAIC 2020) was held successfully online 

from December 2nd-4th, 2020. ISAIC 2020 was primarily scheduled to be held in 

Beijing, China from 2nd to 4th December. However, due to the COVID-19, it had to 

be changed to virtual model. The technical program comprised one plenary session 

with 8 plenary speeches (40 minutes for each including 3-5 minutes of Q&A), 10 

parallel oral sessions including 27 invited speeches (25 minutes for each including 3-5 

minutes of Q&A) and 88 online live presentations (15 minutes for each including 3-5 

minutes of Q&A), 44 pre-recorded video presentations (15-20 minutes) and 22 

e-poster presentations. 

The ISAIC conference series aims to provide an academic platform for researchers 

and scholars to present and discuss their latest findings about automation, information 

and computing. lSAIC 2020 gathered over 220 participants from 39 different 

countries and areas. The main subjects of the conference were artificial intelligence, 

electronic and electric systems, information communication technology, information 

security, mathematics and system engineering. 

This volume records the proceedings of !SAIC 2020 and contains 186 manuscripts 

that in accordance with the Journal's Peer Review Policy were strictly selected based 

on originality, significance, relevance and contribution to the area after being 

peer-reviewed. 

The Organizing Committee would like to thank all the authors who contributed to 

ISAIC 2020 and also the Technical Program Committee members and reviewers who 

gave their valuable comments and suggestions for improving the manuscripts. 

The 2021 2nd International Symposium on Automation, Information and Computing 

(ISAIC 2021) will be held in Beijing, China December 3rd-6th, 2021. Everybody is 

welcome to submit papers to ISAIC 2021 . More information is available at the 

conference website: https://www .isaic-conf.com/. 
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A Note on Eigenvalue of Matrices over The Symmetrized 

Max-Plus Algebra 

Gregoria Ariyanti* 

Department of Mathematics Education, Widya Mandala Surabaya Catholic University, 

Indonesia 

*Email: ariyantigregoria@gmail.com 

Abstract. Max-plus algebra is the structure that doesn't have an inverse of additive. Therefore, 

there exists an equation that doesn't have a solution. For example, equation 3⊕𝑥=2 has no 

solution because there is no 𝑥  such that max(3,𝑥 ) = 2.The max-plus will have an inverse 

element of addition if that structure is extended to the symmetrized max-plus algebra. The 

expansion into a larger system is the same as the expansion of the natural number into an 

integer number.This paper describes the necessary or sufficient condition of the eigenvalue of 

matrices over the symmetrized max-plus algebra using the linear balance systems A⊗x∇ b  

with ∇ as a balance relation. 

1. Introduction 

In the max-plus algebra ℝ𝜀, there is a linear equation system one of which form 𝐴 ⨂ 𝑥 = 𝑏. Farlow 

stated that the greatest subsolution of linear system 𝐴 ⨂ 𝑥 = 𝑏 is the largest vector 𝑥 such that 𝐴⨂𝑥 ≤
𝑏 denoted by 𝑥∗(𝐴, 𝑏)[1]. The greatest subsolution is not necessarily a solution of 𝐴 ⨂ 𝑥 = 𝑏, so that 

the linear system does not necessarily have a solution. Therefore, the greatest subsolution is not a 

sufficient condition for the solution of a linear system over max-plus algebra. 

Each element in ℝ𝜀 does not have an inverse of the ⊕, so it can not be defined as a determinant on 

max-plus algebra. Whereas, every element in the symmetrized max-plus algebra has an inverse to ⨁, 

so it can be defined as a determinant which can then be used in determining the solution of a linear 

system over the symmetrized max-plus algebra, especially for a square matrix.  

With the limitations in ℝ𝜀, which does not have an inverse element in ⊕, so ℝ𝜀 extended into the 

set 𝕊  that divided into three parts, they are 𝕊⨁, 𝕊⊖ ,and 𝕊• . Thus, the linear systems over the 

symmetrized max-plus algebra do not have the equation form but the balanced form. Therefore, the 

linear systems over 𝕊 have the form 𝐴 ⊗ 𝑥∇𝑏 with 𝐴 ∈ 𝑀𝑚×𝑛(𝕊), 𝑏 ∈ 𝑀𝑚×1(𝕊), 𝑥 ∈ 𝑀𝑛×1(𝕊), and 

∇ as a balance relation. Furthermore, the linear system is called Linear Balance Systems. The purpose 

of this paper is to determinethe necessary or sufficient condition of the eigenvalue of matrices over the 

symmetrized max-plus algebra using the linear balance systems  A⊗x∇ b.  

In this paper, we will mainly concern linear balance systems over the symmetrized max-plus, 

especially the homogeneous linear systems. We show that the solution of linear balance systems on 

𝕊⨁ ∪ 𝕊⊖ ∪ 𝕊•  is given by the partitioned matrix. Some information about symmetrized max-plus 

algebra is given in section 2. In Section 3, we discuss the existence of the eigenvalue of matrices over 

the symmetrized max-plus algebra. The necessary or sufficient conditions of the linear balance 

systems over 𝕊 has a nontrivial solution is given in Section 3. 
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2. The Symmetrized Max-Plus Algebra 

Some basic facts about max-plus algebra and symmetrized max-plus algebra are given in this section 

based on [2-4], and [5]. Let ℝ denote the set of all real numbers and ℝ𝜀 = ℝ ∪ ∞ with 𝜀 = −∞ as the 

null element and 𝑒: =  0 as the unit element. For all 𝑎, 𝑏 ∈ ℝ𝜀 , the operations ⊕ and ⨂ are defined as 

follows: 

𝑎 ⊕ 𝑏 = 𝑚𝑎𝑥(𝑎, 𝑏) and 𝑎 ⊗ 𝑏 = 𝑎 + 𝑏 

and then, (ℝ𝜀 ,⊕,⊗) is called the max-plus algebra. 

Definition 2.1. [1,2,6] 

Let 𝑢 = (𝑥, 𝑦), 𝑣 = (𝑤, 𝑧) ∈ ℝ𝜀
2. 

1) Two unary operators ⊖ and (. )• are defined as follows:⊖ 𝑢 = (𝑦, 𝑥) and  𝑢• = 𝑢 ⊖ 𝑢. 

2) An element 𝑢 is called balances with 𝑣, denoted by 𝑢∇𝑣, if 𝑥 ⊕ 𝑧 = 𝑦 ⊕ 𝑤. 

3) A relation ℬ  is defined as follows : 

 (𝑥, 𝑦)ℬ(𝑤, 𝑧) if  {
(𝑥, 𝑦)∇(𝑤, 𝑧)𝑖𝑓𝑥 ≠ 𝑦𝑎𝑛𝑑𝑤 ≠ 𝑧

(𝑥, 𝑦) =  (𝑤, 𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.  

According to De Schutter and De Moor, ℬ  is an equivalence relation based on [1] and [2]. 

Therefore, we can form a factor set 𝕊 = (ℝℰ
2)/ℬ. The structure(𝕊,⊕,⊗)is called the symmetrized 

max-plus algebra. The addition and multiplication operations on 𝕊 are given as follows: 

(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ ⊕ (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ =  (𝑎 ⊕ 𝑐, 𝑏 ⊕ 𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   and 

(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ ⊗ (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ =  (𝑎 ⊗ 𝑐 ⊕ 𝑏 ⊗ 𝑑, 𝑎 ⊗ 𝑑 ⊕ 𝑏 ⊗ 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

for (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ ∈ 𝕊. The structure (𝕊, ⊕, ⊗) is semiring because of 𝕊 with ⊕ associative, 𝕊 with 

⊗ associative, and 𝕊 with ⊕ and⊗ satisfies the distributive properties [2]. 

Lemma 2.2. [1-3] 

Given(𝕊,⊕,⊗) be the symmetrized max-plus algebra. The following statements hold. 

1) The structure (𝕊,⊕,⊗)satisfies commutative. 

2) An element (𝜀, 𝜀)̅̅ ̅̅ ̅̅ ̅  is both a null element and an absorbent element. 

3) An element (𝑒, 𝜀)̅̅ ̅̅ ̅̅ ̅ is a unit element. 

4) The structure (𝕊,⊕,⊗)satisfies idempotent of addition.   

The structure 𝕊 consists of three classes, that are : 

1) 𝕊⊕ =  {(𝑡, 𝜀)̅̅ ̅̅ ̅̅ ̅|𝑡 ∈ ℝ𝜀}with(𝑡, 𝜀)̅̅ ̅̅ ̅̅ ̅  = {(𝑡, 𝑥) ∈ ℝℰ
2|𝑥 < 𝑡}.  

2) 𝕊⊖ =  {(𝜀, 𝑡)̅̅ ̅̅ ̅̅ ̅|𝑡 ∈ ℝ𝜀}with(𝜀, 𝑡)̅̅ ̅̅ ̅̅ ̅  = {(𝑥, 𝑡) ∈ ℝℰ
2|𝑥 < 𝑡}. 

3) 𝕊• =  {(𝑡, 𝑡)̅̅ ̅̅ ̅̅ |𝑡 ∈ ℝ𝜀}with(𝑡, 𝑡)̅̅ ̅̅ ̅̅  = {(𝑡, 𝑡) ∈ ℝℰ
2}. The elements of 𝕊• are called balanced. 

The set𝕊⊕is isomorphic with ℝ𝜀. Therefore, it is clear that for𝑎 ∈ ℝ𝜀can be shown with(𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅ ∈ 𝕊⊕. 

Furthermore, it is easily shown that for 𝑎 ∈ ℝ𝜀 we have : 

1) 𝑎 = (𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅where(𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅ ∈ 𝕊⊕. 

2) ⊖ 𝑎 =⊝ (𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅ =⊝ (𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝜀, 𝑎)̅̅ ̅̅ ̅̅ ̅where(𝜀, 𝑎)̅̅ ̅̅ ̅̅ ̅ ∈ 𝕊⊖. 

3) 𝑎• = 𝑎 ⊖ 𝑎 = (𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅ ⊝ (𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅ = (𝑎, 𝑎)̅̅ ̅̅ ̅̅ ̅ ∈ 𝕊•. 

Lemma 2.3. [1]   

Let 𝑎, 𝑏 ∈ ℝ𝜀 . We have 𝑎 ⊖ 𝑏 = (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ . 

Lemma 2.4. [1]    

Let (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ ∈ 𝕊 with 𝑎, 𝑏 ∈ ℝ𝜀. The following statements hold : 

1) If 𝑎 > 𝑏 then (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = (𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅. 

2) If  𝑎 < 𝑏 then (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = (𝜀, 𝑏)̅̅ ̅̅ ̅̅ ̅. 

3) If 𝑎 =  𝑏 then  (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = (𝑎, 𝑎)̅̅ ̅̅ ̅̅ ̅  or (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = (𝑏, 𝑏)̅̅ ̅̅ ̅̅ ̅. 

Proof: 

1) Let 𝑎 > 𝑏.We have that 𝑎⨁𝑏 = 𝑎 or 𝑎⨁𝜀 = 𝑎 ⊕ 𝑏. The result that (𝑎, 𝑏)∇(𝑎, 𝜀).  

Its mean that  (𝑎, 𝑏)ℬ(𝑎, 𝜀). Therefore (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ =  (𝑎, 𝜀)̅̅ ̅̅ ̅̅ ̅. 

2) Let 𝑎 < 𝑏 and we have that 𝑎⨁𝑏 = 𝑏 or 𝑎 ⊕ 𝑏 = 𝑏⨁𝜀. The result that (𝑎, 𝑏)∇(𝜀, 𝑏).  

Its mean that (𝑎, 𝑏)ℬ(𝜀, 𝑏). Therefore  (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ =  (𝜀, 𝑏)̅̅ ̅̅ ̅̅ ̅. 
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3) Let𝑎 = 𝑏and we have that 𝑎 ⊕ 𝑏 = 𝑏⨁𝑎. Its mean that(𝑎, 𝑏)∇(𝑎, 𝑎).  

So it follows that (𝑎, 𝑏)ℬ(𝑎, 𝑎). Thus, (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ =  (𝑎, 𝑎)̅̅ ̅̅ ̅̅ ̅.  

Corollary 2.5. [1]    

For  𝑎, 𝑏 ∈ ℝ𝜀,𝑎 ⊖ 𝑏 =  {

𝑎 , 𝑖𝑓𝑎 > 𝑏
⊖ 𝑏, 𝑖𝑓𝑎 < 𝑏
𝑎•, 𝑖𝑓𝑎 = 𝑏

  

Given 𝕊 be the symmetrized max-plus algebra, a positive integer 𝑛 and 𝑀𝑛(𝕊) be the set of all 

𝑛 × 𝑛  matrices over 𝕊. Operations ⨁ and ⊗ for matrix over the symmetrized max-plus algebra are 

given as follows :𝐶 = 𝐴 ⊕ 𝐵 ⟹ 𝑐𝑖𝑗 = 𝑎𝑖𝑗⨁𝑏𝑖𝑗   and  𝐶 = 𝐴⨂𝐵 ⟹ 𝑐𝑖𝑗 =
⊕
𝑙

𝑎𝑖𝑙⨂𝑏𝑙𝑗. 

The 𝑛𝑥𝑛 zero matrices over 𝕊 is 𝜀𝑛 with (𝜀𝑛)𝑖𝑗 = 𝜀 and an 𝑛𝑥𝑛 identity matrix over 𝕊 is 𝐸𝑛 with 

(𝐸𝑛)𝑖𝑗 = {
𝑒 , 𝑖𝑓𝑖 = 𝑗
𝜀 , 𝑖𝑓𝑖 ≠ 𝑗

 

Definition 2.6. 

The matrix 𝐴 ∈ 𝑀𝑛(𝕊) is invertible of 𝕊 if  𝐴 ⊗ 𝐵∇𝐸𝑛 and 𝐵 ⊗ 𝐴∇𝐸𝑛 for any 𝐵 ∈ 𝑀𝑛(𝕊). 

The properties of balance relation, i.e. the operator ∇, are given in the following lemma. 

Lemma 2.7. [2,7] 

1) For all 𝑎, 𝑏, 𝑐 ∈ 𝕊, 𝑎 ⊝ 𝑐∇𝑏 if and only if 𝑎∇𝑏 ⊕ 𝑐. 

2) For all 𝑎, 𝑏 ∈ 𝕊⊕ ∪ 𝕊⊖, 𝑎∇𝑏 ⇒ 𝑎 = 𝑏. 
Let 𝐴 ∈ 𝑀𝑛(𝕊). The homogeneous linear balance systems 𝐴 ⊗ 𝑥∇𝜀𝑛×1 has a nontrivial solution in 

𝕊⊕ or 𝕊⊖ if and only if det (𝐴) ∇𝜀𝑛×1. 

3. Main Results 

Poplin stated that the existence and uniqueness of a solution of the linear balance systems for a square 

matrix over the symmetrized max-plus algebra 𝕊⊕ ∪ 𝕊⊖ can be solved by Cramer's rule [6]. Solution 

with Cramer's rule can be done because every element of the symmetrized max-plus algebra is 

invertible on ⊕ so it can be defined as a determinant of a matrix. The relation between determinant 

and an adjoint matrix is given in the following lemma. 

Lemma 3.1. 

Let the symmetrized max-plus algebra(𝕊,⊕,⊗)  with 𝜀 as the null element, 𝑒 as the unit element, a 

positive integer 𝑛, and 𝐴 ∈ 𝑀𝑛(𝕊). Then the following statement holds: 

det(𝐴) ⊗ 𝐸𝑛∇A ⊗ adj(A)∇ adj(A) ⊗ A. 

Poplin stated that if 𝐴 ∈ 𝑀𝑛(𝕊)and 𝑏 ∈ 𝑀𝑛×1(𝕊) then every solution on 𝕊⊕ ∪ 𝕊⊖ from 𝐴 ⊗ 𝑥∇𝑏  

consistent of det(𝐴) ⊗ 𝑥∇ adj(A) ⊗ b [6]. Poplin's statement can be explained as follows. According 

to Lemma 3.1., for 𝐴 ∈ 𝑀𝑛(𝕊), det(𝐴) ⊗ 𝐸𝑛∇adj(A) ⊗ A, by the linear balance systems 𝐴 ⊗ 𝑥∇𝑏, so 

(det(𝐴) ⊗ 𝐸𝑛) ⊗ x ∇(adj(A) ⊗ A) ⊗ x.  

Furthermore, det(𝐴) ⊗ (𝐸𝑛 ⊗ x) ∇ adj(A) ⊗ (A ⊗ x) . Obtainable, det(𝐴) ⊗ x ∇ adj(A) ⊗ b . 

Poplin stated that if it is assumed adj(A) ⊗ b has an entry of 𝕊⊕ ∪ 𝕊⊖ and det A has an inverse, then 

a solution of Cramer's rule  𝑥𝑏 =  (det 𝐴)⊗−1 ⊗ 𝑎𝑑𝑗(𝐴) ⊗ 𝑏  is a unique solution with 𝑥 ∈ 𝕊⊕ ∪
𝕊⊖[6]. While De Schutter and De Moor stated that the homogeneous linear balance systems 𝐴 ⊗
𝑥∇𝜀𝑛×1 with 𝐴 ∈ 𝑀𝑛(𝕊) has a nontrivial solution in 𝕊⊕ ∪ 𝕊⊖ if and only if det 𝐴 ∇𝜀 [2]. De Schutter, 

De Moor, and Poplin stated that the given linear balance systems have a solution of 𝕊⊕ ∪ 𝕊⊖ ([2],[6]). 

While in this paper, we expand the solution of linear balance systems that on 𝕊⊕ ∪ 𝕊⊖ ∪ 𝕊•. A matrix 

𝐴 can be partitioned by rows and columns, as in the following definition. 

Definition 3.2. 

Let 𝐴 ∈ 𝑀𝑛(𝕊). Partitions of the matrix 𝐴 are defined as follows: 

1) 𝐴(𝑛,𝑛) is the (𝑛 − 1) × (𝑛 − 1) matrix obtained by deleting the 𝑛-th row and the 𝑛-th column of 

𝐴. 

2) 𝐴[𝑛,𝑛) is a matrix obtained from the 𝑛-th row but is not located on the 𝑛-th column of 𝐴. 
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3) 𝐴(𝑛,𝑛] is a matrix obtained from the 𝑛-th column but is not located on the 𝑛-th row of 𝐴. 

The following example illustrates Definition 3.2. 

Example 3.3.  

Let 𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

𝑎41 𝑎42 𝑎43

]. We have, 

𝐴[3,2) = (𝑎31 𝑎33), 𝐴[1,2) = (𝑎11 𝑎13), 𝐴(4,2) = (

𝑎11 𝑎13

𝑎21 𝑎23

𝑎31 𝑎33

) , and 𝐴(2,1] = (

𝑎11

𝑎31

𝑎41

). 

Lemma 3.4. [4] 

For 𝑎 ∈ 𝕊 , 𝑥, 𝑏, 𝑑 ∈ 𝑀𝑛×1(𝕊), and 𝐶 ∈ 𝑀𝑛×𝑛(𝕊), we have this statement:if 𝑎 ⊗ 𝑥∇ b and 𝐶 ⊗
𝑥∇ d then 𝐶 ⊗ 𝑏∇𝑎 ⊗ 𝑑. 

Each element of the symmetrized max-plus algebra has an inverse to ⊗, so it can be defined as the 

determinant of a matrix over the symmetrized max-plus algebra. The determinant of a matrix over the 

symmetrized max-plus algebra can be expressed as a determinant of the partition of the matrix, as in 

the following lemma. 

Lemma 3.5. [4]  

For a matrix 𝐴 ∈ 𝑀𝑛(𝕊) 

det(𝐴) = 𝑑𝑒𝑡 (
𝐴(𝑛,𝑛) 𝐴(𝑛,𝑛]

𝐴[𝑛,𝑛) 𝑎𝑛𝑛
) = 𝑑𝑒𝑡(𝐴(𝑛,𝑛)) ⊗ 𝑎𝑛𝑛 ⊝ 𝐴[𝑛,𝑛) ⊗ 𝑎𝑑𝑗(𝐴(𝑛,𝑛)) ⊗ 𝐴(𝑛,𝑛] 

Consequently, the solution of linear balance systems 𝐴 ⊗ 𝑥∇ b can be developed for a square 

matrix 𝐴 as in Theorem 3.6. 

Theorem 3.6. 

Given𝐴 ∈ 𝑀𝑛(𝕊), 𝑏 ∈ 𝑀𝑛×1(𝕊). A solution𝑥 ∈ 𝑀𝑛×1(𝕊)  of 𝐴 ⊗ 𝑥∇ b satisfies 

det (𝐴) ⊗ 𝑥∇ adj(A) ⊗ 𝑏 

Proof: 

Suppose 𝐴 = (
𝐴(𝑛,𝑛) 𝐴(𝑛,𝑛]

𝐴[𝑛,𝑛) 𝑎𝑛𝑛
) , 𝑥 =  (

𝑥1

𝑥2
),  and 𝑏 =  (

𝑏1

𝑏2
) , with  𝐴(𝑛,𝑛)  is a (𝑛 − 1) × (𝑛 − 1) 

matrix, 𝐴[𝑛,𝑛) is a  1 × (𝑛 − 1) matrix, and 𝑥1, 𝑏1  is a (𝑛 − 1) × 1 matrix. Consequently, for the 

linear balance systems 𝐴 ⊗ 𝑥∇ b we have 

𝐴(𝑛,𝑛) ⊗ 𝑥1 ⊕ 𝐴(𝑛,𝑛] ⊗ 𝑥2∇b1       (1) 

and 

𝐴[𝑛,𝑛) ⊗ 𝑥1 ⊕ 𝑎𝑛𝑛 ⊗ 𝑥2∇b2                                                (2) 

From (1), we have 𝐴(𝑛,𝑛) ⊗ 𝑥1∇b1 ⊖ 𝐴(𝑛,𝑛] ⊗ 𝑥2 . According to Lemma 3.1. we have 

det (𝐴(𝑛,𝑛)) ⊗ 𝐸𝑛−1∇ adj (𝐴(𝑛.𝑛)) ⊗ 𝐴(𝑛,𝑛). Consequently  

det (𝐴(𝑛,𝑛)) ⊗ 𝑥1∇ adj (𝐴(𝑛.𝑛)) ⊗ 𝐴(𝑛,𝑛) ⊗ 𝑥1. 

We have 

det (𝐴(𝑛,𝑛)) ⊗ 𝑥1∇ adj (𝐴(𝑛.𝑛)) ⊗ b1 ⊖ 𝐴(𝑛,𝑛] ⊗ 𝑥2.  (3)     

We conclude from (2) that 

𝐴[𝑛,𝑛) ⊗ 𝑥1∇b2 ⊖ 𝑎𝑛𝑛 ⊗ 𝑥2  (4)    

According to Lemma 3.4., the form (3) and the form (4), we have 

𝐴[𝑛,𝑛) ⊗ 𝑎𝑑𝑗(𝐴(𝑛,𝑛)) ⊗ 𝑏1 ⊖ 𝐴(𝑛,𝑛] ⊗ 𝑥2∇det (𝐴(𝑛,𝑛)) ⊗ 𝑏2 ⊖ 𝑎𝑛𝑛 ⊗ 𝑥2. 

Consequently, 

det (𝐴(𝑛,𝑛)) ⊗ 𝑎𝑛𝑛 ⊖ 𝐴[𝑛,𝑛) ⊗ 𝑎𝑑𝑗(𝐴(𝑛,𝑛)) ⊗ 𝐴(𝑛,𝑛] ⊗ 𝑥2∇det (𝐴(𝑛,𝑛)) ⊗ 𝑏2 ⊖ 𝐴[𝑛,𝑛) ⊗

𝑎𝑑𝑗(𝐴(𝑛,𝑛)) ⊗ 𝑏1        (5) 

According to Lemma 3.5. and the form (5), we have 
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𝑑𝑒𝑡 (
𝐴(𝑛,𝑛) 𝐴(𝑛,𝑛]

𝐴[𝑛,𝑛) 𝑎𝑛𝑛
) ⊗ 𝑥2∇𝑑𝑒𝑡 (

𝐴(𝑛,𝑛) 𝑏1

𝐴[𝑛,𝑛) 𝑏2
) = (𝑎𝑑𝑗(𝐴(𝑛,𝑛)) ⊗ 𝑏)

2
 

Finally, that det (𝐴) ⊗ 𝑥∇ adj(A) ⊗ 𝑏. This completes the proof. 

The next example shows determining the solution of the linear balance systems. 

Example 3.7. 

Let A ⊗ 𝑥∇𝑏 with 𝐴 = (
1 ⊖ 3

⊝ 2 2• ), and𝑏 = (
2

⊝ 5
). We have det(𝐴) =⊖ 5, 

(𝑎𝑑𝑗(𝐴)⨂𝑏)1 = 𝑑𝑒𝑡 (
2 ⊝ 3

⊝ 5 2• ) =⊖ 8, and (𝑎𝑑𝑗(𝐴)⨂𝑏)2 = 𝑑𝑒𝑡 (
1 ⊝ 2

⊝ 2 ⊝ 5
) =⊖ 6. 

According to Lemma 3.4., we have det (𝐴) ⊗ 𝑥∇ adj(A) ⊗ 𝑏. In fact,⊖ 5 ⊗ 𝑥∇ (
8
6

). We have 

𝑥∇ (
3
1

). The value 𝑥 satisfying 𝐴 ⊗ 𝑥∇ b  is an element of 𝕊. This can be is indicated by taking 

𝑥 = (
3
2•). We have (

1 ⊖ 3
⊝ 2 2• ) ⊗ (

3
2•) = (

5•

⊖ 5
) ∇ (

2
⊖ 5

). 

Furthermore, we will discuss the existence of eigenvalues of a matrix over the symmetrized max-

plus algebra. The necessary and sufficient conditions of the linear balance systems over 𝕊  has a 

nontrivial solution, as stated in the following theorem. 

Theorem 3.8. 

Given𝐴 ∈ 𝑀𝑛(𝕊). The linear balance systems 𝐴 ⊗ 𝑥∇εn×1 has a nontrivial solution in 𝕊 if and 

only if det (𝐴) ∇ε. 
Proof: 

(⟹) Suppose𝐴 = (
𝐴(𝑛,𝑛) 𝐴(𝑛,𝑛]

𝐴[𝑛,𝑛) 𝑎𝑛𝑛
), 𝑥 =  (

𝑥1

𝑥2
), and 𝜀 =  (

𝜀1

𝜀2
). From the linear balance systems 

𝐴 ⊗ 𝑥∇εn×1 , we have 

𝐴(𝑛,𝑛) ⊗ 𝑥1 ⊕ 𝐴(𝑛,𝑛] ⊗ 𝑥2∇ε1                                (6) 

and 

𝐴[𝑛,𝑛) ⊗ 𝑥1 ⊕ 𝑎𝑛𝑛 ⊗ 𝑥2∇ε2                          (7) 

From (6) we have 𝐴(𝑛,𝑛) ⊗ 𝑥1∇ ⊖ 𝐴(𝑛,𝑛] ⊗ 𝑥2.   

According to Theorem 3.6., we have 

det (𝐴(𝑛,𝑛)) ⊗ 𝑥1∇ ⊖ adj (𝐴(𝑛.𝑛)) ⊗ 𝐴(𝑛,𝑛] ⊗ 𝑥2        (8)  

From (7) we have 

𝐴[𝑛,𝑛) ⊗ 𝑥1∇ ⊖ 𝑎𝑛𝑛 ⊗ 𝑥2       (9)  

According to Lemma 3.4., from (8) and (9) we have 

𝐴[𝑛,𝑛) ⊗⊖ adj (𝐴(𝑛.𝑛)) ⊗ 𝐴(𝑛,𝑛] ⊗ 𝑥2∇ ⊖ 𝑎𝑛𝑛 ⊗ 𝑥2 ⊗ det (𝐴(𝑛,𝑛)) 

The result is 

det (𝐴(𝑛,𝑛)) ⊗ 𝑎𝑛𝑛 ⊖ 𝐴[𝑛,𝑛) ⊗ adj (𝐴(𝑛.𝑛)) ⊗ 𝐴(𝑛,𝑛] ⊗ 𝑥2∇ε       (10) 

Now, according to Lemma 3.5., from (10) we have 

𝑑𝑒𝑡 (
𝐴(𝑛,𝑛) 𝐴(𝑛,𝑛]

𝐴[𝑛,𝑛) 𝑎𝑛𝑛
) ⊗ 𝑥2∇ε    (11) 

Let 𝑥 is a nontrivial solution, it means that 𝑥 is not balance with ε, and because of 𝑥 =  (
𝑥1

𝑥2
), 

without loss of generality, we can be assume that 𝑥2 is not balance with ε. As a result of (11) we 

have det (𝐴)∇ε . 
(⟸)Suppose 𝐴 ⊗ 𝑥∇ε has only the trivial solution, which is x∇ε. As a result, the reduced echelon 

form of a matrix 𝐴 does not have a row that balance with ε, so 𝑟𝑎𝑛𝑘(𝐴) = 𝑛. This means that the 

matrix 𝐴  is invertible, so 𝑑𝑒𝑡(𝐴)  is not in balance with ε . The result shows that there is a 

contradiction with the previous result. Thus, the linear balance systems 𝐴 ⊗ 𝑥∇ε  has a nontrivial 

solution. 

The eigenvalues of a matrix in the symmetrized max-plus algebra are defined as follows. 
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Definition 3.9. 

Let 𝐴 ∈ 𝑀𝑛(𝕊). 𝜆 ∈ 𝕊 is called eigenvalues of 𝐴 if there is 𝑣 ∈ 𝑀𝑛×1(𝕊), 𝑣 is not in balance with 

εn×1  such that 𝐴 ⊗ 𝑣∇𝜆 ⊗ 𝑣. The vector 𝑣 is called the eigenvectors of 𝐴 corresponding to 𝜆. 
Furthermore, the characteristics form of a matrix in the symmetrized max-plus algebra is given in 

Definition3.10. 

Definition 3.10. [2] 

Let 𝐴 ∈ 𝑀𝑛(𝕊). The characteristic form of A is defined as det (𝐴 ⊖ 𝜆 ⊗ 𝐸𝑛) ∇ε .   
According to Theorem 3.8. and Definition 3.10, the following necessary and sufficient conditions 

developed eigenvalues of a matrix in the symmetrized max-plus algebra. 

Theorem 3.11. 

Let𝐴 ∈ 𝑀𝑛(𝕊). Scalar 𝜆 ∈ 𝕊  is an eigenvalue of 𝐴 if and only if 𝜆satisfies the characteristic form 

det (𝐴 ⊖ 𝜆 ⊗ 𝐸𝑛 )∇ε. 
Proof: 

(⟹)Since𝜆 ∈ 𝕊 is an eigenvalue of 𝐴, from Definition 3.9., for 𝐴 ⊗ 𝑣∇𝜆 ⊗ 𝑣, we have that 𝐴 ⊗
𝑣∇𝜆 ⊗ 𝐸𝑛 ⊗ 𝑣, or 𝜆 ⊗ 𝐸𝑛 ⊗ 𝑣∇𝐴 ⊗ 𝑣. Consequently, (𝜆 ⊗ 𝐸𝑛 ⊗ 𝑣 ⊖ 𝐴 ⊗ 𝑣 )∇ε, so we have 

(𝜆 ⊗ 𝐸𝑛 ⊖ 𝐴) ⊗ 𝑣∇ε. Consequently, according to Theorem 3.8., we have det (𝐴 ⊖ 𝜆 ⊗ 𝐸𝑛 )∇ε . 
(⟸)Since𝜆 satisfies the characteristic form det (𝐴 ⊖ 𝜆 ⊗ 𝐸𝑛 )∇ε, so according to Theorem 3.8., 

there exists the linear balance systems(𝐴 ⊖ 𝜆 ⊗ 𝐸𝑛 ) ⊗ 𝑣∇εn×1 that have a nontrivial solution in 

𝕊. Consequently 𝐴 ⊗ 𝑣∇𝜆 ⊗ 𝑣, so according to Definition 3.9., 𝜆 ∈ 𝕊 is an eigenvalue for 𝐴.  

For an invertible matrix, we can show that ε  is not an eigenvalue, and conversely, as discussed on 

Lemma 3.12. 

Lemma 3.12. 

A matrix 𝐴 ∈ 𝑀𝑛(𝕊) is invertible if and only if ε is not an eigenvalue for 𝐴. 

Proof: 

(⟹) Consider 𝐴 is an invertible matrix. Assume that ε is an eigenvalue for 𝐴, then 𝐴 ⊗ 𝑣∇ε ⊗ 𝑣. 

Consequently, 𝐴 ⊗ 𝑣∇ε. According to Theorem 3.8., det (𝐴) ∇ε, so, we have 𝐴 is not an invertible 

matrix, and show that this leads to a contradiction. Thus ε is not an eigenvalue for 𝐴. 

(⟸)  Proof by contrapositive. Since 𝐴  is not an invertible matrix, consequently det (𝐴) ∇ε . 

Furthermore, according to Theorem 3.8., because det (𝐴) ∇ε so the linear balance systems 𝐴 ⊗
𝑣 ∇εn×1 has a nontrivial solution, or, equivalently 𝐴 ⊗ 𝑣 ∇ε ⊗ 𝑣. Thus ε  is an eigenvalue for 𝐴. 

This completes the proof. 
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