T) turnitin Originality Report

77 Investigation of the influence of crosslinking activation methods on the physicochemical and Cu by Shella Santoso

From Similarity check (check paper Jakad SPS)

Processed on 01-Mar-2022 11:40 WIB ID: 1773584346 Word Count: 13097

sources:

1% match (publications)

1 Shella Permatasari Santoso, Alfin Kurniawan, Felycia Edi Soetaredjo, Kuan-Chen Cheng et al. "Eco-friendly cellulose-bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture", Cellulose, 2019

Similarity Index

13%

Similarity by Source

N/A 13%

N/A

Internet Sources:

Student Papers:

Publications:

1% match (publications)

2

3

Shella Permatasari Santoso, Artik Elisa Angkawijaya, Vania Bundjaja, Chang-Wei Hsieh et al. 'TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue", International Journal of Biological Macromolecules, 2021

1% match (publications)

Biming Liu, Yue Teng, Xiao Zhang, Shunlong Pan, Haixia Wu. "Novel immobilized polyoxometalate heterogeneous catalyst for the efficient and durable removal of tetracycline in a Fenton-like system", Separation and Purification Technology, 2022

1% match (publications)

4 Shella Permatasari Santoso, Artik Elisa Angkawijaya, Maria Yuliana, Vania Bundjaja et al. "Saponin-intercalated organoclays for adsorptive removal of β-carotene: Equilibrium, reusability, and phytotoxicity assessment", Journal of the Taiwan Institute of Chemical Engineers, 2020

1% match (publications)

5 Shella Permatasari Santoso, Shin-Ping Lin, Tan-Ying Wang, Yuwen Ting et al. "Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose", International Journal of Biological Macromolecules, 2021

1% match (publications)

"Cellulose-Based Superabsorbent Hydrogels", Springer Science and Business Media LLC, 2019

1% match (publications)

Shella Permatasari Santoso, Vania Bundjaja, Artik Elisa Angkawijaya, Chintya Gunarto et al. "One-step synthesis of nitrogen-grafted copper-gallic acid for enhanced methylene blue removal", Scientific Reports, 2021

6

7

< 1% match (publications)

Phuong Lan Tran-Nguyen, Artik Elisa Angkawijaya, Quoc Nam Ha, Yen Nhi Tran-Chuong et al. "Facile synthesis of superparamagnetic thiamine/Fe3O4 with enhanced adsorptivity toward divalent copper ions", Chemosphere, 2022

11

12

13

Ricardo Paulo Fonseca Melo, Eduardo Lins de Barros Neto, Maria Carlenise Paiva de Alencar Moura, Tereza Neuma de Castro Dantas et al. "Removal of Direct Yellow 27 Dye by Ionic Flocculation: The Use of an Environmentally Friendly Surfactant", Journal of Surfactants and Detergents, 2016

< 1% match (publications)

10 Mudasir Mudasir, Rangga Aji Baskara, Adhitasari Suratman, Kurnia Sri Yunita, Rini Perdana, Wika Puspitasari. "Simultaneous Adsorption of Zn(II) and Hg(II) lons on Selective Adsorbent of Dithizone-Immobilized Bentonite in the Presence of Mg(II) Ion", Journal of Environmental Chemical Engineering, 2020

< 1% match (publications)

Andreas Andreas, Zefanya Gerald Winata, Shella Permatasari Santoso, Artik Elisa Angkawijaya et al. "Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue", Journal of Molecular Liquids, 2021

< 1% match (publications)

Badruddoza, A.Z.M.. "Carboxymethyl-@b-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies", Journal of Hazardous Materials, 20110130

< 1% match (publications)

Gucek, A.. "Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions", Journal of Colloid And Interface Science, 20050601

< 1% match (publications)

Moghadese Mohammadian, Razieh Sahraei, Mousa Ghaemy. "Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag0 highly efficient sorbent for hard water softening", Chemosphere, 2019

15

16

17

18

< 1% match (publications)

"Supramolecular Gels", Wiley, 2021

< 1% match (publications)

Pimentel, P.M.. "Kinetics and thermodynamics of Cu(II) adsorption on oil shale wastes", Fuel Processing Technology, 200801

< 1% match (publications)

S. Akyil Erenturk, A. Kilincarslan Kaygun. "Removal of 210 Po from aqueous media and its thermodynamics and kinetics", Journal of Environmental Radioactivity, 2017

< 1% match (publications)

Sanna Hokkanen, Mika Sillanpää. "Nano- and microcellulose-based adsorption materials in water treatment", Elsevier BV, 2020

19

< 1% match (publications)

Cabuk, A.. "Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis", Chemical Engineering Journal, 20070701

21

< 1% match (publications)

Shan Gao, Tiantian Luo, Qi Zhou, Wenjun Luo, Haifeng Li, Luru Jing. "Surface sodium lignosulphonate-immobilized sawdust particle as an efficient adsorbent for capturing Hg 2+ from aqueous solution". Journal of Colloid and Interface Science, 2018

< 1% match (publications) 22

Ye Xiong, Lulu Xu, Chunde Jin, Qingfeng Sun. "Cellulose hydrogel functionalized titanate microspheres with self-cleaning for efficient purification of heavy metals in oily wastewater", Cellulose, 2020

< 1% match (publications)

23 Vania Bundjaja, Shella Permatasari Santoso, Artik Elisa Angkawijaya, Maria Yuliana et al. "Fabrication of cellulose carbamate hydrogel-dressing with rarasaponin surfactant for enhancing adsorption of silver nanoparticles and antibacterial activity". Materials Science and Engineering: C, 2020

< 1% match (publications)

Kurniawan, A.. "Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater", Ecological Engineering, 201106

< 1% match (publications)

Hameed, B.H.. "Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash", Chemical Engineering Journal, 20070915

< 1% match (publications)

Hiba M. Zalloum, Zakaria Al-Qodah, Mohammad S. Mubarak. "Copper Adsorption on Chitosan-Derived Schiff Bases", Journal of Macromolecular Science, Part A, 2008

27

< 1% match (publications)

M. Barathi, A. Santhana Krishna Kumar, N. Rajesh. "Efficacy of novel Al-Zr impregnated cellulose adsorbent prepared using microwave irradiation for the facile defluoridation of water", Journal of Environmental Chemical Engineering, 2013

29

< 1% match (publications)

Ana Sofia Ortega-Villarreal, Eugenio Hernández-Fernández, Israel López. "Synthesis of nanomaterials and compounds via microwave irradiation as a greener alternative", Elsevier

BV, 2021

< 1% match (publications)

Astrid Roxanna Moreno-Marenco, Liliana Giraldo, Juan Carlos Moreno-Piraján. "Adsorption of n-butylparaben from aqueous solution on surface of modified granular activated carbons prepared from African palm shell. Thermodynamic study of interactions", Journal of Environmental Chemical Engineering, 2020

< 1% match (publications)

30 Zhe Ling, Sheng Chen, Xun Zhang, Feng Xu. "Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis", Bioresource Technology, 2017

31

32

33

< 1% match (publications)

<u>Gunay, A. "Application of nonlinear regression analysis for ammonium exchange by natural</u> (<u>Bigadic</u>) clinoptilolite", Journal of Hazardous Materials, 20070930

< 1% match (publications)

<u>Jianzhong Zhu, Ying Ding, Shenglu Chen, Yang Cao. "Adsorption of Cu(II) onto three types of engineering materials in the presence of S,S-EDDS chelate: equilibrium, kinetics, and thermodynamics", Desalination and Water Treatment, 2014</u>

< 1% match (publications)

Shahidi, Ali, Nasim Jalilnejad, and Elham Jalilnejad. "A study on adsorption of cadmium(II) ions from aqueous solution using Luffa cylindrica", Desalination and Water Treatment, 2015.

34 <

< 1% match (publications)

Tongtong Wang, Gaoliang Li, Kaiqi Yang, Xiaoyuan Zhang, Ke Wang, Jinjun Cai, Jiyong Zheng. "Enhanced ammonium removal on biochar from a new forestry waste by ultrasonic activation: Characteristics, mechanisms and evaluation", Science of The Total Environment, 2021

< 1% match (publications)

Zhijing Liu, Chao Zhang, Ruigang Liu, Wushou Zhang, Hongliang Kang, Ning Che, Pingping Li, Yong Huang. "Effects of additives on dissolution of cellobiose in aqueous solvents", Cellulose, 2015

36

< 1% match (publications)

Wu, F.C.. "Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems", Chemical Engineering Journal, 20090801

paper text:

Journal of Environmental Chemical Engineering 10 (2022) 106971 Contents lists available at ScienceDirect Journal of Environmental Chemical Engineering journal homepage: www.elsevier.com/locate/jece Investigation of the influence of crosslinking activation methods on the physicochemical and Cu(II) adsorption characteristics of cellulose hydrogels

4Shella Permatasari Santoso a, b, *, 1, Artik Elisa Angkawijaya c

, 1, Vania Bundjaja b, Alfin Kurniawan a, Maria Yuliana a, Chang-Wei Hsieh d, Alchris Woo Go c, Kuan-Chen Cheng e, f, g, h, Felycia Edi Soetaredjo a, b, Suryadi Ismadji a, b a Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia b Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei 10607, Taiwan

4c Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei 10607, Taiwan d Department of Food Science and Biotechnology, National Chung Hsing University

5145 Xingda Rd., South Dist., Taichung 40227, Taiwan

е

5Institute of Food Science and Technology, National Taiwan University, #1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan f Institute of Biotechnology, National Taiwan University, #1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan g Department of

5Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan h Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan

ARTICLE INFO ABSTRACT Editor: Dr. GL Dotto Hydrogels represent an attractive soft material with promising applications in many fields. Conventional methods for hydrogel preparation typically involve heat curing either by water-bath (WB) heating or microwave Keywords: (MW) irradiation to facilitate crosslinking. However, a detailed investigation of the influence of WB- and MW- Cellulose hydrogel Epichlorohydrin mediated crosslinking process on the characteristics of hydrogels has been rarely reported. This work aims to Crosslinking evaluate the physicochemical properties of epichlorohydrin (ECH) crosslinked cellulose hydrogels prepared by Microwave irradiation WB and MW heating methods, including pore morphology, chemical composition, crystallinity, thermal stability, Water-bath heating and water absorption capacity. The results showed that MW heating could accelerate the crosslinking reaction Adsorption between cellulose and ECH to produce robust hydrogel, with a 3 min total irradiation time at 400 W compared to 2 h at 60 °C under conventional WB heating. The total utility cost to produce WBH is US\$ 0.052, which is 14 times higher than MWH (US\$ 0.004). The estimation of the total production cost of MWH on a large scale is US\$ 2.86 per kg. Moreover, the as-prepared MWH displayed outstanding performance in Cu(II) removal at 30 ∘C and pH 7, with a maximum adsorption capacity of 119 mg/g, respectively. The kinetic and equilibrium behaviors of Cu(II) ions on WBH and MWH were best described by pseudo-second order and Langmuir isotherm models, respectively. 1. Introduction Hydrogels (also referred to as superabsorbent polymers)

6are an important class of soft materials

that are constructed from three- dimensional (3D) linear or branched networks of crosslinked hydro- philic polymer chains, which are formed by either strong (i.e., covalent or ionic bonding) or weaker forces, such as van der Waals forces, hydrogen bonds, or hydrophobic interactions [1]. The high molecular weight and 3D network structure of hydrogel allow this material

6to absorb and store large volumes of water

(~100 times its dry weight) within its swollen matrix without dissolving [2,3], which is associated with the presence of abundant hydrophilic moieties, such as hydroxyl (- OH), carboxyl (- COOH), and amino (-NH2)

groups [4]. Due to their exceptional swelling behavior, hydrogel materials have been widely applied in several areas,

15such as agriculture, biomedical, personal care products, therapeutic delivery, and water

treatment [1,2,5].

6Hydrogels can be prepared from both synthetic

(e.

6g., poly(acrylic acid), polyacrylamide, poly(vinyl alcohol

), etc.) and natural polymer * Corresponding author at: Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia.

1E-mail addresses: shella_p5@yahoo.com

, shella@ukwms.ac.id (S.P. Santoso). 1 These authors have an equal contribution to this article. https://doi.org/10.1016/j.jece.2021.106971 Received 25 August 2021; Received in revised form 9 November 2021; Accepted 5 December 2021 Available online 8 December 2021 2213-3437/© 2021 Elsevier Ltd. All rights reserved. Fig. 1.

15Illustration of the formation mechanism of hydrogel from cellulose

fibers in the presence of ECH crosslinker. materials (e.g., cellulose and its derivatives, chitosan, alginate, etc.). In this regard, natural polymers are preferred over synthetic ones to fulfill the needs for renewable and sustainable technological materials, along with their inherent advantages, such as high abundance, low-cost, nontoxicity, biodegradability, and intrinsic biocompatibility [6–8]. Cellulose is one of the most commonly used polymer precursors to prepare hydrogels, due to its renewability and wide availability as a waste product of forestry and agricultural industries (e.g., bagasse, rice husk, corncob, etc.). In addition to its high natural abundance, the facile chemical modification of cellulose structure makes it adaptable for the preparation of a wide range of functional hydrogels with enhanced mechanical properties [9]. Cellulose hydrogels are traditionally prepared via the

1 dissolution of cellulose fibers in a hydrotropic alkali/urea aqueous solution

at low temperatures, typically below - 10 °C. In this regard, the

6dissolution of cellulose in common solvents

6due to the strong hydrogen bond network within crystalline cellulose

fibrils [10,11]. The addition of alkali can facilitate the break- down of the hydrogen bonds between the cellulose monomers, thus enabling cellulose dissolution in water. Meanwhile, urea as a hydro- tropic agent plays an important role in interacting the hydrophobic moiety of cellulose with surrounding water molecules through van der Waals forces, thereby increasing the solubility of cellulose [11–13]. Once solubilized, the formation of 3D cellulose networks (or the hydrogel) is induced by adding crosslinker molecules (e.g., epichloro- hydrin) and subsequently followed by thermal activation. Over the past few years, microwave (MW) irradiation has attracted considerable attention as an alternative energy source for rapid, selective, and ho- mogeneous heating

28compared to the conventional heating modes by thermal conduction and convection

mechanisms. More recently, the MW heating technique has been adopted in hydrogel preparation [14–17], which

6can significantly reduce the time and energy consumption of

the crosslinking process without compromising the

29physical and chemical properties of the final product. However, the influence of the

MW-assisted

6crosslinking reaction of cellulose with epichlorohydrin (ECH

) on the physicochemical characteristics of the resultant hydrogels has remained relatively unexplored. Herein, we report a detailed study of the effect of two thermal acti- vation methods, namely water bath (WB) heating and MW irradiation on the physicochemical properties, as well as swelling behavior of ECH-crosslinked cellulose hydrogels. The

6physical and chemical character- istics of the resulting hydrogels

were examined by various techniques, such as scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photo- electron spectroscopy (XPS), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). Moreover, techno-economic analysis and life cycle cost assessment of the hydrogels are presented. Further- more, the application potential of the resultant hydrogel as an eco- friendly and adsorbent was evaluated for copper ion (

16**Cu(II)) removal from** an **aqueous solution**. Detailed assessment of **the kinetics**, equilib- rium, **and**

mechanism of Cu(II) adsorption by the hydrogel sorbents is also provided. Fig. 2. Schematic illustration of (a) WB heating and (b) MW irradiation on cellulose gel solution.

232. Materials and methods 2.1. Materials Teabag filter paper (TFP) was

employed as the cellulose fiber source

and obtained

11 from a local distributor in Surabaya, East Java, Indonesia

1Sodium hydroxide (NaOH, 96% purity) was obtained from Yakuri Pure

Chemicals Co., Ltd. Urea (CH4N2O, 98% purity), ECH (C3H5ClO, 98% purity), hydrochloric acid (HCl, 37%), 1,5-diphenylcarbazide (C13H14N4O, 98% purity), ethanol (C2H6O, 95% purity), and copper chloride dihydrate (CuCl2.2H2O, 99% purity) were

6purchased from Sigma Aldrich, Singapore and used as received without further purifi- cation. All aqueous solutions were prepared using ultrapure water

with a resistivity of 18.2 MΩ·cm. 2.2. Preparation of cellulose hydrogels TFP as the cellulose source

1was soaked in water overnight and then shredded into pulp using a blender. Subsequently, the shredded pulp was collected and oven-dried

 $(105 \circ C)$ for 24 h. Dried pulp was then pretreated using a 0.5 M NaOH aqueous solution to remove impurities and thoroughly washed with water,

4followed by drying in an oven at 105 °C overnight. The

1dried pulp was finely pulverized using a blender to

reduce the fiber particle size and stored in a desiccator until further use. Cellulose hydrogels were prepared by adding 3 g of pretreated TFP pulp to a precooled ($-12 \circ C$) aqueous solution containing NaOH (7 g), urea (12 g), and water (81 g). The mixture was then vigorously stirred for 30 min and the resultant

23solution was centrifuged at 3000 rpm for 3 min to

separate any undissolved material. Subsequently, 5 mL of ECH was added to the cellulose solution, stirred for 20 min, and then poured into a 10-cm Petri dish. The dish was

1then placed in a thermostatically controlled water-bath (Memmert WNB-45) at 60 C for 20 min to • facilitate the

crosslinking of cellulose polymer chains. Meanwhile, the MW-assisted crosslinking process was carried out using a domestic microwave-oven (Sampo RE-0711) operating at 400 W by applying three consecutive heating for 1 min each (3 min of total irradiation time). In the present experiments, the temperature and time for WB heating were selected based on a set of pre-experimental runs. It was found that a shorter heating time resulted in the formation of hydrogels that were not robust enough for molding, likely due to low degrees of crosslinking. After crosslinking, all the hydrogel samples were thor- oughly washed with water to remove unreacted crosslinkers. The hydrogel samples were then cut into ~1 cm3 sized cubes with a razor blade and lyophilized overnight. Finally, the lyophilized samples were stored in a desiccator until further use. The as-prepared hydrogels by WB heating and MW irradiation are designated as WBH and MWH, respectively. 2.3. Characterizations of the hydrogels Scanning electron microscopy (

2SEM) analysis was performed using a JEOL JSM-6500 field emission SEM

at 10 kV. Prior to imaging, the

5samples were sputter-coated with a thin Pd/Pt film using a JEOL JEC- 3000FC auto fine coater

. Compositional analysis was performed using an Oxford energy dispersive X-ray spectrometer (EDS) attached to the SEM and the spectra were analyzed by the Oxford INCA software.

4X-ray diffraction (XRD) patterns were collected using a Bruker D2 Phaser X-ray diffractometer (XRD) equipped with a Cu K α radiation source (λ = 0.15418 nm

).

1Surface functional groups of the samples were analyzed

Fig. 3. Morphology of ECH crosslinked cellulose hydrogels. (a, b) Top-view and (c, d) cross-section SEM images of WBH (left) and MWH (right) along with cor- responding EDS elemental maps of C, O, N, and Na. The scale bars represent 100 μ m. AFM topography images of (e) WBH and (f) MWH. The scan area for both images is 90 μ m × 90 μ m. using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The transmission

30spectra were acquired in the wave- number range of 4000-500 cm- 1

2using a Bio-Rad FTS-3500 GX

spec- trometer with the spectral

2resolution of 4 cm 1. Thermogravimetric – analysis (TGA) was performed by a TA instruments TGA 550

22X- $\circ \circ$ ray photoelectron spectroscopy (XPS) measurements were conducted on a Thermo VG Scientific ESCALAB 250 spectrometer equipped with a monochromatic AI K α X-ray source

(hv 1486.6 eV) and the obtained spectra were analyzed with the XPSPEAK41 software. Binding energies were calibrated using the C 1s peak of adventitious carbon at 284.5 eV. Atomic force microscopy (AFM) characterization was carried out using a Bruker Dimension ICON AFM system operating in mode and the data were processed by NanoScope Analysis software. Zeta potential mea- surements were carried out according to a previously reported proced- ure from Ibrahim et al. [18].

20The equilibrium swelling ratio of the hydrogel samples was determined by

a gravimetric method following the procedure described in our previous work [11]. The Cu content in the postsorption hydrogel samples was analyzed by

8inductively coupled plasma optical emission spectrometry (ICP-OES; Thermo Scientific iCAP 7000). 2.4

. Cu(II) uptake experiments The effects of pH and initial concentration on the removal efficiency of Cu(II) ions by WBH and MWH were studied using the batch method at room temperature (~30 C). For the pH study, a series of glass-stoppered ∘ Erlenmeyer flasks containing 25 mL of CuCl2 solution (200 mg/L) was prepared and the pH

24was adjusted to between 2 and 9 by either 0.1 N NaOH or HCI aqueous solutions. Subsequently, 0.2 g of hydrogel was added into each solution and

the mixture was incubated at room tem- perature under gentle shaking (

33100 rpm) for 8 h to reach equilibrium. The

19effect of initial Cu(II) concentration was evaluated in the concen- tration range of 5–500 mg/L

with an adsorbent dosage of 0.2 g and the initial pH value of 7. The residual Cu(II) concentrations in the solution were measured using a spectrophotometric method according to the procedure described by Turkington and Tracy [19]. The

14percentage removal and the equilibrium adsorption capacity (Qe

)

14were calculated according to Eqs. (1) and (2), respectively. %Cu removal

= C0 – Cf × C0 100% (1) Qe = C0 – Ce m ×V (2) Fig. 4. Characterizations of the as-prepared WBH and MWH. (a) ATR-FTIR spectra. (b) XRD patterns. The black vertical bars indicate the Bragg reflection peaks of cellulose I structure (JCPDS card no. 03–0226). The solid circle and star symbols represent the Bragg reflections of cellulose I and cellulose II in the hydrogel samples, respectively. (c) TGA traces recorded in N2 atmosphere and the corresponding DTG curves (inset). (d) Swelling ratio in pure water at room temperature. Error bars represent standard deviations of the mean from triplicate measurements. Fig. 5. (a) XPS survey and high-resolution (

12b) C 1s and (c) O 1s

spectra of WBH and MWH together with the curve-fitting results.

13where C0, Cf, and Ce represent the initial, final, and equilibrium concentrations of Cu(II) ions in solution (mg/L), respectively, V is the volume of the metal solution (L), and m is the mass of the sorbent (g). For the

kinetic experiments, the same procedure as described above for the adsorption equilibrium (C0

14200 mg/L, pH 7, and

adsorbent dos- = age 0.2 g) was followed except that aliquots of the metal solution = were withdrawn at specified time intervals for analysis. The adsorption capacity at time t (Qt) was determined by the following equation: $Qt = C0 - Ct \text{ m } \times V$ (3) where Ct is the concentration of Cu(II) ions in solution at a certain time (mg/L). The distribution coefficient (Kd), which reflects the affinity of the sorbent material toward heavy metal ions [20],

25was calculated from the equation (V[(C0 – Ce)/Ce])/m where both symbols and

units are the same as described above. Table 1 Utility costs in the laboratory-scale productiona of cellulose hydrogels by WB heating and MW irradiation methods. WB heating MW irradiation Electricity Power (W) Heating time (min) Electricity costb (US\$/kWh) Total electricity cost (US\$/batch) Water Water consumption (m3) Water costb (US\$/m3) Total water cost (US\$/batch) Total utility cost (US\$/batch) 2000 20 0.079 0.053 0.041 0.074 0.003 0.056 1100 3 0.079 0.004 – 0.074 – 0.004 a A single batch process afforded about 2.3 g of wet hydrogel or 1.67 g of dry gel after lyophilization. b Indonesia electricity and water prices as of March 2021, accessed from www. GlobalPetrolPrices.com with currency exchange rate 1 US\$ = 14,163.73 IDR (https://www.globalpetrolprices.com/Indonesia/, accessed date 27 October 2021). 3. Result and discussion 3.1. Formation mechanism of the WBH and MWH hydrogels The use of 7–9 wt% NaOH solution in combination with 2–4 wt% urea is known to facilitate the dissolution of cellulose [21]. However, repeated freezing-thawing cycles are required to reach a high degree of dissolution, making it impractical. Cai et al. have reported a way to diminish this drawback by altering the

35mass ratio of NaOH:urea:water to 7:12:81

–Using this ratio, the dissolution of cellulose can be carried out without the need for freezing-thawing cycles. The dissolution of cellu- lose can occur rapidly by mixing the cellulose into the precooled solvent (i.e., below – $10 \circ C$) at ambient temperature [22]. The

35mass ratio of NaOH:urea:water of 7:12:81

was adopted to prepare the cellulose so- lution in this work. The illustrative mechanism of cellulose hydrogel formation is pre- sented in Fig. 1. The process of cellulose hydrogel preparation was initiated by dissolving cellulose fiber in precooled hydrotropic solution mixture (i.e., alkali/urea, the alkali is commonly NaOH or LiOH) [21–27]; the use of NaOH is often more preferable owing to its low-cost and low toxicity [28]. The dissolution of cellulose occurs as the hydrogen bonds at the intra- and intermolecular cellulose chain are disrupted (Fig. 1, step i). The hydrogen bond disruption happened due to the formation of new hydrogen bonding between hydroxyl groups of cellulose and hydrotropic molecules of solvents (Fig. 1, step ii) [23,29, 30]. As a capping agent, the urea attaches to the hydrophobic molety of cellulose and forms a hydrogen bond with water molecules. Further- more, the presence of urea also helps in preventing the aggregation of cellulose [11,12,28]. The hydrogen disruption by NaOH/urea leads to the decreased hydrophobicity of cellulose and thus facilitates its disso- lution in water. After the cellulose solution was obtained, ECH was added. The ba- sicity of the NaOH/urea solvent system facilitates the Williamson etherification and oxalkylation between ECH and two adjacent cellulose chains (Fig. 1, step iii). The interaction between ECH and cellulose can be explained stepwise: before interacting with cellulose, the epoxide ring of ECH encountered an oxyanions attack. These oxyanions act as the nucleophile generated from the deprotonation of cellulose in the glycosidic residues [31]. The presence of NaOH in the system acts as

1a catalyst for the opening of the epoxide

1ring-opened ECH contains two electrophilic carbon atoms at its end, which are the

points of nucleo- philic attack by oxyanions from the deprotonated cellulose [11]. To transform the crosslinked cellulose to hydrogel networks, an activation procedure through MW irradiation or WB heating was required [24]. In this study, two cellulose hydrogels were prepared via two Table 2 Overall cost estimate for scaled-up hydrogel production by MW irradiation method based on the LCCA approach. Scenario Unit Price Quantity and Total Cost Description (US\$) Units (US\$) Raw material cost Transportation cost (1) Manual collection Transportation cost (2) Mixing cost Heating cost Drying cost Chemicals Utility costs Energy loss 930.00a 420.00b 8.00c 75.00d 0.079 (electricity price per kWh)e 0.079 (electricity price per kWh)e 1350.00a,f 0.074 (water price per m3)e 0.079 (electricity price per kWh)e 1 ton biomass 1 ton 2 people per day 1 ton, 500 km 0.5 h, P = 0.5 kW (industrial mixing tank), load in 2 batches 0.05 h, P = 1.1 kW, load in 1 batch 3 h, P = 243 kW, load in 1 batch 1 ton of hydrogel 1 ton of hydrogel 0.05 h, P = 0.11 kW 930.00 Cellulose fiber from wood pulp 420.00 Import rate by considering net rate ocean freight port to port from China to Indonesia, with expedition time of 8 days. 16.00 2 people are required to transport the sample from port to facility. 75.00 Transportation of sample from port to facility. Logistic price for transporting up to 10 ton materials with distance up to 500 km. 0.003 Mixing of all raw materials, the mixing

34parameters based on this work. The volume of the tank is

0.6

34m3 and the power (P) is 0.5 kW

. 0.004 The heating process refers MW irradiation with the estimated cost described in Table 1. The microwave has 1816 kg (4000 lbs) capacity. 53.22 The drying process of hydrogel using a freeze dryer. The industrial freeze dryer capacity is 1.5 ton per batch. 1350.00 The chemicals consist of NaOH, urea, and ECH, with the amount based on this work. The water required for the reaction and washing the product, that is 1 m3 approximately. 0.0004 The main consideration is the power loss during the heating microwave. (continued on next page) Table 2 (continued) Scenario Unit Price Quantity and Total Cost Description (US\$) Units (US\$) Other – Total 2859.23 1 ton of hydrogel The estimated total cost of 1 ton of wet hydrogel. The estimated price per kg of wet hydrogel is US\$ 2.86. The heating cost (only) is US\$ 0.0003. 15.00 Power loss is estimated 10% of the required power. Considering additional cost manual filling material, pick- up, etc. activation procedures, namely WB at 60 C and MW at the power of

400 W. A total of 20 min WB activation is essential to ensure the com- plete crosslinking of WBH and cutting down the heating period may result in a partly unsolidified hydrogel (according to pre-experiment of this work). On the other hand, MW is shown to accelerate the time needed for hydrogel activation, where no more than 3 min of MW is required for solidifying the MWH. A graphical illustration of the WB activation mechanism was presented in Fig. 2a. The WB heating process can be considered a conventional heating method, where the heat source naturally comes from the mold surface and gradually seeps into the molecules via convection current [33]. This current allows the move- ment of the molecules, and eventually, the interaction between mole- cules occurs due to the collision. The heat transfer of WB heating starts from the surface of the material; the rate of heat flow to the bulk of the material is dependent on several factors such as specific heat, thermal conductivity,

and viscosity. Furthermore, the heat distribution from the WB is not homogenous, where more significant heat is distributed on the surface of the material and lower heat is distributed into the bulk of the material [34–36]. The non-uniform heat distribution by the WB heating method results in the requirement of a longer heating time to initiate the crosslinking reaction in the formation of a hydrogel. Meanwhile, in MW irradiation –As the molecules absorb the MW, the heating comes from two main mechanisms: ohmic heating and dielectric heating. Ohmic heating occurs from the oscillation of the free ions (e.g., Na from NaOH and Cl-from ECH); the oscillation triggers collision with + neighboring molecules and creates heat energy. Dielectric heating oc- curs due to the

28rotation of molecular dipoles as the molecules attempt to align to the oscillating MW field

; the alignment causes friction, creating heat energy [34–36]. The MW irradiation allows faster heating and uniform heat distribution on the surface and within the bulk of mate- rials. The illustration of the heating process by MW irradiation is shown in Fig. 2b. The advantages of shorter crosslinking time during the cellulose hydrogel preparation by using the MW irradiation procedure have been reported in several works [14.37–39]. For example, Huber et al. showed that 20 and 10 min of MW heating (at 100 and 180 W, respectively) was required to set the cellulose hydrogel [37]. As a comparison, 20 min to 6 h was required to activate the linking of the cellulose-based hydrogel using the WB method [11,37,39]; e.g., Huber et al. show that 6 h and 2 h (at 50 and 60 °C) was required to prepare the solid cellulose hydrogel [37]; Zhang et al. reported that 3 h (at 60 °C) was required to obtain cellulose/multiwalled carbon nanotubes composite hydrogel [39], 3.2. Characterizations of the WBH and MWH The influence of the conventional WB heating and MW irradiation methods on the morphological features of the hydrogel samples were first elucidated by SEM. Fig. 3 shows the surface and cross-section morphology of the WBH and MWH. Both hydrogel samples exhibit a relatively rough surface and similar porous morphology, which is formed when the cellulose fibers are crosslinked into each other. AFM topography images of WBH (Fig. 3e) and MWH (Fig. 3f) corroborate the roughness of the hydrogel surfaces with root-mean-square roughness (Rq) of 2.44 and 2.41 µm, respectively. The mapping results indicate that both hydrogels have a similar distribution of C, O, N, and Na elements within their matrix. These results suggest that the thermal activation process, either by WB heating or MW irradiation, during the crosslinking reaction of cellulose chains with ECH does not significantly impact the morphology of the resultant hydrogels, which leads our further in-vestigations on the chemical and swelling properties of the hydrogels. The strong and broad band centered at 3392.8 cm-1 can be assigned to The FTIR spectra of WBH and MWH samples are displayed in Fig. 4a. the O- H stretching vibrational mode engaged in hydrogen bonding. As can be seen in the spectra, compared with the TFP as a cellulose pre- cursor, the broader and peak for WBH and MWH may indicate higher water retention in the internal structure of hydrogel materials, which could be attributed to the crosslinked cellulose network. The bands at 2885.5 and 1627.9 cm-1 are related to asymmetric C-H and O-H bending -It was noted that the intensities of these two bands are much stronger for WBH and MWH compared to TFP, this could be ascribed to the incorporation of ECH crosslinker molecules and stronger H-bonding interaction of the hydrogels than the cellulose fibers [40]. Further evi- dence for the successful crosslinking reaction between ECH and cellulose fibers via the formation of ether linkages comes from the appearance of a vibrational band at 1363.7

11cm- 1, which corresponds to the symmetric stretching of the C-O-C group

at the ECH backbone [4]. The band associated with the C- O or C- C stretch of primary alcohol was observed at 1024.2, 1028.1, and 1030 cm- 1 for TFP, WBH, and MWH, respec- tively. The observed characteristic peaks were in good agreement with the reported literature related to the FTIR spectra of crosslinked cellu- lose [41–44]. The XRD patterns of TFP, WBH, and MWH are depicted in Fig. 4b. The TFP

exhibited a typical diffraction pattern of native cellulose (cel- lulose I) with reflection peaks at $20 \ 14.9$, 16.4, and 22.8. These = $\circ \circ \circ$ reflections

1can be assigned to the (110), (110), and (200) planes of the cellulose I crystal structure, respectively

(JCPDS card no. 03–0226). On the other hand, the WBH and MWH predominantly consist of cellulose II, as evidenced by the characteristic (110) and (020) diffraction peaks at 20 of ~20.1 $^{\circ}$ and ~22.3 $^{\circ}$, respectively. The irreversible conversion

30of crystalline cellulose | to cellulose II

allomorph via intracrystalline swelling and subsequent recrystallization can be attributed to the treatment of cellulose fibers with concentrated aqueous NaOH, also known as the mercerization process. This result is consistent with the previous studies; and, it occurs due to the hydroxyl anions of NaOH attack the primary cellulose wall, causing the disruption of the inter- molecular and intramolecular hydrogen bonding network and subse- quent alteration in its crystallinity [45–47]. TGA profiles of the WBH and MWH are depicted in Fig. 4c, revealing two mass loss events

7in the temperature range of 30-600 °C. A sharp weight loss of

57.1% and 55.6% for WBH and MWH, respectively, be- tween 250 and 400 ∘C corresponds to the thermal degradation of crosslinked cellulose chains,

15which is in good agreement with previous reports [48,49]. The

DTG curves (inset) indicate that both the hydrogel samples exhibit similar maximum decomposition temperature (Tmax) at about 330 C, suggesting that the crosslinking activation method either • by WB heating or MW irradiation does not considerably affect the physical structure and the thermal stability of the resulting hydrogels. Time-dependent swelling behaviors of WBH and MWH in pure water Fig. 6. Characterizations of the postsorption samples of WBH and MWH. (a, b) Top-view and (c, d) cross-section SEM images of the Cu(II)-loaded WBH and MWH, along with the corresponding Cu and CI elemental maps. (e) ATR-FTIR spectra. (f) XRD patterns. Dotted lines in the ATR-FTIR spectra and XRD patterns correspond to the pristine hydrogel samples.

11are displayed in Fig. 4d. As can be seen in

this figure, the absorption of water into the hydrogels occurs rapidly within the first 2 h, after which the swelling rate gradually slowed down and reached equilibrium after 16 h. The equilibrium swelling ratio of the WBH and MWH materials was determined to be 48.7 and 49.2 wt%, respectively. However, it can be noticed that the MWH sample, whose crosslinking reaction is facili- tated by MW irradiation, shows faster swelling kinetics than the WBH counterpart. XPS analysis was conducted to provide more information about the elemental composition and the chemical nature of the functional groups on the WBH and MWH surfaces through analysis of the

XPS survey and

12high-resolution spectra of C 1s and O 1s

are shown in Fig. 5. In survey XPS spectra, both the cellulose hydrogel samples show two prominent peaks at 284.5 and 531.5 eV, corresponding to carbon (C) and oxygen (O), respectively, along with a small Na 1s peak at 1070.5 eV. Calculation of the relative atomic con- centrations of C and O elements from the survey spectra reveals that both WBH (C/O 1.94) and MWH (C/O 2.14) exhibit quite similar = = surface compositions. The C 1s XPS spectra of WBH and MWH (Fig. 5b) can be deconvoluted into three peaks at 283.9, 285.3, and 287.3 eV, corresponding to the sp2-hybridized carbon, C- OH, and C- O- C groups, respectively. These assignments are in good agreement with the peak fitting results of cellulose nanofiber [50] and cellulose/alginate monolithic hydrogel [51]. The high-resolution O 1s spectra of WBH and MWH in Fig. 5c can be fitted with two different carbon-oxygen func- tional groups, namely C− OH at 530.8 eV and C− O at 532.1 eV. All of the physicochemical measurements above indicate that the WBH and MWH samples exhibit similar characteristics. WBH and MWH have macroporous structures, with the primary elemental composition of C and O atoms. The main functional groups of the hydrogels are C-C, Comparison of FTIR spectra of WBH and MWH before and after adsorption. Wavenumber (cm-1) Assignmentb WBH MWH Before After δa Before After δa 3394.7 3415.1 2881.7 2890.2 1626.0 1650.3 1361.7 1368.2 1028.1 1034.1 30.4 3392.8 8.5 2885.5 24.3 1627.9 6.5 1363.7 6.0 1024.2 3425.3 32.5 2899.1 13.6 1653.4 25.5 1371.8 8.1 1033.2 9.0 O- H stretching C- H stretching O- H bending C- O- C stretching alkyl aryl ether C- O/C- C stretching primary alcohol a The magnitude of wavenumber shifts in FTIR of the hydrogels before and after Cu(II) adsorption. b The peak assignment based on Ref. [53]

14C- O- C, C- OH, and C- O

. The presence of the C-O-C bond can be attributed to the crosslinking of the cellulose by the ECH. These results imply that WB and MW activation method results in hydrogels with similar physicochemical properties; thus, both methods can be inter- changeably used to prepare the hydrogel. Nevertheless, as discussed in the next section, the MW irradiation technique can be more practical by considering a shorter treatment period and energy consumption for the crosslinking process. 3.3. Economic feasibility analysis The economic analysis result demonstrates the practical benefit of the MW irradiation technique over conventional WB heating for hydrogel preparation. Table 1 shows the comparison of utility costs in the laboratory-scale synthesis of cellulose hydrogel using WB heating and MW irradiation processes, including process water and electricity consumption. The results show that the total electricity cost (only) for WB heating is more than 13 times higher than that of MW irradiation, which is mainly contributed by the longer heating time and greater power consumption of the process. Moreover, the requirement of water as a heat transfer fluid in the WB heating process incurs a higher utility cost. The total utility cost for hydrogel production using the conven- tional WB heating method was found to be 0.056 US\$/batch, which is about 14 times higher than the MW irradiation (0.004 US\$/batch), thus signifying the advantages of the latter technique in terms of low-cost and energy-saving. To evaluate the economic feasibility of the MW irradiation method for the scaled-up production scenario, we estimated the overall pro- duction cost of 1000 kg wet hydrogel (or about 767 kg of dry hydrogel) as the basis using life cycle cost analysis (LCCA). LCCA can be used as a basic reference for the evaluation and simulation of methods in more in- depth research in the future [52]. In this engineering-economic analysis approach, the overall cost estimation is based on the sum of several cost elements, such as raw material and its handling, transportation, utilities (i.e., electricity and

water), processing, chemicals, and others. As shown in Table 2, the overall production cost for 1 kg of wet cellulose hydrogel using the MW method is about US\$ 2.9. This table shows that the chemical auxiliaries (i.e., NaOH, urea, and ECH) and raw material represent the largest contributors to the overall cost, which accounts for 33% and 47% of the total cost, respectively. On the other hand, the utility cost associated with the power consumption of MW irradiation Fig. 7. (a) Zeta potential vs. pH curve for WBH and MWH sorbents. (b) pH

8effect on the Cu(II) removal by WBH and

MWH (Conditions:

25C0 = 200 mg/L, T = 30 °C, and adsorbent dose = 0.2 g

). Effect of initial concentration on the (c) equilibrium adsorption capacity and (d) Cu(II) removal efficiency of WBH and MWH (Con- ditions: pH = 7, T = 30 °C, and adsorbent dose = 0.2 g). Fig. 8. Adsorption kinetics curves of Cu(II) on WBH and MWH and the kinetic plots of (a) P1O, (b) P2O, (c) Elovich, and (d) IPD models. shows a negligible contribution (0.0014%) to the overall cost, thus highlighting the low-cost and energy-saving nature of this method. In this regard, a significant cost reduction for hydrogel production can be achieved by utilizing local agricultural and industrial wastes as low-cost cellulosic feedstock, as well as building the facility closer to the existing infrastructure to minimize transportation and material handling costs. 3.4. Adsorption behavior of Cu(II) ions onto WBH and MWH 3.4.1. Characterizations of the Cu(II)loaded hydrogels The characterizations of the postsorption WBH and MWH samples were performed by SEM, XRD, FTIR, and XPS techniques to gain detailed insight into the Cu(II) uptake mechanism. SEM images along with the EDS elemental maps of the Cu(II)-loaded WBH and MWH are depicted in Fig. 6. As can be seen, the surface and pore cross-section morphology of the hydrogels remain intact after the sorption process, demonstrating the robust stability of the materials. The EDS mapping revealed the uniform distribution of Cu signal on the surface and throughout the cross-section of the hydrogels, which indicate that adsorption occurs on both the interior and exterior surfaces. Quantitative EDS analysis results showed that the Cu loading in the WBH and MWH samples was about 1.8 wt%, in good agreement with the ICP-OES measurements (i.e., 1.85 ± 0.21 and 1.89 ± 0.17 wt% for WBH and MWH, respectively). The FTIR and XRD results of the Cu(II)-loaded MWH and WBH samples are presented in Fig. 6e and f. From the spectra, the FTIR spectra are quite similar for WBH or MWH before and after Cu(II) adsorption. The analysis on FTIR spectra shifting was done to further investigate the alteration of spectra caused by Cu(II) adsorption; that is by calculating the difference in wavenumber (δ) before and after adsorption. The highest δ was observed for the peak corresponding to O-H stretching and bending, as shown in Table 3 (the data were highlighted in bold font). Therefore, Cu(II) adsorption on the WBH and MWH affected the

12chemical bonds with ${\rm O}$ atoms; thus, it is reasonable to assume that the ${\rm O}$ atoms

play a significant role

29as the main adsorption sites for Cu(II) binding on the hydrogel surface

8Effect of pH on the Cu(II) removal efficiency

27The pH at the point of zero charges (pHPZC) of the

sorbent material is crucial to its performance in removing adsorbate species (ions or mol- ecules) under certain pH. A general consensus is that the surface of the sorbent is positively charged and thus can interact with negatively charged species at solution pHs lower than pHPZC, and vice versa [54]. The zeta potential vs. pH curve for WBH and MWH samples is depicted in Fig. 7a, demonstrating that both hydrogels exhibited pHPZC of about 6.7. Fig. 7b illustrates the

8effect of solution pH on the removal efficiency of Cu(II) ions by the hydrogel sorbents. The

results indicate that the removal efficiency

33increases with increasing solution pH and reaches a maximum at pH ~7

. At acidic pHs (pH pHPZC), both the WBH and < MWH surfaces bear a net positive charge and thus generate repulsive force toward Cu(II) ions. As the solution pH increases toward neutrality, the hydrogel surface carries a more negative charge from the deproto- nated carboxyl groups, facilitating the uptake of metal ions through attractive electrostatic interactions. Meanwhile, the observed slight decrease of removal efficiency in an alkaline environment could be attributed to higher numbers of hydroxide anions that disrupt the interaction between the hydrogel surface and Cu(II) ions. 3.4.3. Effect of the initial concentration Adsorbate concentration plays an important role in the adsorption process since it is the driving force affecting

7the adsorption performance of an adsorbent. As shown in Fig. 7c, the equilibrium adsorption ca- pacity (Qe

) of the sorbents increased with a higher initial concentration of Cu(II) ions, which can be attributed to the more significant interaction between the active sites of the sorbent and adsorbate molecules. In this regard, the high adsorbate concentration can create a concentration gradient that enhances the driving force of the adsorbate molecules Summary of fitted kinetic parameters of P1O, P2O, Elovich, and IPD models for Cu(II) adsorption using WBH and MWH. Model and parameters Unit Value ± SDa WBH MWH P1O Q1e mg/g k1 1/min R2 (Adj.) SSE P2O Q2e

9mg/g k2 g/mg·min R2 (Adj.) SSE Elovich α mg/g min β g/mg RE R2

(Adj.) SSE IPD Ci,1

21mg/g kIPD,1 mg/g·min0.5

R2 (Adj.) SSE Ci,

212 mg/g kIPD,2 mg/g·min0.5

R2 (Adj.) SSE Ci,3

21mg/g kIPD,3 mg/g·min0.5

R2 (Adj.) SSE 108.787 \pm 2.894 0.019 \pm 0.002 0.967 6.772 124.540 \pm 3.011 0.028 \pm 0.002 0.986 4.364 0.009 \pm 0.001 0.040 \pm 0.005 0.221 0.980 5.305 0.947 \pm 0.019 9.005 \pm 0.385 0.995 1.945 43.353 \pm 6.452 3.837 \pm 0.473 0.975 5.431 114.024 \pm 0.000 ~0 1.000 0.000 116.395 \pm 2.334 0.022 \pm 0.002 0.976 5.812 128.407 \pm 2.181 0.031 \pm 0.003 0.990 3.718 0.031 \pm 0.001 0.046 \pm 0.005 0.184 0.975 5.978 1.125 \pm 0.738 11.255 \pm 0.865 0.977 5.238 70.936 \pm 2.669 2.870 \pm 0.199 0.981 1.500 119.111 \pm 0.000 ~0 1.000 0.000 a SD = standard deviation. towards the adsorption sites. The concentration gradient force triggers the movement of the adsorbate in the bulk solution, which has a higher adsorbate concentration, toward the adsorbent [55,56]. However, at further increased adsorbate concentration, the %Cu removal began to decrease at high adsorbate concentrations (i.e., > 200 mg/L), as shown in Fig. 7d. This phenomenon occurs since there are more adsorbate molecules at higher concentrations but a similar number of active adsorption sites; thus, the adsorption sites tend to be saturated faster, and their adsorptivity decreases [57]. 3.5. Adsorption kinetics

2A kinetic adsorption study was conducted to investigate the adsorption rate and the

mechanism controlling at the given specific adsorption time. The adsorption kinetic profiles of WBH and MWH to- ward Cu(II) ions are displayed

4in Fig. 8. As can be seen in the figure, the uptake of

Cu(II) ions by the hydrogel samples proceeds rapidly within the first hour, after which it begins to slow as the system approaches equilibrium. The rapid adsorption at the initial stage can be ascribed to the abundant availability of adsorption sites on the hydrogel surface, which still possesses a high affinity toward the adsorbate ions. Mean- while, the slow adsorption rate in the second step likely involves the diffusion of Cu(II) ions to the porous interior of the hydrogels [58]. Several

26kinetic models, namely pseudo-first-order (P1O) [59], pseudo-second-order (P2O) [60], Elovich [61], and intraparticle

diffu- sion (IPD) [62] models were employed to describe the sorption kinetics of Cu(II) by the hydrogel sorbents. The P1O model has a mathematical expression as follows: Qt = Q1e 1 - e - k1t()(4)

17where Qt and Q1e represent the amount of Cu(II) adsorbed per unit mass of adsorbent at time t and at equilibrium (mg/g), respectively, and k1 is the P1O adsorption rate

constant (min-1). The P2O model has a mathematical form as follows: Qt = Q2e 1 + Q2Qek22etk2t()(5) where Q2e represents the

32amount of Cu(II) adsorbed per unit mass of min-1). adsorbent at equilibrium (mg/g), and k2 is the

P2O rate constant (g/mg The Elovich model has the following mathematical expression: $Qt = ln(1 + \alpha\beta t) 1 \beta$ (6) RE = 1 Qref β / (7) where α and β are empirical constants related to the adsorption (mg g- 1 min- 1) and desorption (g mg- 1) rate constants, respectively. Qref

19is the highest amount of Cu(II) adsorbed based on the experimental data (mg/g). The

parameter RE corresponds to

36the approaching equilibrium parameter of Elovich equation

, which classifies an adsorption system into four zones as follows:

9slow rising (RE 0.3), mild rising > (0.1 < RE < 0.3), fast rising (0.02 < RE < 0.1), and instant approaching equilibrium (RE < 0.02

) [63]. Finally, the IPD model can be expressed as follows: Qt kIPD,nt0.5 + Ci,n = (8) where kIPD is the rate constant corresponding to a specific segment n (with n 1, 2, or 3) and Ci is an arbitrary constant related to the = boundary layer effect [57,64]. All the kinetic parameters above were obtained by a nonlinear leastsquares method using SigmaPlot 12 soft- ware package (Systat Software, Inc.) and the corresponding parameter values obtained upon fitting are reported in Table 4. As shown in Fig. 8, the P2O model gave a better agreement with experimental data than the P1O model, as indicated by lower sum-of- squared-error (SSE) values and the adjusted correlation coefficient (R2 (Adj.)) close to unity. The fit parameters Q2e and k2 of the P2O model indicate that both the WBH and MWH have comparable adsorption performance toward Cu(II) ions in terms of the equilibrium adsorption capacity and removal rate constant. Moreover, the better correlation of kinetic data with P2O model suggests that the adsorption process by the hydrogels is limited by multistep diffusions [65], as discussed in more detail below. The Elovich model also provides good fits to the sorption kinetics curves with slightly lower R2 values than the P2O model. From the analysis of RE, it can be implied that both Cu(II)-WBH (RE 0.22) = and Cu(II)-MWH (RE = 0.18) adsorption systems exhibited a mildly rising kinetic behavior, which is consistent with the experimental trend showing a fast uptake of metal ions during the initial stage (within 60 min) and followed by a slower second sorption step until the system reached equilibrium after 5 h. A multi-linear IPD model involving three segments demonstrates a good correlation with the experimental data (Fig. 8d). For WBH and MWH systems, the first segment (at t0.5 = 0-7.75 min0.5 or t = 0-60 min) refers to the surface adsorption which indicates by higher rate compared to the next segment; i.e., kIPD,1 > kIPD,2 > kIPD,3. The second segment occurs at t0.5 = > 7.75–17.32 min0.5 (t = > 60–300 min); the segment refers to a gradual adsorption step that is controlled by intra-particle diffusion. The third segment at t0.5 > 17.32 min0.5 (t > 300 min) refers to the equilibrium step in which the solute immigrates slowly to micropores in the inner matrix of the adsorbent, thus causing a slow (nearly zero) adsorption rate.

11A similar phenomenon was reported in other studies related to adsorption

kinetics [58,64,66–68]. The rapid adsorption rate at the first segment occurs since the adsorbent has high vacant sites initially, and the solute con- centration gradient in bulk and on the adsorbent surface is very high. As Fig. 9. Isotherm adsorption study of Cu(II) toward WBH and MWH at adsorption time = 8 h, pH = 7, temperature = $30 \circ C$, adsorbent dosage = 0.2 g. The data were fitted using Langmuir, Freundlich, Sips, RP, DR, Temkin model. the adsorption proceeds, the vacant adsorbent sites occupy a certain number of solute molecules and create an interface between the solution and solute. Hereinafter, the adsorption of the remainder solutes is slowing down due to the higher energy barrier near the interface. Furthermore, a lower rate at higher segments indicates that the boundary layer limits the Cu(II) adsorption onto WBH or MWH. 3.6. Adsorption isotherms The evaluation of the adsorption isotherm was performed to give insights toward adsorption behavior in the investigated system. The isotherm study was conducted as a function of initial Cu(II) concentra- tion from 5 to 500 mg/L. As shown in Fig. 9, WBH and MWH exhibited similar adsorption performance. The rapid increase in the Qe was observed at Cu concentration < 100 mg/L, and the value of Qe was nearly constant afterward, which indicates the saturation of the adsorbent material. The equilibrium

8adsorption data were interpreted by several empirical isotherm models, namely Langmuir [69], Freundlich

[70], Sips [71], Redlich-Peterson (RP) [72], Dubinin-Radushkevich (DR) [73], and Temkin [74]. The classical Langmuir and Freundlich isotherm models have the mathematical forms expressed in Eqs. (9) and (10), respectively [75]. Qe = Q1L+,maxKKLLCCee (9) Qe = KFCe1/nF (10) where QL,max is the theoretical maximum (or monolayer) sorption ca- pacity (mg/g), KL is the Langmuir adsorption constant (L/mg), KF is the Freundlich constant related to adsorption affinity (mg/g)(mg/L)- nF, and Fitting parameters of isotherm adsorption of Cu(II) by WBH and MWH. Model and Unit Value ± SDa parameters WBH MWH Langmuir QL,max KL RLb R2 (Adj.) SSE Freundlich KF nFc R2 (Adj.) SSE Sips QS aSd spd R2 (Adj.) SSE Redlich-Peterson KRP mg/g L/mg (mg/g)(mg/L)- nF (mg/g) (L/mg) (L/g) aRP (L/mg) ße aRPCeße R2 (Adj.) SSE Dubinin-Randushkevich QD (mg/g) B (mol2/kJ2) Ea (kJ/mol) R2 (Adj.) SSE Temkin BT (J/mol) KT (L/g) R2 (Adj.) SSE 261.136 ± 39.353 0.009 ± 0.003 0.182 0.943 17.681 7.611 ± 4.214 1.736 0.106 ± 0.881 25.607 $173.586 \pm 4.869 \ 0.218 \ 0.028 \pm 0.946 \pm 0.027 \ 0.992 \ 6.535 \ 1.508 \pm 0.161 \ 0.00001 \pm 0.00001 \ 2.198 \pm 0.495$ 0.302 0.979 10.689 214.846 ± 10.392 0.005 ± 0.001 10.206 0.978 10.933 54.234 ± 6.155 0.147 ± 0.041 0.885 25.241 235.068 ± 26.609 0.011 ± 0.003 0.153 0.955 15.273 8.961 ± 4.479 1.852 0.096 ± 0.887 24.098 $167.795 \pm 3.644 \ 0.159 \ 0.012 \pm 0.929 \pm 0.109 \ 0.995 \ 5.034 \ 1.779 \pm 0.231 \ 0.00001 \pm 0.00001 \ 1.657 \pm 0.331$ 0.388 0.979 10.373 198.019 ± 6.354 0.007 ± 0.0007 8.392 0.988 7.975 56.185 ± 5.405 0.159 ± 0.039 0.915 20.979 a SD standard deviation. = b The process is favorable when 0 RL 1, unfavorable when RL << > 1 [76-78]. c An nF value between 1 and 10 indicates the favorable process [83]. d The model reduces to Langmuir when sp value is equal to 1, and to Freundlich when aS approaches 0 [84,85]. e The

7model reduces to Langmuir as the β equal to 1, and to Freundlich when

aRPCeβ is much bigger than 1 [84]. nF is the factor describing the

16favorability of the sorption process. The essential characteristic of the Langmuir isotherm can be expressed in terms of a dimensionless

equilibrium parameter (RL) [76], defined as follows: RL = 1 + KLC0 1 (11) The values of RL indicate the Langmuir-type adsorption isotherm to beeitherunfavorable(RL 1),linear(RL 1),favorable(0 RL 1), > = << or irreversible (RL 0). The DR model has a mathematical form as = follow: [([])] Qe=QDexp - B RTIn 1+ 1 2 Ce (12) Ea = $\sqrt{12}$ B (13) Table 6 Comparison of adsorption capacities and Kd values of WBH and MWH with other cellulose-based materials and composites toward Cu(II) ions. Adsorbent pH Qm (mg/ g) Kd (mL/g) Fitting model Ref. Kinetics Isotherm WBH MWH Cellulose hydrogel Cellulose/ gelatin hydrogel Straw-derived hydrogela GO/cellulose hydrogelb Chitosan/ cellulose hydrogel beads MDSDc Collagen/ cellulose hydrogel beads PEI-RCSAd WP/PAM hydrogele 7 114.0 7 119.1 4.7 28.3 4.7 52.3 n. 90.3 a. 5.3 94.3 6.7 53.2 6 6 4.3 29.8 5.5 3–6 120.0 139.5 1325.6 1472.2 98 187.4 172.4 494.5 N/A N/A 110.0 P2O P2O n.a. n.a. P2O P2O n.a. n.a. n.a. 1500 P2O 5.9 × 104 P2O Langmuir This work Langmuir This work Freundlich [86] Freundlich [87] Freundlich [88] Langmuir [89] Langmuir Langmuir [90] [91] Langmuir Langmuir [92] [93] a Wheat straw containing cellulose, hemicellulose, and lignin was used as the raw material. b GO graphene oxide. = c MDSD refers to modified sawdust cellulose using esterification. d Polyethyleneimine-functionalized crosslinked cellulose/sodium alginate. e WP/PAM waste paper/acrylamide double-network hydrogel. = where QD is the DR adsorption capacity, B

18is the mean free energy of adsorption

(mol2/kJ2),

18**R** is the gas constant (8.314 J/mol K), and Ea is the adsorption energy (kJ/mol). The

three-parameter Sips and RP isotherm models have the mathe- matical forms expressed in Eqs. (14) and (15), respectively: Qe = QS 1 +aSaCS1eC/s1ep/sp () Qe = 1 +KRaPRCPeC β e (14) (15) where, for the

7Sips model, QS is Sips adsorption capacity, aS is a constant related to adsorption energy, and sp is the Sips model exponent. For the

RP model, KRP (L/g) and aRP (L/mg) is the RP constant, and β is the RP model exponent. Finally, the Temkin model has the mathematical form as follow: Qe = RT B In(KTCe) T (16)

31where KT is a binding constant (L/g), and BT is a constant related to the heat of adsorption (J/mol). The

calculated parameters of the isotherm model

1 obtained from the nonlinear least-square analysis are presented in Table 5. As

shown in Fig. 9, the Langmuir model can describe the experimental data very well, which is signified by higher correlation coefficients (i.e., R2 ~1 and = low SSE) than the Freundlich model. Moreover, the RL values of the Langmuir model fall within 0 RL 1 for the adsorption systems, << indicating that the adsorption of Cu(II) ions onto WBH and MWH sor- bents is favorable [76–79]. The nF of the Freundlich model shows a value between 1 and 10 for both systems, indicating the favorability of the process; this parameter is in good agreement with the RL value. The three parameters models of Sips and RP was applied to assess the

systems tendencies toward Langmuir or Freundlich models. The Sips model has better applicability to represent the adsorption data than the RP model, as indicated by the higher correlation coefficients. Furthermore, the sp value of the Sips model is close to 1, indicating its incli- nation to the Langmuir model. The adsorption mechanism and energy can be evaluated from DR and Temkin model. The Ea value of WBH and MWH systems is larger than 8 kJ/mol; thus, it can be proposed that the chemisorption is dominant in the investigated adsorption systems [80–82]. The positive BT value of the Temkin model suggests that the Cu (II) adsorption by WBH or MWH was exothermic [80], and therefore, the adsorption would be more favorable at a lower temperature. 3.7. Performance comparison of the adsorbent materials Table 6 summarizes the adsorption performances of various cellulose-based materials and composites

26 for Cu(II) removal from aqueous solutions in terms of the

maximum sorption capacity (Qm) and Kd metrics. It can be seen that the as-synthesized WBH and MWH ma- terials exhibit Qm values that are superior to most of the reported cellulose-based adsorbents in the literature, such as GO/cellulose, chi- tosan/cellulose, and collagen/cellulose composites. The excellent performance of WBH and MWH in removing Cu(II) ions is also reflected from their Kd values. It was found that the Kd values of WBH and MWH for Cu(II) reach 1325.6 and 1472.2 mL/g, respectively, which are considerably larger than the Kd values of other cellulose-based hydrogel sorbents (the consensus is that an excellent heavy metal adsorbent ex- hibits Kd value higher than 104 mL/g [20]). Regarding the kinetic fitting model, it can be implied that most of the adsorption systems reported in the literature obey the P20 model, thus suggesting that the uptake of Cu (II) ions by cellulose-based materials primarily occurs via chemisorption. Meanwhile, some prior studies showed better data

27 fit to the Freundlich and others with Langmuir isotherm models for the

sorption equilibrium. 4. Conclusions In summary, we have demonstrated the preparation of ECH crosslinked cellulose hydrogels by using conventional WB heating at 60 °C and MW irradiation processes. Both heat activation methods were shown to produce hydrogels with similar physicochemical characteris- tics in terms of the surface and porous morphology, chemical composi- tion, thermal stability, and equilibrium swelling ratio. However, the use of MW irradiation to facilitate crosslinking reaction between free cel- lulose fibrils and ECH molecules offers a more economical use of energy and time compared to the conventional WB heating. Notably, the hydrogel formation was completed within 3 min under MW irradiation at 400 W, where a longer crosslinking reaction time (20 min) was needed for WB heating. The life-cycle cost analysis under an industrial scale scenario study revealed that the production cost of the hydrogel is similar by using conventional WB or MW heating procedures. Batch adsorption results of WBH and MWH toward Cu(II) ions demonstrated that the maximum removal efficiency occurred at pH 7 and kinetic equilibrium was reached after 60 min. Adsorption kinetics curves of Cu (II) ions by WBH and MWH exhibited a mildly rising behavior (zone II)

36based on the approaching equilibrium parameter (RE) of Elovich

equa- tion and were

4best fit to the P2O model, thus suggesting the

chemi- sorption nature of the adsorption. Meanwhile, the equilibrium adsorption data was best interpreted by the Langmuir model, indicating monolayer adsorption on the hydrogel sorbent with the theoretical maximum

capacity (QL,max) of 261.1 and 235.1 mg/g for WBH and MWH, respectively. Overall, this work demonstrates that MW irradiation technique offers great potential for rapid, low-cost, and energy-efficient preparation of cellulose hydrogels. How- ever, further studies are needed to investigate the effects of MW irra- diation power and duty cycles on the degree of crosslinking, which subsequently affects the mechanical properties and porous structure of the resultant hydrogel materials. In the latter context, such detailed experimental studies would provide vital information for developing high-performance porous hydrogelbased adsorbents with fast kinetics and high uptake capacity for toxic metal ion capture from water and wastewater.

2CRediT authorship contribution statement Shella Permatasari Santoso: Conceptualization, Methodology, Validation, Writing original draft, Project administration, Funding – acquisition. Artik Elisa Angkawijaya: Formal analysis, Writing re- – view &editing, Resources, Supervision. Vania Bundjaja: Investigation, Formal analysis

. Alfin Kurniawan:

2Formal analysis, Writing - review & editing, Resources, Supervision

. Maria Yuliana: Writing - review & editing.

2Chang-Wei Hsieh: Project administration, Writing original – draft. Alchris Woo Go: Formal analysis, Validation. Kuan-Chen Cheng: Writing review editing

2Felycia Edi Soetaredjo: Methodology, – & Resources. Suryadi Ismadji: Conceptualization, Supervision

10Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Acknowledgments This work is financially supported by the Ministry of Research and Technology

/National Agency for Research and Innovation, Indonesia (Kementerian Riset dan Teknologi/Badan Riset dan Inovasi Nasional, Indonesai)

2through a research grant with contract number 150C/ WM01.5/N/2021. References

[1] M.A. Qureshi, N. Nishat, S. Jadoun, M.Z. Ansari, Polysaccharide based superabsorbent hydrogels and their methods of synthesis: a review, Carbohydr. Polym. Technol. Appl. 1 (2020), 100014, https://doi.org/10.1016/j. carpta.2020.100014. [2] S.M.F. Kabir, P.P. Sikdar, B. Haque, M.A.R. Bhuiyan, A. Ali, M.N. Islam, Cellulose- based hydrogel materials: chemistry, properties and their prospective applications, Prog. Biomater. 7 (2018) 153–174. [3] M. Rizwan, S.R. Gilani, A.I. Durani, S. Naseem, Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field, J. Adv. Res. 33 (2021) 15-40, https://doi.org/10.1016/j.jare.2021.03.007. [4] M.N. Alam, M.S. Islam, L.P. Christopher, Sustainable production of cellulose-based hydrogels with superb absorbing potential in physiological saline, ACS Omega 4 (2019) 9419–9426, https://doi.org/10.1021/acsomega.9b00651. [5] S.H. Aswathya, U. Narendrakumarb, I. Maniubala, Commercial hydrogels for biomedical applications, Helivon 6 (2020). e03719, https://doi.org/10.1016/j. heliyon.2020.e03719. [6] X. Cui, J.J.L. Lee, W.N. Chen, Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics, Sci. Rep. 9 (2019) 18166, https://doi.org/10.1038/s41598-019-54638-5. [7] C. Dong, Y. Wang, H. Wang, C.S.K. Lin, H.-Y. Hsu, S.-Y. Leu, New generation urban biorefinery toward complete utilization of waste derived lignocellulosic biomass for biofuels and value-added products, Energy Procedia 158 (2019) 918–925. [8] M.S.B. Reddy, D. Ponnamma, R. Choudhary, K.K. Sadasivuni, A comparative review of natural and synthetic biopolymer composite scaffolds, Polymers 13 (2021) 1105, https://doi.org/10.3390/polym13071105. [9] S.H. Zainal, N.H. Mohd, N. Suhaili, F.H. Anuar, A.M. Lazim, R. Othaman, Preparation of cellulose-based hydrogel: a review, J. Mater. Res. Technol. 10 (2021) 935–952. [10] F.-W. Bai , S. Yang , N.W.Y. Ho , Comprehensive Biotechnology, in: M. Moo-Young (Eds), Reference Module in Life Sciences, Elsevier, 2019, pp. 49–65. [11] S.P. Santoso, A. Kurniawan, F.E. Soetaredjo, K.-C. Cheng, J.N. Putro, S. Ismadji, Y.- H. Ju, Eco-friendly cellulose-bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture, Cellulose 26 (2019) 3339–3358, https:// doi.org/10.1007/s10570-019-02314-2. [12] B. Xiong, P. Zhao, K. Hu, L. Zhang, G. Cheng, Dissolution of cellulose in aqueous NaOH/urea solution: role of urea, Cellulose 21 (2014) 1183–1192, https://doi.org/ 10.1007/s10570-014-0221-7. [13] M. Egal, T. Budtova, P. Navard, The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions, Cellulose 15 (2008) 361–370, https:// doi.org/10.1007/s10570-007-9185-1. [14] A. Abdulhameed, H.M. Mbuvi, E.O. Changamu, Synthesis of cellulose-based superabsorbent hydrogel from rice husk using a microwave, Am. J. Mater. Sci. 10 (2020) 1–8, https://doi.org/10.5923/j.materials.20201001.01. [15] C. Baiya, L. Nannuan, Y. Tassanapukdee, O. Chailapakul, K. Songsrirote, The synthesis of carboxymethyl cellulose-based hydrogel from sugarcane bagasse using microwave-assisted irradiation for selective adsorption of copper(II) ions, Environ. Prog. Sustain. Energy 38 (2018) S157–S165, https://doi.org/10.1002/ep.12950. [16] F.M. Igbal, M. Ahmad, U.R. Tulain, Microwave radiation induced synthesis of hydroxypropyl methylcellulose-graft-(polyvinylalcohal-co-acrylic acid) polymeric network and its in vitro evaluation, Acta Pol. Pharm. 74 (2017) 527–541. [17] Y. Wang, X. Zhang, D. Qiu, Y. Li, L. Yao, J. Duan, Ultrasonic assisted microwave synthesis of poly (Chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel, Ultrason. Sonochem. 40 (2018) 714–719, https://doi.org/10.1016/j. ultsonch.2017.08.003. [18] A.H. Ibrahim, W.A. El-Mehalmey, R.R. Haikal, M.E.A. Safy, M. Amin, H.R. Shatla, S.G. Karakalos, M.H. Alkordi, Tuning the chemical environment within the UiO-66- NH2 nanocages for charge-dependent contaminant uptake and selectivity, Inorg. Chem. 58 (2019) 15078–15087, https://doi.org/10.1021/acs.inorgchem.9b01611. [19] R.W. Turkington, F.M. Tracy, Spectrophotometric determination of ultramicro amounts of copper with 1,5-diphenylcarbohydrazide, Anal. Chem. 30 (1958) 1699–1701. [20] D.T. Sun, L. Peng, W.S. Reeder, S.M. Moosavi, D. Tiana, D.K. Britt, E. Oveisi, W. L. Queen, Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite, ACS Cent. Sci. 4 (2018) 349-356, https:// doi.org/10.1021/acscentsci.7b00605. [21] J. Zhou, L. Zhang, Solubility of cellulose in NaOH / urea aqueous solution, Polym. J. 32 (2000) 866–870. [22] J. Cai, L. Zhang, J. Zhou, H. Li, H. Chen, H. Jin, Novel fibers prepared from cellulose in NaOH/urea aqueous solution, Macromol. Rapid Commun. 25 (2004) 1558–1562, https://doi.org/10.1002/marc.200400172. [23] J. Cai, L. Zhang, Unique gelation behavior of cellulose in NaOH/urea aqueous solution, Biomacromolecules 7 (2006) 183-189, https://doi.org/10.1021/ bm0505585. [24] C. Chang, L. Zhang, J. Zhou, L. Zhang, J.F. Kennedy, Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions, Carbohydr. Polym. 82 (2010) 122-127,

https://doi.org/10.1016/j.carbpol.2010.04.033. [25] H. Liu, A. Wang, X. Xu, M. Wang, S. Shang, S. Liu, J. Song, Porous aerogels prepared by crosslinking of cellulose with 1.4-butanediol diglycidyl ether in NaOH/urea solution, RSC Adv. 6 (2016) 42854-42862, https://doi.org/10.1039/ C6RA07464B. [26] M.A. Navarra, C.D. Bosco, J.S. Moreno, F.M. Vitucci, A. Paolone, S. Panero, Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes, 810-23, Membranes 5 (2015), https://doi.org/10.3390/ membranes5040810, 810-23. [27] J. Zhou, C. Chang, R. Zhang, L. Zhang, Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution, Macromol. Biosci. 7 (2007) 804-809, https://doi.org/10.1002/mabi.200700007. [28] L. Alves, B. Medronho, A. Filipe, F.E. Antunes, B. Lindman, D. Topgaard, I. Davidovich, Y. Talmon, New insights on the role of urea on the dissolution and thermally-induced gelation of cellulose in agueous alkali. Gels 4 (2018) 87. https://doi.org/10.3390/gels4040087. [29] B. Lindman, B. Medronho, L. Alves, C. Costa, H. Edlund, M. Norgren, The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena, Phys. Chem. Chem. Phys. 19 (2017) 23704-23718, https://doi.org/10.1039/C7CP02409F. [30] E.S. Morais, A.Md.C. . Lopes, M.G. Freire, C.S.R. Freire, J.A.P. Coutinho, A.J. D. Silvestre, Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization, Molecules 25 (2020) 3652, https://doi.org/10.3390/molecules25163652. [31] L. Holmberg, B. Lindberg, B. Lindqvist, The reaction between epichlorohydrin and polysaccharides: Part 1. Syntheses of some model substances with non-cyclic substituents, Carbohydr. Res. 262 (1994) 213-221, https://doi.org/10.1016/0008- 6215(94)84180-2. [32] D.R. Medjitov, L.G. Shode, G.M. Tseitlin, Composition of condensation products of bisphenol-A and epichlorohydrin, Polym. Bull. 40 (1998) 509-516, https://doi.org/10.1007/s002890050284. [33] A.S. Grewal, K. Kumar, S. Redhu, S. Bhardwaj, Microwave assisted synthesis: a green chemistry approach, Int. J. Pharm. Appl. Sci. 3 (2013) 278–285. [34] S. Akbarian-Tefaghi, J.B. Wiley, Microwave-assisted routes for rapid and efficient modification of layered perovskites, Dalton Trans. 47 (2018) 2917-2924, https:// doi.org/10.1039/c7dt03865h. [35] N. Nakamura, B. Reeja-Jayan, Synchrotron X-ray characterization of materials synthesized under microwave irradiation, J. Mater. Res. 34 (2019) 194-205, https://doi.org/10.1557/jmr.2018.465. [36] L. Zong, S. Zhou, N. Sgriccia, M.C. Hawley, L.C. Kempel, A review of microwave- assisted polymer chemistry (MAPC), J. Microw. Power Electromagn. Energy 38 (2003) 49-74, https://doi.org/10.1080/08327823.2003.11688487. [37] T. Huber, S. Feast, S. Dimartino, W. Cen, C. Fee, Analysis of the effect of processing conditions on physical properties of thermally set cellulose hydrogels, Materials 12 (2019) 1066, https://doi.org/10.3390/ma12071066. [38] Y. Wu, C. Brickler, S. Li, G. Chen, Synthesis of microwave-mediated biochar- hydrogel composites for enhanced water absorbency and nitrogen release, Polym. Test. 93 (2021), 106996, https://doi.org/10.1016/j.polymertesting.2020.106996. [39] Y. Zhang, R. Huang, S. Peng, Z. Ma, MWCNTs/cellulose hydrogels prepared from NaOH/urea aqueous solution with improved mechanical properties, 413497-8, J. Chem. 2015 (2015), https://doi.org/10.1155/2015/413497. [40] R.R. Mohamed, M.H.A. Elella, M.W. Sabaa, G.R. Saad, Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution, Cellulose 25 (2018) 6513–6529, https://doi.org/ 10.1007/s10570-018-2014-x. [41] S. Cichosz, A. Masek, Cellulose fibers hydrophobization via a hybrid chemical modification, Polymers 11 (2019) 1174, https://doi.org/10.3390/ polym11071174. [42] J. Łojewska, P. Miśkowiec, T. Łojewski, L.M. Proniewicz, Cellulose oxidative and hydrolytic degradation: In situ FTIR approach, Polym. Degrad. Stab. 88 (2005) 512–520, https://doi.org/10.1016/j.polymdegradstab.2004.12.012. [43] J.I. Morán, V.A. Alvarez, V.P. Cyras, A.E. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose 15 (2008) 149–159, https://doi.org/10.1007/s10570-007-9145-9. [44] D. Ołdak, H. Kaczmarek, T. Buffeteau, C. Sourisseau, Photo- and bio-degradation processes in polyethylene, cellulose and their blends studied by ATR-FTIR and Raman spectroscopies, J. Mater. Sci. 40 (2005) 4189–4198, https://doi.org/ 10.1007/s10853-005-2821-y. [45] E. Dinand, M. Vignon, H. Chanzy, L. Heux, Mercerization of primary wall cellulose and its implication for the conversion of cellulose $I \rightarrow$ cellulose II, Cellulose 9 (2002) 7–18, https://doi.org/10.1023/A:1015877021688. [46] P. Mansikkamaki, M. Lahtinen, K. Rissanen, The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: an X-ray powder

diffraction study, Carbohydr. Polym. 68 (2007) 35-43, https://doi.org/ 10.1016/j.carbpol.2006.07.010. [47]

A.E. Oudiani, Y. Chaabouni, S. Msahli, F. Sakli, Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre, Carbohydr. Polym. 86 (2011) 1221–1229,

https://doi.org/10.1016/j.carbpol.2011.06.037. [48] G.F. Leal, L.A. Ramos, D.H. Barrett, A.A.S. Curvelo, C.B. Rodella, A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process, Thermochim. Acta 616 (2015) 9–13,

https://doi.org/10.1016/j.tca.2015.07.017. [49] N. Yadav, K.H. Adolfsson, M. Hakkarainen, Carbon dottriggered photocatalytic degradation of cellulose acetate, Biomacromolecules 22 (2021) 2211-2223, https://doi.org/10.1021/acs.biomac.1c00273. [50] D.-C. Wang, H.-Y. Yu, D. Qi, Y. Wu, L. Chen, Z. Li, Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 143 (2021) 11620-11630. https://doi.org/10.1021/jacs.1c04710. [51] J. Yuan, C. Yi, H. Jiang, F. Liu, G.J. Cheng, Direct ink writing of hierarchically porous cellulose/alginate monolithic hydrogel as a highly effective adsorbent for environmental applications, ACS Appl. Polym. Mater. 3 (2021) 699-709, https:// doi.org/10.1021/acsapm.0c01002. [52] T. Wang, G. Li, K. Yang, X. Zhang, K. Wang, J. Cai, J. Zheng, Enhanced ammonium removal on biochar from a new forestry waste by ultrasonic activation: characteristics, mechanisms and evaluation, Sci. Total Environ. 778 (2021), 146295, https://doi.org/10.1016/j.scitotenv.2021.146295. [53] G. Socrates, Frequencies: Tables and Charts (Infrared and Raman Characterisitc Group), John Wiley & Sons, 2004. [54] B. Azhar, A.E. Angkawijaya, S.P. Santoso, C. Gunarto, A. Ayucitra, A.W. Go, P. L. Tran-Nguyen, S. Ismadji, Y.H. Ju, Aqueous synthesis of highly adsorptive copper-gallic acid metal-organic framework, Sci. Rep. 10 (2020) 19212, https:// doi.org/10.1038/s41598-020-75927-4. [55] T.-Z. Ren, X.-H. Zhu, T.-Y. Ma, Z.-Y. Yuan, Adsorption of methylene blue from aqueous solution by periodic mesoporous titanium phosphonate materials, Adsorpt. Sci. Technol. 31 (2013) 2013, https://doi.org/10.1260/0263- 6174.31.6.535. [56] C. Tejada-Tovar, Á. Villabona-Ortíz, Á.D. Gonzalez-Delgado, Adsorption of azo- anionic dyes in a solution using modified coconut (Cocos nucifera) mesocarp: kinetic and equilibrium study, Water 13 (2021) 1382, https://doi.org/10.3390/ w13101382. [57] A. Andreas, Z.G. Winata, S.P. Santoso, A.E. Angkawijaya, M. Yuliana, F. E. Soetaredjo, S. Ismadji, H.-Y. Hsu, A.W. Go, Y.-H. Ju, Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue, J. Mol. Lig. 329 (2021), 115579, https://doi.org/ 10.1016/j.molliq.2021.115579. [58] J.F. Baret, Kinetics of adsorption from a solution. Role of the diffusion and of the adsorption-desorption antagonism, J. Phys. Chem. 72 (1968) 2755–2758, https:// doi.org/10.1021/j100854a011. [59] S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk. Handl. 24 (1898) 1–39. [60] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451–465, https://doi.org/10.1016/S0032-9592(98)00112-5. [61] C. Aharoni, F.C. Tompkins, Kinetics of adsorption and desorption and the Elovich equation, Adv. Catal. 21 (1970) 1-49, https://doi.org/10.1016/S0360-0564(08) 60563-5. [62] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. 89 (1963) 31-60. [63] F.-C. Wu, R.-L. Tseng, R.-S. Juang, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems, Chem. Eng. J. 150 (2009) 366-373, https://doi.org/10.1016/j.cej.2009.01.014. [64] F.-C. Wu, R.-L. Tseng, R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J. 153 (2009) 1-8, https://doi.org/10.1016/j.cej.2009.04.042. [65] J.-P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J. 300 (2016) 254–263. [66] A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion studyr, S. Afr. J. Chem. Eng. 32 (2020) 39-55, https://doi.org/10.1016/j. sajce.2020.01.005. [67] J.-P. Simonin, J. Bouté, Intraparticle diffusion-adsorption model to describe liquid/ solid adsorption kinetics, Rev. Mex. Ing. 15 (2016) 161-173. [68] J. Ulatowska, I. Stala, Polowczyk, Comparison of Cr(VI) Adsorption Using Synthetic Schwertmannite Obtained by Fe3+ Hydrolysis and Fe2+ Oxidation: Kinetics, Isotherms and Adsorption Mechanism, Int. J. Mol. Sci. 22 (2021) 8175, https://doi.org/10.3390/ijms22158175. [69] I. Langmuir, The Evaporation, Condensation and Reflection of Molecules and the Mechanism of Adsorption, Phys. Rev. 8 (1916) 149-176. [70] H.M.F. Freundlich, Over the Adsorption in Solution, J. Phys. Chem. 57 (1906) 385-471. [71] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (1948) 490–495, https://doi.org/10.1063/1.1746922. [72] O. Redlich, D.L.

Peterson, A useful adsorption isotherm, J. Phys. Chem. 63 (1959) 1024,

https://doi.org/10.1021/j150576a611. [73] M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of activated charcoal, Chem. Zentr. 1 (1947) 875-890. [74] M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron, Catal. Acta Physicochim. 12 (1940) 327-356. [75] A. Kurniawan, V.O.A. Sisnandy, K. Trilestari, J. Sunarso, N. Indraswati, S. Ismadji, Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater, Ecol. Eng. 37 (2011) 940-947. [76] D. Mohan, K.P. Singh, Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste, Water Res. 36 (2002) 2304–2318, https://doi.org/10.1016/S0043-1354(01)00447-X. [77] K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fundam. 5 (1966) 212–223, https://doi.org/10.1021/i160018a011. [78] D. Mohan, C.U.P. Jr, M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M. F. Alexandre-Franco, V. Gómez-Serrano, H. Gong, Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during biooil production, J. Colloid Interface Sci. 310 (2007) 57-73, https://doi.org/10.1016/j. jcis.2007.01.020. [79] T. Wang, D. Zhang, K. Fang, W. Zhu, Q. Peng, Z. Xie, Enhanced nitrate removal by physical activation and Mg/Al layered double hydroxide modified biochar derived from wood waste: adsorption characteristics and mechanisms, J. Environ. Chem. Eng. 9 (2021), 105184, https://doi.org/10.1016/j.jece.2021.105184. [80] U.A. Edet, A.O. Ifelebuegu, Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste, Processes 8 (2020) 665. [81] M.A. Mahmoud, Kinetics and thermodynamics of aluminum oxide nanopowder as adsorbent for Fe (III) from aqueous solution, Beni-Seuf Univ. J. Basic Appl. Sci. 4 (2015) 142-149. [82] A.M. Youssef, S.M. El-Khouly, T. El-Nabarawy, Removal of Pb(II) and Cd(II) from aqueous solution using oxidized activated carbons developed from pecan shells, Carbon Lett. 9 (2008) 8-16. [83] R.-L. Tseng, F.-C. Wu, Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant, J. Hazard. Mater. 155 (2008) 277–287, https://doi.org/10.1016/j.jhazmat.2007.11.061. [84] M. Belhachemi, F. Addoun, Comparative adsorption isotherms and modeling of methylene blue onto activated carbons, Appl. Water Sci. 1 (2011) 111–117, https://doi.org/10.1007/s13201-011-0014-1. [85] J.R.G. Romero, J.C. Moreno-Piraján, L.G. Gutierrez, Kinetic and equilibrium study of the adsorption of CO2 in ultramicropores of resorcinolformaldehyde aerogels obtained in acidic and basic medium, J. Carbon Res. 4 (2018) 52, https://doi.org/ 10.3390/c4040052. [86] Y.H. Teow, K.L. Ming, A.W. Mohammad, Synthesis of cellulose hydrogel for copper (II) ions adsorption, J. Environ. Chem. Eng. 6 (2018) 4588–4597, https://doi.org/ 10.1016/j.jece.2018.07.010. [87] S. Shan, X.-F. Sun, Y. Xie, W. Li, T. Ji, High-performance hydrogel adsorbent based on cellulose hemicellulose, and lignin for copper(II) ion removal, Polymers 13 (2021) 3063, https://doi.org/10.3390/polym13183063. [88] X. Chen, S. Zhou, L. Zhang, T. You, F. X, Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution, Materials 9 (2016) 582, https://doi.org/10.3390/ma9070582. [89] N. Li, R. Bai, Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms, Sep. Purif. Technol. 42 (2005) 237-247. [90] S.M. Ulfa, N. Chamidah, A. Kurniawan, Adsorption of Cu(II) in aqueous solution by modified sawdust cellulose, IOP Conf. Ser. Earth Environ. Sci. 239 (2019), 012008, https://doi.org/10.1088/1755-1315/239/1/012008. [91] J. Wang, L. Wei, Y. Ma, K. Li, M. Li, Y. Yu, L. Wang, H. Qiu, Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption, Carbohydr. Polym. 98 (2013) 736–743, https://doi.org/10.1016/j. carbpol.2013.06.001. [92] W. Zhan, C. Xu, G. Qian, G. Huang, X. Tang, B. Lin, Adsorption of Cu(II), Zn(II), and Pb(II) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine, RSC Adv. 8 (2018) 18723-18733, https://doi.org/10.1039/C8RA02055H. [93] Y. Chen, L. Li, Y. Li, Y. Liu, Y. Chen, H. Li, M. Li, F. Xu, Y. Liu, Preparation of a double-network hydrogel based on wastepaper and its application in the treatment of wastewater containing copper(ii) and methylene blue, RSC Adv. 11 (2021) 18131-18143,

https://doi.org/10.1039/D1RA02321G. S.P. Santoso et al.

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al. Table 3

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al. Table 4

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al. Table 5

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al.

3Journal of Environmental Chemical Engineering 10 (2022

) 106971 S.P. Santoso et al. Journal of Environmental Chemical Engineering 10 (2022) 106971 S.P. Santoso et al. Journal of Environmental Chemical Engineering 10 (2022) 106971 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16