turnitin Originality Report

<u>Renewable rarasaponin-bentonite-alginate</u> <u>composite with sponge-like structure and</u> <u>its application for crystal violet removal</u> <u>from aqueous solution</u> by Shella Santoso	Similarity Index 15%	Similarity by Source Internet Sources: N/A Publications: 15% Student Papers: N/A
From Similarity Check (check paper Jakad SPS)		
Processed on 27-Feb-2022 10:57 WIB ID: 1771670750 sources: Word Count: 7335		
1% match (publications) Livy Laysandra, Felix Harijaya Santosa, Vic Austen, Felycia Edi Soetaredjo et al. "Rarasaponin- bentonite-activated biochar from durian shells composite for removal of crystal violet and Cr(VI) from aqueous solution", Environmental Science and Pollution Research, 2018		
2 1% match (publications) <u>Alfin Kurniawan, Hogiartha Sutiono, Yi-Hsu Ju, Felycia Edy Soetaredjo, Aning Ayucitra, Aditya</u> <u>Yudha, Suryadi Ismadji. "Utilization of rarasaponin natural surfactant for organo-bentonite</u> <u>preparation: Application for methylene blue removal from aqueous effluent", Microporous and</u> <u>Mesoporous Materials, 2011</u>		
3 1% match (publications) <u>Livy Laysandra, Meri Winda Masnona Kartika Sari, Felycia Edi Soetaredjo, Kuncoro Foe et al.</u> <u>"Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for</u> <u>methylene blue and rhodamine B decoloration", Heliyon, 2017</u>		
1% match (publications) Livy Laysandra, Immanuel Joseph Ondang, Yi-Hsu Ju, Jindrayani Nyoo Putro et al. "An environment-friendly composite as an adsorbent for removal Cu (II) ions", Environmental Science and Pollution Research, 2019		
5 1% match (publications) <u>"Handbook of Ecomaterials", Springer Nature, 2019</u>		
6 1% match (publications) SpringerBriefs in Molecular Science, 2015.		
7 1% match (publications) Alfin Kurniawan, Hogiartha Sutiono, Nar in binary system by adsorption using rar model", Chemical Engineering Journal, 2012		
8 1% match (publications) <u>Zhenjiang Zhang, Lili Zhu, Zhongwei Zh</u> <u>Jin, Zhongxin Xue, Xiaolin Ma. "Synthes</u> removal of Pb(II) ion from aqueous solution", D	sis of polyethyleneimine	modified polyurethane foam for

9

10

11

13

15

1% match (publications)

Amina Aichour, Hassina Zaghouane-Boudiaf, Fathiah Binti Mohamed Zuki, Mohamed Kheireddine Aroua, César Viseras Ibbora. "Low-cost, biodegradable and highly effective adsorbents for batch and column fixed bed adsorption processes of methylene blue", Journal of Environmental Chemical Engineering, 2019

< 1% match (publications)

Tümsek, Fatma, and Özlem Avcı. "Investigation of Kinetics and Isotherm Models for the Acid Orange 95 Adsorption from Aqueous Solution onto Natural Minerals", Journal of Chemical & Engineering Data, 2013.

< 1% match (publications)

12 H. Zaghouane-Boudiaf, Mokhtar Boutahala, Sousna Sahnoun, Chafia Tiar, Fatima Gomri. "Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2,4,5-trichlorophenol", Applied Clay Science, 2014

< 1% match (publications)

Livy Lavsandra, Immanuel Joseph Ondang, Yi-Hsu Ju, Benedikta Hervina Ariandini et al. "Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI)", Environmental Science and Pollution Research, 2019

< 1% match (publications)

14 Mahboube Ebrahimi, Saideh Bagheri, Maryam Maleki Taleghani, Majid Ghorabani, "Humic acids elimination from aqueous media utilizing derived activated carbon from raw maize tassel on equilibrium, thermodynamic and kinetics", DESALINATION AND WATER TREATMENT, 2019

< 1% match (publications)

Elass, K.. "Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco", Applied Clay Science, 201111

< 1% match (publications)

16 Min-Hung Liao, Kun-Yang Wu, Dong-Hwang Chen. "Fast Adsorption of Crystal Violet on Polyacrylic Acid-Bound Magnetic Nanoparticles", Separation Science and Technology, 2005

< 1% match (publications)

17 Andi Kurniawan Rahardjo, Maria Josephine Jeannette Susanto, Alfin Kurniawan, Nani Indraswati, Survadi Ismadji. "Modified Ponorogo bentonite for the removal of ampicillin from wastewater", Journal of Hazardous Materials, 2011

< 1% match (publications)

18 Fan, Ching-Lin, Yu-Zuo Lin, Yi-Yan Lin, and Sui-Chih Chen. "High performance submicrometer pentacene-based organic thin-film transistor using planar bottom-contact structure", Organic Electronics, 2013.

< 1% match (publications)

19 Chandni Puri, Gajjala Sumana. "Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite", Applied Clay Science, 2018

20

21

22

< 1% match (publications)

Li, Q.. "Cationic polyelectrolyte/bentonite prepared by ultrasonic technique and its use as adsorbent for Reactive Blue K-GL dye", Journal of Hazardous Materials, 20070817

< 1% match (publications)

Lotfi Sellaoui, Felycia Edi Soetaredjo, Suryadi Ismadji, Éder Cláudio Lima et al. "New insights into single-compound and binary adsorption of copper and lead ions on a treated sea mango shell: experimental and theoretical studies", Physical Chemistry Chemical Physics, 2017

< 1% match (publications)

Senthilkumaar, S.. "Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree", Journal of Hazardous Materials, 20060825

< 1% match (publications)

23 Artik Elisa Angkawijaya, Shella Permatasari Santoso, Vania Bundjaja, Felycia Edi Soetaredjo et al. "Studies on the performance of bentonite and its composite as phosphate adsorbent and phosphate supplementation for plant", Journal of Hazardous Materials, 2020

< 1% match (publications)

Tang, Hua, Hong Huang, Xiaoshuai Wang, Konggiang Wu, Guogang Tang, and Changsheng Li. "Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange", Applied Surface Science, 2016.

< 1% match (publications)

25 Tianzhu Shi, Zhengfeng Xie, Zhu Zhu, Wei Shi, Yucheng Liu, Minyao Liu, Xinliang Mo. "Effective removal of metal ions and cationic dyes from aqueous solution using different hydrazine-dopamine modified sodium alginate", International Journal of Biological Macromolecules, 2022

< 1% match (publications)

N. Belhouchat, H. Zaghouane-Boudiaf, César Viseras. "Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads", Applied Clay Science, 2017

26

< 1% match (publications)

Abida Kausar, Munawar Iqbal, Anum Javed, Kiran Aftab, Zill-i-Huma Nazli, Haq Nawaz Bhatti, Shazia Nouren. "Dyes adsorption using clay and modified clay: A review", Journal of Molecular Liquids, 2018

< 1% match (publications) 28

Belhouchat, N., H. Zaghouane-Boudiaf, and César Viseras. "Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads", Applied Clay Science, 2016.

< 1% match (publications)

Jennifer Pieter Soetardji, Jeannete Cindy Claudia, Yi-Hsu Ju, Joseph A. Hriljac et al. "Ammonia removal from water using sodium hydroxide modified zeolite mordenite", RSC Advances, 2015

Shella Permatasari Santoso, Livy Laysandra, Jindra Nyoo Putro, Jenni Lie et al. "Preparation of nanocrystalline cellulose-montmorillonite composite via thermal radiation for liquid-phase adsorption", Journal of Molecular Liquids, 2017

31 < 1% match (publications)</pre>

<u>Elroy Nathaniel, Alfin Kurniawan, Felycia Edi Soeteredjo, Suryadi Ismadji. "Organo-bentonite</u> for the adsorption of Pb(II) from aqueous solution: Temperature dependent parameters of several adsorption equations", Desalination and Water Treatment, 2012

paper text:

Desalination and Water Treatment www.deswater.com doi:10.5004/dwt.2019.24196 160 (2019) 354–365 August

25Renewable rarasaponin-bentonite-alginate composite with sponge-like structure and its application for crystal violet removal from aqueous solution

Livy Laysandraa, Rizka Fabryantya, Yi-Hsu Jub, Jindrayani Nyoo Putroc, Shella Permatasari Santosoa, Felycia Edi Soetaredjoa,*, Alfin Kurniawanc, Suryadi Ismadjia,* aDepartment of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia, Tel. +6231 389 3933, Fax +6231 389 1267, email: livy.laysandra@yahoo.com (L. Laysandra), rizka.fabryanty12@gmail.com (R. Fabryanty), shella_p5@yahoo.com (S.P. Santoso), felyciae@yahoo.com (F.E. Soetarejo), suryadiismadji@yahoo.com (S. Ismadji) bGraduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City 106, Taiwan, Tel. +886 2 2730 3609, email: yhju@mail.ntust.edu.tw (Y.-H. Ju) cDepartment of Chemical

18Engineering, National Taiwan University of Science and Technology, No.
43, Sec 4, Keelung Rd, Da'an District, Taipei 106, Taiwan, Tel. +886 2 2737 6611,
Fax +886 2

2737 6644, email: jindranyoo@yahoo.com (J.N. Putro), alfin_kur@yahoo.com (A. Kurniawan) Received 6 October 2018; Accepted 31 March 2019 abstract Adsorption is an efficient process for removing contaminants from water by using adsorbent. In this work, bentonite, rarasaponin, and sodium alginate are used as raw materials to prepare new composite to be applied

16to the adsorption of crystal violet dye. The

prepared adsorbent (benton- ite-rarasaponin-alginate composite) has a sponge-like appearance. The Fourier transform infrared (FTIR), X-ray diffraction (XRD), nitrogen (N2) sorption and scanning electron microscopy (SEM) methods were employed to characterize the prepared adsorbents. The

29adsorption experiments were conducted isothermally at 30,50, and 70°C

. The

5Freundlich and Langmuir isotherm models were cho- sen to correlate the

equilibrium adsorption data. Meanwhile, the

adsorption kinetics was studied

5at 30°C, and the data were correlated by using the pseudo-first-order and pseudo-second-order. Based on the adsorption results, it was found

that composite can adsorb crystal violet dye 3 times more than bentonite at all investigated temperatures, where at 70°C the adsorption capacity for acid-acti- vated bentonite is 176.63 mg/g and for rarasaponinbentonite-alginate composite is 476.04 mg/g. The

22adsorption of crystal violet dye onto the adsorbents increases with increasing

temperature indicat- ing that the chemisorption is dominant in this process. Keywords: Acid activated bentonite; Rarasaponin; Sodium alginate; Composite; Isotherms; Kinetics 1. Introduction Contamination of surface water by synthetic dyes is a serious environmental problem. Most of these contami- nants come from the effluent of textile industries. Some of the synthetic dyes are found to be

6resistant to microbial degradation, causing their presence in water environment harmful to

aquatic organisms. Some techniques can be employed to remove the synthetic dyes from water, some *Corresponding author. of them are biological treatment, coagulation, floatation, oxidation, ozonation, nanofiltration, and adsorption [1–3]. Among the techniques available, adsorption is used more often because this technique is inexpensive, environmen- tally friendly, and more importantly effective against most types of contaminants [4]. The success of the adsorption process which is indicated by the high removal of contaminant is strongly influenced by the type adsorbent. Activated carbon is a commercial adsorbent with good surface reac- tivity which is often used especially for the separation and purification of water from organic compounds such as syn- 1944-3994 /

81944-3986 © 2019 Desalination Publications. All rights reserved

. L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354–365 thetic dyes. However, the commercially available activated carbons are expensive; therefore the use of activated carbon for water and wastewater treatment is economically unfea- sible. To overcome this, the developments of alternatively low-cost adsorbents which are inexpensive, harmless, and have high adsorption capacity are needed [5–7]. Bentonite mainly consists of smectite montmorillon- ite, bentonite also commonly called as montmorillonite. The natural and chemically modified bentonites are well known as alternative cheap adsorbents, they have large

5Brunauer-Emmett-Teller (BET) surface area

due to its lay- ered structure. The adsorption affinity of bentonite can be increased by modifying it with an intercalating agent (i.e., surfactant). The affinity enhancement enables bentonite to be employed for a wider variety of pollutants [8]. In order to avoid environmental problems that might arise from the use of synthetic surfactants, the use of an environmentally friendly (natural) surfactant is more desirable [9]. Some studies related to adsorption properties of intercalated bentonite have been reported. A study by Kurniawan et al. reported that bentonite intercalated with the extract from SapindusrarakDC (rarasaponin) can adsorb 256 mg Meth- ylene Blue per g adsorbent (at 60°C), while raw bentonite can only adsorb 194 mg methylene blue per g adsorbent (at 60°C) [9]. Fosso-Kankeu et al. reported that bentonite inter- calated by cationic surfactant hexadecyltrimethyl ammo- nium bromide can adsorb 16.04 mg Congo Red per g of adsorbent, while the natural bentonite can adsorb 5.00 mg Congo Red per g of adsorbent [10]; Özcan et al. reported that bentonite intercalated with cationic surfactant dodecyl- trimethyl ammonium bromide can adsorb 206.58 mg Reac- tive Blue 19 per g adsorbent [11]. Study on the intercalation of cetyltrimethyl ammonium bromide (CTAB) into another type of clay mineral, namely kaolin, by Zenasni et al., also showed that CTAB-kaolin can adsorb 24.46 mg Congo Red per g adsorbent which is 4 times higher than natural kaolin (5.94 mg Congo Red per g adsorbent) [12]. In this work, rarasaponin is used as a surfactant for intercalation. Intercalation process can increase the number of active sites, sur-face area and interlayer spacing of natural bentonite. The intercalation of rarasaponin molecules into the interlayer of bentonite occurs in several stages; the first stage is deacyla- tion of rarasaponin due to the dissolution in the polar sol- vent, this causes rarasaponin to be negatively charged; the second stage is protonation of the silanol group on benton- ite so that the bentonite is positively charged; and the last stage is charge balancing through the interaction between the two differently charged molecules [13]. In this work, a natural polymer, sodium alginate, is combined with rarasaponin-bentonite

5in order to further increase the adsorption capacity. The main purpose of

this work is to prepare a new, low-cost, and environmentally friendly adsorbent composite with high adsorption capacity for the removal of organic dye from aqueous solution. Some analyses including

1FTIR, XRD, SEM,and nitrogen sorption were employed prior to characterizing the

prepared rarasa- ponin-bentonite-alginate composites. The formation mech- anism of the composite is also given in this manuscript. The adsorption ability of the composites was investigated against a cationic dye, Crystal Violet. The adsorption was conducted isothermally and kinetically.

202. Materials and methods 2.1. Materials The bentonite used in this study is

natural calcium-ex- changed bentonite (Ca-bentonite)

2obtained from the mining site at Pacitan, East Java, Indonesia

. Sapindusrarak DC was

2obtained from Klaten, Central Java, Indonesia. The natu- ral surfactant, rarasaponin

, was obtained by extracting the fruit pericarp of Sapindusrarak DC. The detailed procedure of rarasaponin extraction can be seen elsewhere [9]. Sodium alginate was supplied from CV. Nura Jaya, Surabaya, Indonesia. Analytical grade crystal violet (purity > 90%, C25H30Cl, Mw 407.98 g/mol) was purchased from Sigma Aldrich, Sin- gapore. The chemicals are used as received without further purification. 2.2. Preparation of rarasaponin-bentonite and rarasaponin- bentonite-alginate composite Ca-bentonite was acid-activated by mixing with 5 N H2SO4 solution (1:10 w/v ratio) under constant stirring at 500 rpm and 70°C for 2 h. The acid-activated bentonite

14was rinsed with distilled water until the pH of the rinse water was

constant. Subsequently, the acid-activated bentonite was dried at 105°C

17in an oven (Memmert UM 400) for 24 h. The dried acid-activated bentonite was pulverized into powder

and

3sieved using vibration screener (Retsch AS 200) to obtain a particle size of -180/+200 mesh. The rarasaponin-bentonite

was synthesized

7according to the procedure reported by Kurniawan et al

. (2012) [14], briefly1

2g of rarasaponin was dissolved into 50 mL distilled water, then10 g of acidactivated bentonite was added to the solution. Rarasaponin was

dissolved in advance with the aim of increasing the contact surface area between rarasa- ponin and acidactivated bentonite. After mixing, the mix- ture was irradiated

17**in a microwave oven** at 700 W (**National NN-S327 WF**) for 3 min. The rarasaponin-bentonite

-alginate composite was prepared according to the same procedure [14] as rarasa- ponin-bentonite with slight modification; briefly 0.45 g of rarasaponin was mixed with 25 mL distilled water. The rarasaponin solution was vigorously stirred until the rarasa- ponin solution is foamy. Subsequently,acid-activated bentonite was added to the rarasaponin solution with a mass ratio of acid-activated bentonite to rarasaponin of 10:1. The mixture was stirred at 500 rpm for 10 min, and then 0.

25 g of sodium alginate was added to the mixture. The mixture

of sodium alginate, acid activated bentonite, and rarasaponin was then

1heated at 70°C under constant stirring at 800 rpm for 1 h. After the

heating, mixture slurry was obtained and then slowly transferred into 200 mL of 0.3 N CaCl2 solution to form granules rarasaponin-bentonite-alginate compos- ite. The excess CaCl2 on the surface of the composite was repeatedly washed using reverse osmosis

7water and dried in an oven at 50°C for 12 h. 2.3. Characterization of the samples The characterization of the

samples, namely acid-ac- tivated bentonite, rarasaponin-bentonite, and rarasapo- nin-bentonite-alginate composite,was conducted by using L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354–365 Fourier-transform infrared spectroscopy (FTIR), X-ray dif- fraction (XRD), SEM (scanning electron microscopy), and nitrogen sorption methods. The FTIR analysis was carried out using FTIR SHI- MADZU 8400S, KBr pellet method was employed to obtain the spectra of the samples. The spectra were scanned at a wavelength range of 4000 400 cm-1 with a resolution of 2 cm-1. The

21XRD analysis was conducted by using a Philips X'pert X-ray Diffractometer. The XRD patterns were acquired at 40 kV and 30 mA

with

3Cu Kα1 (I = 0.15405 nm) as the source of radiation. The

surface topography was obtained by using

3a JEOL JSM-6500 F field emission SEM at 10 kV

and WD 10.1 to 10.3 mm. Prior for SEM, the

1samples were coated with thin layer (3 nm) of platinum

/palladium (Pt/Pd) alloy using an auto fine coater JEC-3000 F. The coating process was carried out in Argon atmosphere for 90 s. The BET surface area was determined by using auto- matic sorption analyzer Micromeritics ASAP 2010. The measurements were conducted at –195.8°C (boiling point of nitrogen) over a relative pressure of 0.001–0.995. The samples were degassed at 150°C under high vacuum before each measurement. The BET surface area was calculated at a relative pressure in the range of 0.05–0.35. The point of zero charge (pHpzc) of each adsorbent used in this study

4was determined by using the pH drift method

[15], and it was found that pHpzc of acid-activated benton- ite is 3.08, rarasaponin-bentonite is 3.44, and the rarasapo- nin-bentonite-alginate composite is 4.08. 2.4. Adsorption of dye The optimal pH for the adsorption of crystal violet onto the prepared adsorbents is studied in the pH range of 2–10, with initial crystal violet concentration of 800 ppm, a tem- perature of $30 \pm 1^{\circ}$ C, for 8 h. The

26pH was adjusted using 0.1 N of HCl or NaOH solutions. After equilibrium, the adsor- bent was separated by using a centrifuge, and the

concen- tration of un-adsorbed crystal violet in the filtrate was then

10analyzed using Shimadzu UV/Vis-1700 spectrophotometer at a wavelength of 590 nm. The

adsorption equilibrium experiments were per- formed in batch. A stock solution of 800 ppm crystal violet dye at a certain pH was prepared by dissolving a certain amount of crystal violet in 1000 mL distilled water. Sub-sequently, the crystal violet

23solution was distributed in a series of Erlenmeyer flasks (50 mL of solution in each flask). A

various mass of adsorbent was then introduced to the series of Erlenmeyer flasks.

4The adsorption was conducted for 8 h in a Memmert shaking water bath

at various tem- peratures of 30, 50, 70 ± 1°C. After adsorption, the solution was centrifuged at 4700

31rpm for 5 min to separate the solu- tion from solid adsorbent particles. The concentration of crystal violet in the solution

before and after the adsorp- tion process was measured

7using a Shimadzu UV/Vis-1700 spectrophotometer at maximum absorbance wavelengths of 590 nm

28All adsorption experiments were repeated at least three times to ensure the accuracy of the obtained data. The

dye removal efficiency was calculated in percentage by using Eq. (1), while the amount of crystal violet

30adsorbed at equilibrium condition was calculated by using Eq. (2

). % dye removal = (Ci - Ce) × 100 C (1) i qe = (Ci - Ce) ×

2V m (2) where qe is the amount of dye adsorbed at equilibrium (mg/g adsorbent), Ci and Ce (mg/L) are the

initial and equi-librium crystal violet dye concentration,

15**respectively, V (L) is the volume of the** dye **solution**, and m (**g**) **is the mass** of the **adsorbent**. For the **kinetic** adsorption experiments, **0**.5 g of the adsor- bent **was** introduced **into** a series of 50 mL crystal **violet** solu- tion **with** various **initial concentrations**

(600, 800, and 1000 ppm). The adsorption was performed in a shaker water bath (

14200 rpm), and a temperature of 30°C. The kinetic adsorption data were

collected by taking one of the samples at a cer- tain period of time. The

29**solid adsorbent was** then separated **from the** filtrate **by** using **centrifugation** technique. **The** con- centration **of**

remaining crystal violet dye in the filtrate was measured quantitatively by using a spectrophotometer. The amount of crystal violet adsorbed onto adsorbent at a certain time (t) was calculated using Eq. (3). qt = (Ci -Ct) × V m (3) where Ct is the crystal violet concentration in the solution at time t. 2.5. Goodness of fitting analysis The goodness of fitting between experimental data and calculated data for each non-linear adsorption models is measured by determining the coefficient of determination (R2), hybrid fractional error function (HYBRID), and Mar- guardt's percent standard deviation (MPSD) [16,17]. The R2 shows the measurement of how close the fitting of experi- mental data is to the calculated data, this coefficient has a degree in the range of 0–1. The HYBRID error function is an improvement to that of classic error function namely sum of squared errors (SSE), the improvement is especially at to minimize the magnitude of the errors at a lower level of liquid-phase concentration. The MPSD is an error function that shows the geometric mean error based on the number of degree of freedom in the investigated system [16–19]. 3. Result and discussion For the purpose of simplification, acid-activated benton- ite, rarasaponin-bentonite, and rarasaponin-bentonite-algi- nate are abbreviated as AAB, RB, and RBA, respectively. 3.1. Characterization of the adsorbents The FTIR spectra of AAB, RB, and RBA composite are shown in Fig. 1. Both RB and RBA composite possesses spectra originated from rarasaponin and bentonite. There are some slight shifts observed for the spectra of RBA com- posite compared with RB. The broad band corresponds to L. Laysandra

8et al. / Desalination and Water Treatment 160 (2019) 354–365 Fig. 1. FTIR spectra of (a) AAB, (b) RB, and

(c) RBA composite. the stretching of the –OH (hydroxyl) groups are found at the wavenumber of 3629.78, 3627.85 and 3625.92 cm-1 for AAB, RB, and RBA composite, respectively. Bands at 3278.76 (AAB), 3274.90 (RB),and 3272.98 (RBA composite) cm-1 responsible for the vibration of -OH strectching which rep- resents the bond between -OH group and AI or Si. The pres- ence of rarasaponin is indicated by the appearance of the band at 1710.74 and 1708.81 cm-1 for RB and RBA composite, respectively, where the bands are attributed to the stretch- ing vibration of C=O bonds; these bands also indicate ions exchange between Ca+2 from bentonite against the acetyl cation (C2H3O+) from rarasaponin [9]. The -OH bending of H2O at interlayer of bentonite is indicated by the peaks at 1654.81cm-1 for AAB, 1627.81 cm-1 for RB and 1639.38 cm-1 for RBA composite. The AI-AI-OH bending vibration was observed at 916.12 (AAB), 914.20 (RB), and 916.12 cm-1 (RBA composite); AI-O-Si bending vibration was observed at 702.04 (AAB), 696.25 (RB), and 698.18 cm-1 (RBA compos- ite); and Si-O-Si bending vibration was observed at 470.60 (AAB). 447.45 (RB), and 476.38 cm-1 (RBA composite). Alginate compound was added for the preparation of the RBA composite. The interaction of alginate with rarasa- ponin/bentonite was indicated from the appearance of new bands at 1529.45 and 1454.23 cm-1, where these bands cor- respond to the asymmetrical and symmetrical stretching vibrations of the carboxylic groups (-COO-). The bands also indicate that the alginate molecules have successfully binded to the silanol group by releasing cationic Na+ from sodium alginate compound. For easy reference, the wave- number values and their corresponding surface functional groups are tabulated in Table 1. The X-ray diffraction (

13XRD) spectra of the solid adsor- bents are given in Fig. 2. The

intercalation of rarasaponin to the interlayer of bentonite leads to the shift of basal spacing of bentonite. Originally, the AAB has a d spacing (001) of 1.36 nm. The intercalation of rarasaponin causes the d spacing to increase to 1.54 nm and 1.58 nm for RB and RBA com- posite, respectively. Some characteristic peaks of quartz are also observed in Fig. 2. The surface topographies of the adsorbents were observed by using SEM and the images are depicted in Fig. 3. Different surface morphologies are observed for AAB, Table 1 Surface functional groups of the AAB, RB, and RBA composite Functional group Wave number (cm-1) AAB RB RBA composite -OH stretching in the hydroxyl 3629.78 3627.85 3625.92 group -OH stretch of (Al or Si) 3278.76 3274.90 3272.98 -OH group -OH bending of H2O at interlaver 1654.81 1627.81 1639.38 bentonite for adsorbed AI-AI-OH bend AI-O-Si bend Si-O-Si bend C=O stretch (C2H3O+) 916.12 702.04 470.60 – 1710.74 1708.81 914.20 696.25 447.45 916.12 698.18 476.38 COO- asymmetrical stretching – – 1529.45 of alginate COO- symmetric stretching of - - 1454.23 alginate Fig. 2. X-ray diffraction spectra of (a) AAB, (b) RB, and (c) RBA composite. RB, and RBA composite. The SEM images of RB (Fig. 3b) and RBA composite (Fig. 3c) show a larger particle size compared to AAB (Fig. 3a); this indicates that the addition of alginate, as well as rarasaponin, causes the bentonite particles to join and form larger particles. The addition of rarasaponin (in the formation of RB) only produced a weak interaction between the rarasaponin and bentonite thus the RB still have a pow- der form (bigger than AAB). In the formation of RBA com- posite, the addition of alginate causes the RB particles to join together with a stronger interaction to form larger particles which have a sponge-like structure (Fig. 3d). L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354-365

19Fig. 3. SEM topography images of (a) AAB, (b) RB, and (c

) RBA composite. Image (d) show the digital photograph of the RBA com- posite. The

4nitrogen sorption isotherms of the AAB, RB, and RBA composite are given in Fig

. 4. All of the adsorbents per- formed a

3rapid intake of nitrogen gas molecules at a low relative pressure (p

/po). This phenomenon indicates that all of the adsorbents have a microporous structure (type liso- therm). Broad hysteresis loops at p/po above 0.4 suggest that the adsorbents also have a mesoporous structure (type II isotherm). RB and RBA possess broader hysteresis loop than AAB, where RB has the broadest loop. The broaden hyster- esis loop indicates that the intercalation of rarasaponin into interlayer of bentonite created the more complex structure with some interconnected interlayer. The BET surface area for AAB, RB, and RBA composite is 73.7 m2/g, 88.

73 m2/g, and 97.8 m2/g, respectively. The pore volume

of AAb, RB, and RBA composite is0.121 cm3/g, 0.376 cm3/g, and 0.392 cm3/g, respectively. 3.2.

22Effect of pH on the adsorption of crystal violet onto the adsorbents The adsorption of crystal violet on the

surface of the adsorbents is very

6dependent on the pH of the solution. The pH of the solution affects the surface charge of the adsor- bents and also the regulation of ionization of the adsorbate. The

point

10zero charge (pHpzc) of the adsorbents are depicted in Fig. 5

, where AAB, RB, and RBA composite have pHpzc of 3.20, 3.40, and 4.06, respectively. The adsorbent will have a positive surface charge when the pH of the solution below Fig. 4. Nitrogen sorption isotherms of AAB, RB, and RBA com- posite. their pHpzc, and have

23a negative surface charge at the pH above the

pHpzc. The

1effect of pH on the adsorption of crystal violet onto AAB, RB, and

RBA composite

20can be seen in Fig. 6. The adsorption capacity of

the adsorbents increases at the pHs above their pHpzc. At pH below pHpzc, the interaction between cationic crystal violet dye and positively charged L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354–365 Fig. 5. The point of zero charges (pHpzc) of (a) AAB, (b) RB, and (c) RBA composite. Fig. 6. Effect of pH on the adsorption of crystal violet onto AAB, RB, and RBA composite. bentonite leading to repulsion of the dye from the surface of the adsorbents thus decrease the adsorption capacity. At pH above pHpzc, the electrostatic attraction force between cationic crystal violet and negatively charged bentonite occurred thus leading to the higher amount of the dye attached onto the surface of the adsorbents. As the pH increases, the silanol group of bentonite became deproton- ated thus increasing the number of negative sites on the sur-face of adsorbents [20]. The highest removal efficiency of crystal violet was found to be 90% for AAB, 96.32 % for RB, and 99.89% for RBA composite. 3.3. The formation mechanism of RBA composite The formation mechanism of RB by intercalating ben- tonite with rarasaponin has been described by Kurniawan et al. 2011 [9]. The formation mechanism of the RBA com- posite by combining RB and sodium alginate is presented in this section. The schematic of the proposed formation mechanism is presented in Fig. 7. The formation mechanism of RBA composite occurred as follow: in the AAB mol- ecules, the silanol group on the tetrahedral layer of AAB is

2protonated by the occurrence of H+ion since the pHsolution< pHpzc, therefore the –OH of

silanol group is protonated into –H2O+. In the rarasaponin molecules, dissolution of rarasa- ponin in the water cause the two acyl groups (at carbonyl structure) to be deacylated and produced sites with a negative charge. These negatively charged sites are the active binding sites against the positively charged bentonite. As for the natural polymer sodium alginate (Na-alginate), the Na+ ion attached to the carboxyl structure will be released L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354–365 Fig. 7. The proposed formation mechanism of rarasaponin-bentonite-alginate (RBA) composite. as it is dissolved in water and produced an anionic poly- mer with the negatively charged carboxyl group(–COO–) [21]. The – COO– group also contributes as an active binding site for positively charged bentonite. The addition of alginate also induced a gelation process; thus the rarasaponin/ bentonite particles are attracted together. The final step, the rarasaponin/bentonite/alginate mixture is transferred into CaCl2 solution. The Ca2+ ions from CaCl2 are induced cross-linking between the alginate polymers and produced a rigid gel, where the cross linking occurs between the unbinding –COO– groups of the alginate with the pattern of –COO–Ca2+–COO–[22]. 3.4. Equilibrium

12adsorption isotherm studies The equilibrium adsorption isotherm model scan describe how the adsorbate molecules distributed in the

solution. The models also can be used to determine the parameters L. Laysandra

8et al. / Desalination and Water Treatment 160 (2019

) 354–365 in adsorption equilibrium [23,24]. Langmuir and Freundlich adsorption models were employed to investigate the adsorp- tion equilibria data in a single system at three different tem- perature of 30, 50, and 70°C. The Langmuir model describes the mono layer adsorption on the homogeneous surface. The Langmuir equation is written as follows: qe = qm KLCe 1 + KLCe (4) where qm is the Langmuir constant, which indicates the adsorption capacity of the adsorbent (mg/g), while KL represents the adsorption affinity

between adsorbate and adsorbent (L/mg). Freundlich equation describes the adsorption behavior of the heterogeneous systems. The

4Freundlich equation has the following mathematical form

: qt = ksqe2t (1 + (ksqet)) (5) where KF represents the adsorption affinity (mg/g)(mg/L)–n and n is a Freundlich constant which represents the hetero- geneity of the system [18]. The fitted

1parameters of Langmuir and Freundlich mod- els obtained from the fitting of the experimental data are summarized in Table

2, while the plots are given in Fig. 8.

16As shown in Fig. 8, the amount of adsorbed crystal violet dye molecules is increased along with the increase of

tem- perature for all systems, indicating that chemisorption is the most dominant process in this adsorption. The increase of temperature helps to increase the adsorption affinity and cause the interaction between adsorbents and dye molecules becomes stronger; thus the adsorption capacity increases. Both adsorption capacity (qm) and adsorption affinity (KL), the parameters in Langmuir model, are temperature dependence parameters. In an exothermic adsorption pro- cess, the increase in temperature gives a negative impact on these parameters. Meanwhile, in endothermic adsorp- tion, the increase in temperature gives a positive impact on the parameters. As shown in Table 2, the value of qm and KL

1 increase with the increase of temperature thus indicate an endothermic adsorption process

. Similar to Langmuir

6model, the parameters KF and n in Freundlich model are also temperature

dependence. For a physisorption process, the values of KF and n will decrease as the temperature increases; while in chemisorption, the increase in temperature will give rise to the value of the parameters. In

1the adsorption of crystal violet onto the AAB, RB, and

RBA composite, the parameter KF and n increase as the adsorption temperature increases thus supported the chemisorptions process. With the increase of temperature, there is more heat energy available to be converted into kinetic energy and leading to greater interaction between crystal violet dye molecules and surface of adsorbents. Parameter n in Freundlich also represents the heterogeneity of the surface of adsorbent; as the temperature increases, the value of parameter n also increased, this is due to the increase of the system heterogeneity. Based on the data and calculated parameters, both Langmuir and Freundlich

models gave reasonable and con- sistent values of their parameters. In the AAB system, the data fitting by using Freundlich equation gave better values of R2 than that of Langmuir model. The HYBRID and MPSD values also indicate that experimental and calculated data in Freundlich are closer to each other than in Langmuir. Therefore, from this point of view, the Freundlich

4equation represents the data better than Langmuir the

AAB system.

10**Table 2 Langmuir and Freundlich parameters for the adsorption of** crystal violet **onto** AAB, RB, **and** RBA **composite**

3Adsorbent T (°C) Langmuir Parameters Freundlich Parameters qm (mg/g) KL RL R2† HYBRID§ MPSD‡ KF (mg/g) n R2

† HYBRID§ MPSD‡ (L/mg) (mg/L)–n) AAB 30 141.0932 0.1766 0.00703 0.8752 609.3664 90.3100 46.5350 5.1009 0.9929 25.5953 17.5692 50 156.7306 0.2971 0.00419 0.8971 535.2573 81.6030 55.0873 5.1140 0.9820 78.2889 30.3660 70 176.6300 0.4476 0.00278 0.8706 814.4050 104.4755 64.7932 5.1256 0.9815 145.1187 39.3272 RB 30 191.3284 0.7214 0.00173 0.9338 305.4419 44.6472 74.6830 5.4973 0.9560 408.5259 70.7110 50 199.0631 0.7223 0.00173 0.9379 281.5130 43.3734 78.3167 5.5952 0.9406 563.4575 83.2349 70 270.9195 0.7923 0.00158 0.9220 632.0558 83.2288 103.5830 5.6031 0.8421 1815.4867 155.0829 RBA composite 30 398.5130 0.2320 0.00536 0.9242 687.7220 67.6047 93.7641 3.4687 0.9481 1518.7219 139.3445 50 454.2653 0.2334 0.00533 0.9523 511.6368 63.8123 104.8552 3.4823 0.9247 2225.9307 168.6787 70 476.0389 0.2554 0.00487 0.9144 1206.8137 99.6014 113.0104 3.4847 0.8913 3072.5068 199.7183 †R2 is sum squares of residuals between calculated and experimental data; the value was obtained directly from data fitting by using Sigma plot. §HYBRID = 100 (qe,exp - qe,cal)2 n-p ∑ qe,exp (qe,exp - qe,cal) 2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 n-p ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 n-p ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPSD = 100 1 ∑ (qe,exp - qe,cal)2 ±MPS

11n is the number of the data points and p is the number of parameter within the model

. L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354–365 The adsorption of violet crystals into RB and RBA compos- ites was found to fit the Langmuir better than the Freundlich equation thus suggesting that the adsorption has a homoge- neous surface coverage; the HYBRID and MPSD error func- tions also resulting in lower values for Langmuir compared to Freundlich.

6A similar phenomenon also observed in the study by Oladipo et al., the chemisorption of

crystal vio- let onto A-AAB also found to be fitted well with Langmuir [25]. Brião et al. also found

1that the adsorption of crystal violet onto

5better than the Freundlich equation [26]. Some comparison studies regarding the adsorption of

crystal violet dye onto other adsorbents are summarized in Table 3. The use of rarasaponin to intercalate bentonite is Fig. 8. Adsorption isotherms of crystal violet onto (a) AAB, (b) RB, and (c) RBA composite. Table 3 Comparison study

19for the adsorption of crystal violet dye onto

various adsorbent Adsorbent‡ HDTMA-bentonite A-AAB Ch-GO/PUF Natural zeolite HDTMA-zeolite CTABzeolite Chitin/ZSM-5 AAB RB RBA composite Characteristic Chemisorption Ch

14et al. / Desalination and Water Treatment 160 (2019) 354-365 able to

produce adsorbents with higher adsorption capac- ity than by using other surfactants; RB (in this study) can adsorb crystal violet dye up to 270.92 mg/g meanwhile HDTMA-bentonite only can adsorb 0.16 mg (365.11 µmol) crystal violet per g of adsorbent [27]. Karadag et al. showed that intercalation of HDTMA into another type of clay mineral, namely zeolite, also can increase the adsorption capacity but the intercalation of CTAB is failed to promote the adsorption capacity; where natural zeolite can adsorb 8.564 mg/g, HDTMA-zeolite 13.148 mg/g, and CTAB-zeo- lite 5.539 mg/g [28]. An excellent adsorption performance was shown by Chitin/ZSM-5 composite [26], from the study by Brião et al., where the Chitin/ZSM-5 composite can adsorb crystal violet dye 2.6 times (1217.3 mg/g) more than the RBA composite (476.04 mg/g) in this study. However, overall the adsorption performance of RBA composite is still comparable to the adsorbents listed in Table 3. 3.5. Adsorption kinetics studies The adsorption kinetics experiments were conducted to understand the mechanism of the adsorption of crys- tal violet onto AAB, RB, and RBA composite. The pseu- do-

8first-order and pseudo-second-order kinetic models were utilized to correlate the experimental data [29]. The mathematical expression for pseudo-first-order

can be written as [30]: qe $(1 - \exp(-k't)) = qt (6)$ and the pseudo-second-order is expressed as [17]: qt = (1 + ks(qkes2qtet)) (7) Fig. 9. Adsorption kinetics of crystal violet onto (a, d) AAB, (b, e) RB, and (c, f) RBA composite. L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354–365 Table 4

1Pseudo-first and second order reaction kinetic parameters for the adsorption of crystal violet AAB, RB, and

24qe,exp (mg/g) Pseudo first order Pseudo second order k' (min–1) qe,cal (mg/g) R2† HYBRID§ MPSD‡ ks qe,cal (mg.g

191.min-1) (mg/g) R2

† HYBRID§ MPSD‡ AAB 600 800 1000 RB 600 800 1000 RBA composite 600 800 1000 58.1913 71.9238 83.7341 59.9536 79.9042 99.9066 0.4831 0.5168 0.5569 0.4942 0.5190 0.5630 62.5557 0.1361 83.3395 0.1681 105.7798 0.1711 57.8862 0.9990 0.4945 2.5595 0.0355 70.9664 0.9963 2.3267 4.9339 0.0291 82.2333 0.9944 3.9674 7.1721 0.0273 59.6220 0.9984 0.6342 2.4268 0.0353 79.4548 0.9982 1.2597 3.5318 0.0287 99.3535 0.9977 2.0002 3.6184 0.0267 60.7381 0.9716 22.6320 80.8577 0.9832 14.3337 102.1644 0.9650 28.7274 19.6453 0.0037 14.0250 0.0035 14.9088 0.0029 58.3945 0.9998 71.6684 0.9993 83.0382 0.9978 60.1485 0.9998 80.1334 0.9998 100.1302 0.9996 63.7010 0.9953 84.3589 0.9996 106.4786 0.9926 0.0804 0.6506 2.3266 0.1804 0.1946 0.3850 4.0941 0.3977 8.2470 1.0738 2.3726 4.3457 1.4978 1.4459 1.6471 6.2156 2.0363 8.1470 †R2 is sum squares of residuals between calculated and experimental data; the value was obtained directly from data fifting by using Sigma plot. §HYBRID = 100 ∑ (q t,exp - qt,cal) 2 n-p qt , exp 2 ‡MPSD = 100 1 ∑ qt,exp (qt,exp - qt,cal) n-p / with

11n is the number of the data points and p is the number of parameter within the model

9where qe and qt (mg/g) are the amounts of crystal violet adsorbed at equilibrium and at time t(min), respectively. Parameters k' (min–1) and ks (g mg–1min–1) are the time con- stant of pseudo-first-order and pseudo-secondorder. The adsorption kinetic

plots and fitting by

4using the pseudo-first-order and pseudo-second-order models are depicted in Fig. 9, while the calculated parameters are sum- marized in Table

4. The kinetic studies were done at three different crystal violet dye concentrations. The value of parameter k' in the pseudo-first-order model increases with an increase in the initial concentration of crystal violet dye; this is because the time

30needed to reach the equilibrium condition is longer as the

initial concentration increases so that the value of k' is smaller [17]. The parameter k' only able to show the rate of adsorption per minutes but cannot show

16the amount of crystal violet dye adsorbed per min- utes. The

27pseudo-second-order model can give the

correct prediction on the amount of crystal violet dye adsorbed per minutes from the parameter of time scaling factor ks. As shown in Table 4, the value of ks decreases with an increase in the initial concentration, which means that the amount of crystal violet dye adsorbed per minutes decreases with the increasing initial concentration of the dye. The correlation between the empirical calculated data and the

27 experimental data to pseudo-first-order and pseudo-second-order

is found to be very good, this indicated by the R2 values which are close to 1. As can be observed from the HYBRID and MPSD error function, the error

12values for the pseudo-second-order model are smaller than that of pseudofirst-order model; so that kinetics adsorption

data was better fitted to the pseu- do-second-order model than the pseudo-first-order model. The pseudofirst-order model was developed based on the assumption that mass transfer (physisorp- tion) is more dominant in controlling the adsorption process, while the pseudo-second-order model assumes that chemical adsorption is the rate of determining step [31]. From the experiment of adsorption isotherm, it was found that chemisorption controls the adsorption mecha- nism; this is also supported by the result from the exper- iment of adsorption kinetics. In addition, the predicted value of qe from the pseudo-second-order model is closer to that obtained experimentally (Table 4). 4. Conclusion The new composite, namely RBA composite, has been successfully synthesized from bentonite, natural surfactant (rarasaponin), and natural polymer (sodium alginate). In the formation of RBA composite, the addition of rarasa- ponin induced intercalation process in the bentonite inter- layer, while the addition of alginate as the natural polymer helps to join the particles of bentonite and rarasaponin. The addition of rarasaponin and alginate helps to increase the surface area of the adsorbent and increases the adsorption capacity. The RBA composite has the adsorption capacity two times higher than RB, and three times higher than the L. Laysandra et al. / Desalination and Water Treatment 160 (2019) 354–365 AAB. The chemisorption was the dominant process that controlling the adsorption for all studied adsorbents. Acknowledgment

13Financial support from Indonesia Ministry of Research and Technology and Higher Education through Fundamen- tal Research Grant 2018 is highly appreciated. References

[1] M. Neamtu, A. Yediler, I. Siminiceanu, M. Macoveanu, A. Kettrup, Decolorization of disperse red 354 azo dye in water by several oxidation processes - a comparative study, Dye. Pig- ment, 60 (2004) 61–68. [2] P.K. Malik, S.K. Sanyal, Kinetics of decolourisation of azo dyes in wastewater by UV/H2O2 process, Sep. Purif. Technol., 36 (2004) 167–175. [3] S. Chakraborty, M.K. Purkait, S.D. Gupta, S. De, J.K. Basu, Nanofiltration

of textile plant effluent for color removal and reduction in COD, Sep. Purif. Technol., 31 (2003) 141–151. [4] D. Chen, J. Chen, X. Luan, H. Ji, Z. Xia, Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange, Chem. Eng. J., 171 (2011) 1150–1158. [5] C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet, C.A.D. Mello, Removal of methylene blue from colored effluents by adsorption on montmorillonite clay, J. Colloid Interface Sci., 332 (2009) 46-53. [6] V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye-Tartrazine by photo degrada- tion on titanium dioxide surface, Mater. Sci. Eng. C., 31 (2011) 1062-1067. [7] V.K. Gupta, A. Mittal, V. Gabje, J. Mittal, Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: Bottom ash and de-oiled soya, Ind. Eng. Chem. Res., 45 (2006) 1446–1453. [8] M. Lezehari, J.P. Basly, M. Baudu, O. Bouras, Alginate encap- sulated pillared clays; removal of a neutral/anionic biocide (pentachlorophenol) and a cationic dye (safranine) from aque- ous solutions, Colloids Surfaces A Physicochem. Eng. Asp., 366 (2010) 88–94. [9] A. Kurniawan, H. Sutiono, Y.H. Ju, F.E. Soetaredjo, A. Ayucitra, A. Yudha, S. Ismadji, Utilization of rarasaponin natural surfac- tant for organobentonite preparation: Application for methy-lene blue removal from aqueous effluent, Micropor. Mesopor. Mater., 142 (2011) 184–193. [10] E. Fosso-Kankeu, F. Waanders, C.L. Fourie, Adsorption of Congo Red by surfactant-impregnated bentonite clay, Desal. Water Treat., 57 (2016) 27663–27671. [11] A. Özcan, C. Ömeroğlu, Y. Erdoğan, A.S. Özcan, Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19, J. Hazard. Mater., 140 (2007) 173–179. [12] M.A. Zenasni, B. Meroufel, A. Merlin, B. George, Adsorption of Congo Red from aqueous solution using CTAB-kaolin from Bechar Algeria, J. Surf. Eng. Mater. Adv. Technol., 4 (2014) 332– 341. [13] H. Zaghouane-Boudiaf, M. Boutahala, Kinetic analysis of 2,4,5-trichlorophenol adsorption onto acid-activated mont- morillonite from aqueous solution, Int. J. Miner. Process, 100 (2011) 72–78. [14] A. Kurniawan, H. Sutiono, N. Indraswati, S. Ismadji, Removal of basic dyes in binary system by adsorption using rarasapo- nin-bentonite: Revisited of extended Langmuir model, Chem. Eng. J., 189-190 (2012) 264-274. [15] O. Hamdaoui, Batch study of liquid-phase adsorption of meth- ylene blue using cedar sawdust and crushed brick, J. Hazard. Mater., 135 (2006) 264–273. [16] K.V. Kumar, K. Porkodi, F. Rocha, Comparison of various error functions in redicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon, J. Hazard. Mater., 150 (2008) 158–165. [17] B. Subramanyam, A. Das, Linearised and non-linearised iso- therm models optimization analysis by error functions and statistical means, J. Environ. Health Sci. Eng., 12 (2014) 92. [18] K.V. Kumar, Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon, J. Hazard. Mater., 137 (2006) 1538–1544. [19] J. Sreńscek-Nazzal, U. Narkiewicz, A.W. Morawski, R.J. Wróbel, B. Michalkiewicz, Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon, J. Chem. Eng. Data, 60 (2015) 3146-3158. [20] M. Doğan, M. Alkan, Ö. Demirbaş, Y. Özdemir, C. Özmetin, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, Chem. Eng. J., 124 (2006) 89-101. [21] K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci., 37 (2012) 106-126. [22] A.S. Waldman, L. Schechinger, G. Govindarajoo, J.S. Nowick, L.H. Pignolet, The alginate demonstration: polymers, food science, and ion exchange, J. Chem. Educ., 75 (1998) 1430–1431. [23] E. Nathaniel, A. Kurniawan, F.E. Soetaredjo, S. Ismadji, Orga- no-bentonite for the adsorption of Pb(II) from aqueous solu- tion: Temperature dependent parameters of several adsorption equations, Desal. Water Treat., 36 (2011) 280–288. [24] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295. [25] A.A. Oladipo, M. Gazi, Enhanced removal of crystal violet by low cost alginate/acid activated bentonite composite beads: Optimization and modelling using non-linear regression tech-nique, J. Water Process Eng., 2 (2014) 43–52. [26] G.V. Brião, S.L. Jahn, E.L. Foletto, G.L. Dotto, Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthe- tized using chitin as template, J. Colloid Interface Sci., 508 (2017) 313–322. [27] T.S. Anirudhan, M. Ramachandran, Adsorptive removal of basic dyes from aqueous solutions by surfactant modified ben- tonite clay (organoclay): Kinetic and competitive adsorption isotherm, Process Saf. Environ., 95 (2015) 215-225. [28] D. Karadag, E. Akgul, S. Tok, F. Erturk, M.A. Kaya, M. Turan, Basic and reactive dye removal using natural and modified zeolites, J. Chem. Eng. Data, 52 (2007) 2436–2441. [29] S. Lagergren, About the theory so-called adsorption of soluble substances, K. Sven. Vetenskapsakad Handl., 24 (1898) 1–39. [30] N. Belhouchat, H. Zaghouane-Boudiaf,

C. Viseras, Removal of anionic and cationic dyes from aqueous solution with acti- vated organobentonite/sodium alginate encapsulated beads, Appl. Clay. Sci., 135 (2017) 9–15. [31] W. Plazinski, W. Rudzinski, A. Plazinska, Theoretical models of sorption kinetics including a surface reaction mechanism: A review, Adv. Colloid Interface Sci., 152 (2009) 2–13. [32] J. Qin, F. Qiu, X. Rong, J. Yan, H. Zhao, D. Yang, Adsorption behavior of crystal violet from aqueous solutions with chi- tosan-graphite oxide modified polyurethane as an adsorbent, J. Appl. Polym. Sci., 132 (2015) 41828 (10 pages). 356 358 360 362 364 355 357 359 361 363 365