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Abstract 

A linear system over the symmetrized max plus algebra has form 
bxA ∇⊗  with ∇ as a balance relation. The linear system is called            

the linear balance systems. This paper describes the necessary and 
sufficient condition of a solution of the linear balance systems with a 
matrix X that satisfies .AAXA ∇⊗⊗  We obtain that if X is any 
matrix satisfying ,AAXA ∇⊗⊗  then bxA ∇⊗  has a solution if and 

only if ,bbXA ∇⊗⊗  in which case the most general solution is 

( ) ,hAXEbXx ⊗⊗⊕⊗=  where h is arbitrary and ∈A  

( ).SnmM ×  
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1. Introduction 

Each element in εR  does not have an inverse of the ⊕, so it cannot be 

defined as a determinant on max plus algebra. Whereas, every element in the 
symmetrized max plus algebra has an inverse to ⊕, so it can be defined as a 
determinant which can then be used in determining the solution of a linear 
system over the symmetrized max plus algebra, especially for a square 
matrix. 

In the max plus algebra ,εR  there is a linear equation system one of 

which is in the form .bxA =⊗  Farlow [3] stated that the greatest 
subsolution of linear system bxA =⊗  is the largest vector x such that 

bxA ≤⊗  denoted by ( )., bAx∗  The greatest subsolution is not necessarily 

a solution of ,bxA =⊗  so that the linear system does not necessarily have 
solution. Therefore, the greatest sub solution is not a sufficient condition for 
the solution of linear system over the max plus algebra. 

With the limitations in ,εR  which does not have an inverse element in ⊕, 

so εR  extended into the set S  that divided into three parts, they are ,, �SS⊕  

and .•S  Thus, the linear system over the symmetrized max plus algebra does 
not have the equation form but the balance form. Therefore, the linear 
systems over S  has the form bxA ∇⊗  with ( ),SnmMA ×∈  ( ),1 S×∈ mMb  

1×∈ nMx  and ∇ as a balance relation. Furthermore, the linear system is 

called the linear balance systems. The purpose of this paper is to determine 
the condition of a solution of the linear balance systems with a matrix X that 
satisfies .AAXA ∇⊗⊗  

2. The Symmetrized Max Plus Algebra 

Let R  denote the set of all real numbers and { }ε=ε ∪RR  with 

−∞=ε :  as the null element and 0:=e  as the unit element. For all 
,, ε∈ Rba  the operations ⊕ and ⊗ are defined as follows: 
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( )baba ,max=⊕  and baba +=⊗  

and then, ( )⊗⊕ε ,,R  is called the max plus algebra. 

Definition 2.1 [2, 4]. Let ( ) ( ) .,,, 2
ε∈== Rzwvyxu  

(1) Two unary operators �  and ( )•.  are defined as follows: 

( )xyu ,=�  and ( ).uuu �⊕=•  

(2) An element u is called balances with v, denoted by ,vu∇  if 

.wyzx ⊕=⊕  

(3) A relation B  is defined as follows: 

( ) ( )zwyx ,, B  if 
( ) ( )
( ) ( )⎩
⎨
⎧

=
≠≠∇

otherwise.,,,
,andif,,,

zwyx
zwyxzwyx

 

Because B  is an equivalence relation, we have the set of factor 

B2
ε= RS  and the system ( )⊗⊕,,S  is called the symmetrized max plus 

algebra, with the operations of addition and multiplication on S  are defined 
as follows: 

( ) ( ) ( ),,,, dbcadcba ⊕⊕=⊕  

( ) ( ) ( )cbdadbcadcba ⊗⊕⊗⊗⊕⊗=⊕ ,,,  

for ( ) ( ) .,,, S∈dcba  The system ( )⊗⊕,,S  is a semiring, because ( )⊕,S  

is associative, ( )⊗,S  is associative, and ( )⊗⊕,,S  satisfies both the left and 

right distributive. 

Lemma 2.2 [2]. Let ( )⊗⊕,,S  be the symmetrized max plus algebra. 

Then the following statements hold: 

(1) ( )⊗⊕,,S  is commutative, 

(2) an element ( )εε,  is a null element and an absorbent element, 
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(3) an element ( )ε,e  is a unit element, 

(4) ( )⊗⊕,,S  is an additively idempotent. 

The system S  is divided into three classes, they are: 

(1) {( ) }ε
⊕ ∈|ε= RS tt,  with ( ) {( ) },,, 2 txxtt <|∈=ε εR  

(2) {( ) }ε∈|ε= RS tt,�  with ( ) {( ) },,, 2 txtxt <|∈=ε εR  

(3) {( ) }ε
• ∈|= RS ttt,  with ( ) {( ) }.,, 2

ε∈= Rtttt  

Because ⊕S  isomorphic with ,εR  so it will be shown that for ,ε∈ Ra  can 

be expressed by ( ) ., ⊕∈ε Sa  Furthermore, we have: 

(1) ( )ε= ,aa  with ( ) ,, ⊕∈ε Sa  

(2) ( ) ( ) ( )aaaa ,,, ε=ε=ε= ���  with ( ) ,, �S∈ε a  

(3) ( ) ( ) ( ) ( ) ( ) .,,,,, •• ∈=ε⊕ε=εε== Saaaaaaaaa ��  

Let S  be the symmetrized max plus algebra, a positive integer n and 
( )SnM  be the set of all nn ×  matrices over .S  The nn ×  zero matrix over 

S  is nε  with ( ) ε=ε ijn  and an nn ×  identity matrix over S  is nE  with 

[ ]
⎩
⎨
⎧

≠ε
=

=
.if,
,if,

ji
jie

E ijn  The properties of balance relation, i.e., the operator ∇, 

are given in the following lemma. 

Lemma 2.3 [1, 2]. (1) ,,,, cbabcacba ⊕∇⇔∇∈∀ �S  

(2) ,,, bababa =⇒∇∈∀ ⊕ �SS ∪  

(3)  Let ( ).SnMA ∈  The homogeneous linear balance systems 

1×ε∇⊗ nxA  has a nontrivial solution in ⊕S  or �S  if and only if ( ) .ε∇Adet  

3. The Main Result 

In this section, we indicate how a technique that is used to obtain the 
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necessary and sufficient condition for an existence of a general solution of a 
non homogeneous linear balance systems for matrix X that satisfies 

.AAXA ∇⊗⊗  It will be shown how to construct the set of all matrices X 
such that .AAXA ∇⊗⊗  The construction of the matrix X such that 

AAXA ∇⊗⊗  for an arbitrary ( )SnmMA ×∈  is simplified by transforming 

A into a sequence elementary row and column operations, as shown in the 
following theorem. The following theorems establish the existence of the 
matrix X such that AAXA ∇⊗⊗  and its applications in solving equations. 

Theorem 3.1. Let ( )SnmMA ×∈  with ( ) .rArank =⊕  An mn ×  matrix 

X satisfies AAXA ∇⊗⊗  if and only if 

(1) 

P
D

E
QX r ⊗⎟

⎠
⎞

⎜
⎝
⎛
ε

ε
⊗∇  

for ( ) ( )( ) ( )SS mmrmrn MPMD ×−×− ∈∈ ,  and ( )SnnMQ ×∈  with P, Q are 

product of the elementary matrices that satisfy 

(2) 

.⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗⊗ rE
QAP  

Proof. (⇐) Rewriting (2) as 

11 −− ⊗⊗ ⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

⊗∇ Q
E

PA r  

it is easily verified that any X given by (1) satisfies 

⎟
⎠
⎞

⎜
⎝
⎛
ε

ε
⊗⊗⎟

⎠
⎞

⎜
⎝
⎛

εε
ε

⊗∇⊗⊗
−− ⊗⊗

D
E

QQ
E

PAXA rr 11
 

.
11 −− ⊗⊗ ⊗⎟

⎠
⎞

⎜
⎝
⎛

εε
ε

⊗⊗⊗ Q
E

PP r  
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Hence, .
11

AQ
E

PAXA r ∇⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

⊗∇⊗⊗
−− ⊗⊗  (⇒) Let ⊗⊗ XA  

.AA∇  Then, both XA ⊗  and AX ⊗  satisfy  

XAXAXA ⊗∇⊗⊗⊗  and .AXAXAX ⊗∇⊗⊗⊗  

XA ⊗  and AX ⊗  have the same rank as A. Thus, both XA ⊗  and AX ⊗  

are of the form .⎟
⎠
⎞

⎜
⎝
⎛

εε
εrE

 Therefore, there exists nonsingular R such that 

⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗⊗⊗− rE
RXAR 1  and .1 ⎟

⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗⊗⊗− rE
QAXQ  

Thus, .11 QAXAXARQAR ⊗⊗⊗⊗⊗⊗∇⊗⊗ −−  Hence, 

.11 ⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

⊗⊗⊗⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗⊗ −− rr E
QAR

E
QAR  

It follows that QAR ⊗⊗−1  is of the form 

11 −− ⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

⊗∇⇔⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗⊗ Q
C

RA
C

QAR  

with ( ) ( ).ArankCrank ⊕⊕ =  Let .1
1

−
−

⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

εε
ε= RCP  Then 

.11
1

⎟
⎠
⎞

⎜
⎝
⎛

εε
∇⊗⊗⎟

⎠
⎞

⎜
⎝
⎛

εε
ε

⊗⊗⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

εε
ε∇⊗⊗ −−

− CE
QQ

C
RRCQAP r  

Consider the matrix .11 −− ⊗⊗ PXQ  We have 

.1111 −−−− ⊗⊗⊗⊗⊗∇⊗⊗⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

PXQQAPPXQ
Er  

So, .111 ⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗⊗⊗∇⊗⊗⊗⎟
⎠
⎞

⎜
⎝
⎛

εε
ε −−− rr E

PXAPPXQ
E

 Furthermore, 

we have  
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.1111 QAPPXQ
E

PXQ r ⊗⊗⊗⊗⊗∇⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

⊗⊗⊗ −−−−  

Consequently,  

.111 ⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

∇⊗⊗⊗∇⎟
⎠
⎞

⎜
⎝
⎛

εε
ε

⊗⊗⊗ −−− rr E
QAXQ

E
PXQ  

We conclude from the previous forms, that is 

⎟
⎠
⎞

⎜
⎝
⎛
ε

ε
∇⊗⊗ −−

D
E

PXQ r11  

for arbitrary D. Finally, .P
D

E
QX r ⊗⎟

⎠
⎞

⎜
⎝
⎛
ε

ε
⊗∇  This completes the     

proof. ~ 

According to Theorem 3.1, we give the following example: 

Example 3.2. Let .
101

01
012

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ε
εε
ε

=
•

•

�
�

A  

We have 
( ) ( )

( )
( ) ( )

( )ε∇
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−ε−
−εε
−ε−

=⊗⊗
•••

•

••

3
210
1
21

Ee
e

QAP  with =P  

( ) ( ) ( ) ( ) ( )( )211311203213 −−− ⊗⊗⊗⊗ �� EEEEE  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ε
εε
εε

⊗
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εε
ε−ε
εε

⊗
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ε
εε
εε

⊗
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−εε
εε
εε

=
e

e
e

e

e

ee
e

e
e

e
P

1
1

1 �
 

    

( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
ε−ε
εε−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

εε
εε
εε−

⊗
122

1
22 ��

e
e  
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and  

( ) ( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεε
εεε
εεε
−εε

⊗

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεε
εεε
−εε
εεε

=⊗= −−

0
0

0
20

0
0

10
0

241142 EEQ  

.

0
0

10
20

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεε
εεε
−εε
−εε

=   

There is 

( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεε
−−−
ε−ε
εε−

∇⊗

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

εεε
εε

εε
εε

⊗∇⊗⎟
⎠
⎞

⎜
⎝
⎛
ε

⊗∇
122

1
2

3

�

P
e

e
e

QP
E

QX  

satisfies .AAXA ∇⊗⊗  

Theorem 3.3. Let ( ).SnmMA ×∈  If X is any matrix satisfying 

,AAXA ∇⊗⊗  then bxA ∇⊗  has a solution if and only if ,bbXA ∇⊗⊗  

in which case the most general solution is ( ) ,hAXEbXx ⊗⊗⊕⊗= �  

where h is arbitrary. 

Proof. 

( )[ ]hAXEbXAxA ⊗⊗⊕⊗⊗=⊗ �  

( ) hAXEAbXA ⊗⊗⊗⊕⊗⊗= �  

( ) ( ) AbhAXAhAbXA ⊕∇⊗⊗⊗⊗⊕⊗⊗= �  

( ) .•⊗⊕∇⊗⊗ hAbhAh �  

Because we have ( ) ,ε∇⊗ •hA  we conclude that .bxA ∇⊗  ~ 
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Corollary 3.4. If X is any matrix satisfying ,AAXA ∇⊗⊗  then 

ε∇⊗ xA  has a solution if and only if the most general solution is 
( ) ,hAXEx ⊗⊗= �  where h is arbitrary. 

Proof. ( ) =⊗⊗⊗⊗=⊗⊗⊗=⊗ hAXAhAhAXEAxA ��  

.hAhA ⊗⊗ �  Because ( )•⊗=⊗⊗ hAhAhA �  and ( ) ,ε∇⊗ •hA  we 

conclude that .ε∇⊗ xA  ~ 

Corollary 3.5. Vector ,⎟
⎠
⎞

⎜
⎝
⎛ ⊗

∇
y

yC
x
�

 where y is arbitrary, is the 

general solution from the linear balance systems ,ε∇⊗ xA  if and only if X 

that has P
D

Er ⊗⎟
⎠
⎞

⎜
⎝
⎛
ε

ε
 form where D is arbitrary, is any matrix satisfying 

,AAXA ∇⊗⊗  which .
1

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗∇

−⊗ CE
PA r  

Proof. According to Corollary 3.4, we have 

( ) ⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ⊗⎟

⎠
⎞

⎜
⎝
⎛
ε

ε
∇⊗⊗= P

D
E

EhAXEx r��  

.
1

h
CE

P r ⊗⎥⎦
⎤
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⊗

−⊗  

Furthermore, we obtain 

.h
CE

Eh
CE

D
E

Ex rrr ⊗⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

εε
∇⊗⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

εε
⊗⎟

⎠
⎞

⎜
⎝
⎛
ε

ε
∇ ��  

If we take ⎟
⎠

⎞
⎜
⎝

⎛
ε

ε
=

−rm

r
E

E
E  and ,⎟

⎠

⎞
⎜
⎝

⎛=
−rm

r
h

h
h  then we obtain that x can be 

presented as the following form: 

.⎟
⎠

⎞
⎜
⎝

⎛⊗⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

εε
⎟
⎠

⎞
⎜
⎝

⎛
ε

ε
∇

−− rm

rr

rm

r
h

hCE
E

E
x �  
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Hence, .⎟
⎠

⎞
⎜
⎝

⎛ ⊗
∇⎟
⎠

⎞
⎜
⎝

⎛⊗⎟
⎠

⎞
⎜
⎝

⎛
ε
ε

∇
−

−

−− rm

rm

rm

r

rm h
hC

h
h

E
C

x
��

 We now conclude that 

,⎟
⎠
⎞

⎜
⎝
⎛ ⊗

∇
y

yC
x
�

 where y is arbitrary, is the solution of .ε∇⊗ xA  ~ 
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