F W, JP Journal of Algebra, Number Theory and Applications
\  © 2017 Pushpa Publishing House, Allahabad, India
http://www.pphmj.com

b LUBA) Y http://dx.doi.org/10.17654/NT039060949
Volume 39, Number 6, 2017, Pages 949-958 | SSN: 0972-5555

A NOTE OF THE LINEAR BALANCE SYSTEMSFOR
MATRIX XTHAT SATISFIES A® X ® AVA

Gregoria Ariyanti®, Ari Suparwanto? and Budi Surodjo?

'Department of Mathematics Education
Widya Mandala Catholic University Madiun
Madiun 63113, Indonesia

’Department of Mathematics
Gadjah Mada University
Y ogyakarta 55281, Indonesia

Abstract

A linear system over the symmetrized max plus agebra has form
A® xVb with V as a balance relation. The linear system is called
the linear balance systems. This paper describes the necessary and
sufficient condition of a solution of the linear balance systems with a
matrix X that satisfies A® X ® AVA. We obtain that if X is any
matrix satisfying A® X ® AVA, then A® xVb hasasolution if and
only if A® X ® bVvb, in which case the most genera solution is

x=X®b®(Eo X®A)®h, where h is ahitrary and Ae
Mmxn(S).
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1. Introduction

Each element in R, does not have an inverse of the @, so it cannot be

defined as a determinant on max plus algebra. Whereas, every element in the
symmetrized max plus algebra has an inverse to @, so it can be defined as a
determinant which can then be used in determining the solution of a linear
system over the symmetrized max plus algebra, especiadly for a square
matrix.

In the max plus algebra R, there is a linear equation system one of
which is in the foom A® x=Db. Farlow [3] stated that the greatest
subsolution of linear system A® x =b is the largest vector x such that
A® x < b denoted by x"(A, b). The greatest subsolution is not necessarily

asolution of A® x = b, so that the linear system does not necessarily have

solution. Therefore, the greatest sub solution is not a sufficient condition for
the solution of linear system over the max plus algebra.

With the limitationsin R, which does not have an inverse element in @,
so R, extended into the set S that divided into three parts, they are s®, s°,

and S°. Thus, the linear system over the symmetrized max plus algebra does
not have the equation form but the balance form. Therefore, the linear
systems over S hasthe form A® xVb with Ae M, ,1(S), b e Mpa(S),
X e Mp,q and V as a balance relation. Furthermore, the linear system is

called the linear balance systems. The purpose of this paper is to determine
the condition of a solution of the linear balance systems with a matrix X that
satisfies A® X ® AVA

2. The Symmetrized Max Plus Algebra

Let R denote the set of all real numbers and R, = R U {e} with
g:=—o as the null element and e:=0 as the unit element. For al
a, b e R, the operations ® and ® are defined as follows:
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a®b=max(a,b)and a®b=a+b

and then, (R, ®, ®) iscalled the max plus algebra.
Definition 2.1 [2,4]. Let u = (X, y), v= (W, z) € Rf
(1) Two unary operators © and (.)°* are defined as follows:

ou=(y, x)and u® = u® (cu).
(2) An element u is called balances with v, denoted by uVy, if
X®z=ydw
(3) A relation B isdefined asfollows:

(%, Y)V(w, z),if x = yand w = z,
(%, ¥) = (w, z), otherwise.

(%, y)B(w, z) if {

Because B is an equivalence reation, we have the set of factor

S = Rg/l’)’ and the system (S, ®, ®) is called the symmetrized max plus
algebra, with the operations of addition and multiplication on S are defined
asfollows:

(a,b)®@(c,d)=(a®c, bdd),

(aab)®(c,d)=(a®c®b®d,a®d®b®c)

for (a, b), (c, d) € S. The system (S, ®, ®) is a semiring, because (S, @)
is associative, (S, ®) isassociative, and (S, @, ®) satisfies both the left and
right distributive.

Lemma 2.2 [2]. Let (S, ®, ®) be the symmetrized max plus algebra.
Then the following statements hold:

(D) (S, @, ®) iscommutative,

(2) an element (¢, ¢) isanull element and an absorbent element,
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(3) an element (?s) isa unit element,
4 (S, ®, ®) isan additively idempotent.
Thesystem S isdivided into three classes, they are:
1) S® = {(t, &)t e R,} with (t, €) = {(t, X) € RZ|x < t},
2) S° = {(e, )|t e R,} with (g, 1) = {(x, t) e R?|x < t},
(3) S = {(t, )|t e R} with (t, t) = {(t, t) € R2}.
Because S® isomorphic with R, so it will be shown that for a € R, can

be expressed by (a, €) € S®. Furthermore, we have:

(1) a=(a ¢) with (a, &) e s®,

(2 ca=c(a €)= o(a ¢) = (¢, a) with (¢, @) e S,

Q) a’=aca=(a,e)o(ae)=(a )®@(s,a)=(a a) e S".

Let S be the symmetrized max plus agebra, a positive integer n and
M, (S) bethe set of all nx n matrices over S. The nx n zero matrix over

S is g, with (sn)ij =¢ and an nxn identity matrix over S is E, with
[En]ij = {: :: : : j The properties of balance relation, i.e., the operator V,
are given in the following lemma.

Lemma2.3[1,2].(1) Va,b,ce S, accvb < avb @ c,

(2 Va,be SPUS®, avh = a = b,

(3) Let Ae Mu(S). The homogeneous linear balance systems

A® XVep,q hasanontrivial solutionin S® or S if and only if det(A)Ve.

3. TheMain Result

In this section, we indicate how a technique that is used to obtain the
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necessary and sufficient condition for an existence of a general solution of a
non homogeneous linear balance systems for matrix X that satisfies
A® X ® AVA It will be shown how to construct the set of all matrices X
such that A® X ® AVA. The construction of the matrix X such that
A® X ® AVA for an arbitrary A e M p,.1(S) issimplified by transforming

A into a sequence elementary row and column operations, as shown in the
following theorem. The following theorems establish the existence of the
matrix X suchthat A® X ® AVA and its applicationsin solving equations.

Theorem 3.1. Let A € M1n(S) with rankg(A) = r. An nx m matrix
X satisfies A® X ® AVA if and only if

D
xwoel[5 flep
[0 o)

for D € M(n_r)x(m-r)(S), P € Mym(S) and Q € Mp,n(S) with P, Q are

product of the elementary matrices that satisfy

(2

€

E e
P®A®QV .
€

Proof. (<) Rewriting (2) as

-1 E, -1
AVP® T ® [ f SJ ® Q%
€ €

itiseasly verified that any X given by (1) satisfies

-1 E -1 E
A® X ® AVP® ®( d 8j®Q® ®Q( r ‘C’j
& S €

-1 E -1
®P®P® ®(r 8)®Q® .
e e
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Hence, A® X ® AVP® @ ¢l o®™
, Q¥ VA (=) Let A® X ®
e e

AVA Then, both A® X and X ® A satisfy
ADX ®ARXVA® X and X ® A® X ® AVX ® A

A® X and X ® A havethesamerank as A. Thus, both A® X and X ® A

E, =

are of theform ( j Therefore, there exists nonsingular R such that

€ €

1 EI’ e
R-® A® X ® RV

€ € €

j and Ql® X ® A® QV(Er Sj.
&

Thus R1® A®QVR 1@ A®@ X ® A® X ® A® Q. Hence,

1 Er S 1 Er S
R-® A® QV R ®A®RQ® .
€ € € €

It followsthat R ® A® Q isof theform

1 C ¢ C ¢ 1
R"® A®QV < AVR® ®Q
e € e €
ct ¢

with rankg (C) = rankg (A). Let P = (

] ® RL Then

-1 C E. C
P®A®QV(C 8}®R_1®R®[ SJ®Q_1®QV[ d j
€ € € € & €

Consider the matrix Q_1 ® X ® P~ We have

Er € -1 _ -1 -1
®Q OXRP VPRA®QR®Q " ®X®P .
& €

E E
30,( r 8)®Q_1®X®P_1VP®A®X®P_1V[ rof
e

j. Furthermore,
e

4 €

we have
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1 1o (B g)ona -1
Q ®X®P™® VQ " XQOP"®P® AR Q.
€ S

Consequently,

=) A E e
Q X®OP~® VQ " ® X ® A®QV .
€ € € €

We conclude from the previous forms, that is

E
olex® P—lv( f 8)
€ D

E
for arbitrary D. Finaly, XVQ®[ ' ;j@)P. This completes the
€

proof. O

According to Theorem 3.1, we give the following example:

Example3.2.Let A=| ¢ 1 ¢ 60|

e (D) ¢ (-2
We have P®A®Q=|¢ e ¢ (-1’ |V(Eze) with P=
0° ()° ¢ (-2

Ea(-1) ® Ez2(0) ® Ep(-1) ® Egyen) ® Eye(-2))

e ¢ € e ¢ ¢ e ¢ € e € ¢

P=le e ¢|®|le e ¢|®le -1 £|®| ¢ e ¢

e ¢ -1 e e e € € e el ¢ e
o(-2) e o(-2) e e
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and
0
e
Q= Eax-q) ®Bag-) = |
€
0 ¢ ¢ =2
e 0 ¢ -1
le & 0 e |
€ &£ ¢
Thereis

)
XVQ ® ® PVQ ®
&

m o M O

satisfies A® X ® AVA

m oM O o™

m o™ @O o™
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€ € 0 ¢ ¢ =2
e -1 e 0 ¢ €
®
0 I e ¢ O €
€ 0 € €& ¢ 0
€ 5(-2) & e
€ € -1 €
® PV

e -2 -2 -1
€ € € €

Theorem 33. Let Ae M n(S). If X is any matrix satisfying
A® X ® AVA, then A® xVb hasasolution if and only if A® X ® bVb,
in which case the most general solutionis x= X ®b® (E & X ® A)® h,

where hisarbitrary.

Pr oof.

A®X=A®[X®b®(E O X ® A)® h

~A®X®bDA®(EOS X®A®h

= (A®X®b)®A®hS (A® X ® A)® hvb® A

®ho A®hVb® (A® h)’.

Because we have (A ® h)* Ve, we conclude that A ® xVb. O
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Corollary 34. If X is any matrix satisfying A® X ® AVA, then
A® xVe has a solution if and only if the most general solution is
x=(E & X ® A)® h, wherehisarbitrary.

Proof. A®@x=A®(ES X®A)®h=A®ho A®X® A®h =

A®hc A®h. Because A®hc A®h=(A®h)” and (A® h)*Ve, we
conclude that A ® xVe. O
C®
Corollary 3.5. Vector xV(e yJ, where y is arbitrary, is the

y

general solution from the linear balance systems A ® XV, if and only if X

E
that has ( ' ;J ® P formwhere D is arbitrary, is any matrix satisfying
€

1 (E C
A® X ® AVA which AVP® ®( " j
e e

Proof. According to Corollary 3.4, we have

x:(E@X®A)®hv[|£@([ir E’))@Pj

S

Furthermore, we obtain

el ool lem=e(T e

E h
IfwetakeEz( ' Eg jandhz(hmr j then we obtain that x can be

€ m—r —r

presented as the following form:

T e )o(C Dol
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C h C®h
Hence, xV[8 °© j@ (h ' jv(@ m_rj. We now conclude that

e  Emr m—r hn-r
C®
xv[e yj’ wherey isarbitrary, isthe solution of A ® XxVe. O
y
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