turn i	tin Turnitin Originality Report				
Maria-	<u>02</u> by Suryadi Ismadji		Similarity by Source		
From h	hippo (Hippo2)	Similarity Index	Internet Sources: Publications:	12% 17%	
Pro ID: Wo	ocessed on 04-Apr-2019 20:34 WIB 1105811004 rd Count: 5479	15%	Student Papers:	3%	
ources	5:				
1	1% match (publications) Shrikant Baslingappa Swami, Nayan Sil Properties of Cashew Nut Linder Comp	ngh J. Thakor, Asmita	<u>M. Gawai. "Mechanica</u>	ļ	
<u>Agricu</u>	Itural Research, 2018				
2	1% match (Internet from 08-Mar-2016) http://vuir.vu.edu.au/15713/1/Tian_1998	compressed.pdf			
3	1% match (Internet from 04-Aug-2012) http://envis.kuenvbiotech.org/abstract14	<u>l.pdf</u>			
4	1% match (publications) Idrees Ahmed Wani, Dalbir Singh Sogi, chemical and functional properties of na	<u>Uma Shanker Shivha</u> ative and hydrolyzed ki	<u>re, Balmeet Singh Gill. idney bean (Phaseolus</u>	<u>"Physico-</u> vulgaris	
<u>L.) pro</u>	tein isolates", Food Research Internatio	<u>nal, 2015</u>			
5	1% match (publications) Nisar A. Mir, Charanjit S. Riar, Sukhcha	rn Singh. "Effect of pH	l and holding time on th	<u>ie</u> acid	
<u>profile</u>	and scoring", Food Chemistry, 2019				
http://v	www.jeteas.scholarlinkresearch.org/artic	les/Changes%20in%2	0Functional%20Proper	<u>ties%20as%20</u>	a%20Measure%20of%20Bioo
Biolog	Yemisi A. Adebowale, Kayode O. Adebo salts on the functional properties of Muc ical Macromolecules, 2007	<u>owale. "The influence (cuna pruriens protein i</u> :	<u>of kosmotropic and cha</u> solate", International Jo	otropic ournal of	
8	1% match (publications)	Sudharsan K Radha	krishnan S Babuskin	М	
<u>LWT -</u>	Sukumar. "Design and characterization Food Science and Technology, 2016	of spice fused tamarin	id starch edible packag	<u>ing films"</u> ,	
9	< 1% match (Internet from 22-Feb-2019))			
http://v	www.ajofai.info/Abstract/Biochemical%20	0and%20functional%2	0properties%20of%20p	proteins%20fro	m%20red%20kidney%20bea
10	< 1% match (publications) S. Mundi, R.E. Aluko. "Physicochemic globulin protein fractions", Food Resea	<u>al and functional prope</u> arch International, 201	erties of kidney bean al 2	bumin and	
11	< 1% match (publications)	na Panaviá Žužana Va	ětog Lidijo Dotrović N	lilioo	
<u>(Cucu</u>	<u>Vučinić–Vasić, "Investigation on solubi</u> rbita pepo) seed protein isolate", LWT - I	lity, interfacial and emi Food Science and Tec	hnology, 2015	<u>oumpkin</u>	
12	< 1% match (publications)				
	<u>Wanasundara, P. K. J. P. D., and F. Sh</u> Isolates", Journal of Agricultural and F	ahidi. "Functional Pro ood Chemistry, 1997.	perties of Acylated Flax	<u> Protein</u>	
13	< 1% match (Internet from 20-Jul-2018 http://repository.wima.ac.id/10795/1/JF	3) FDA-14-1.pdf			
14	< 1% match (Internet from 21-Aug-201	18)			
14	https://scholar.oauife.edu.ng/ijs/files/fa	muwagun_gbadamo	<u>si 12.pdf</u>		

15	< 1% match (publications) Bučko, Sandra, Jaroslav Katona, Ljiljana Popović, Žužana Vaštag, Lidija Petrović, and Milica Vučinić–Vasić, "Investigation on solubility, interfacial and emulsifying properties of numpkin
Cucur	bita pepo) seed protein isolate", LWT - Food Science and Technology, 2015.
6 061:	< 1% match (publications) <u>Arogundade, L.A "Effect of ionic strength and/or pH on Extractability and physico-functional</u> <u>characterization of broad bean (Vicia faba L.) Protein concentrate", Food Hydrocolloids,</u> 2
17	< 1% match (publications) <u>Phongthai, Suphat, Seung-Taik Lim, and Saroat Rawdkuen. "Optimization of microwave- assisted extraction of rice bran protein and its hydrolysates properties", Journal of Cereal e, 2016.</u>
18 oduc	< 1% match (publications) <u>Palanivel Velmurugan, Jung-Hee Park, Sang-Myeong Lee, Jum-Suk Jang et al. "Reduction of</u> <u>silver.(I) using defatted cashew nut shell starch and its structural comparison with commercial</u> <u>t", Carbohydrate Polymers, 2015</u>
19	< 1% match (publications) <u>Zullaikah, S "A two-step acid-catalyzed process for the production of biodiesel from rice bran</u> <u>oil", Bioresource Technology, 200511</u>
20 chnic	< 1% match (publications) <u>Teresinha de Jesus Aguiar dos Santo Andrade, Bruno Quirino Araújo, Antonia Maria das</u> <u>Graças Lopes Citó, Juliana da Silva et al. "Antioxidant properties and chemical composition of</u> <u>cal Cashew Nut Shell Liquid (tCNSL)", Food Chemistry, 2011</u>
21	< 1% match (Internet from 12-Mar-2016) http://ccsenet.org/journal/index.php/jfr/article/download/35261/22630
22	< 1% match (publications) Florencia Cattaneo, Jorge Esteban Sayago, María Rosa Alberto, Iris Catiana Zampini et al. "Anti-inflammatory and antioxidant activities, functional properties and mutagenicity studies of and protein hydrolysate obtained from Prosopis alba seed flour", Food Chemistry, 2014
23 terna	< 1% match (publications) <u>R. E. Aluko. "Some Physicochemical and Functional Properties of Cowpea (Vigna</u> <u>Unguiculata) Isoelectric Protein Isolate as a Function of PH and Salt Concentration",</u> tional Journal of Food Sciences and Nutrition, <u>1/1/1997</u>
24 ad iso	< 1% match (publications) <u>Saka O. Gbadamosi. "Amino acid profile, protein digestibility, thermal and functional</u> properties of Conophor nut (Tetracarpidium conophorum) defatted flour, protein concentrate plates : Functional properties of conophor proteins", International Journal of Food Science & plagy, 04/2012
25	< 1% match (Internet from 07-Apr-2016) http://pubs.sciepub.com/ajfst/3/5/2/index.html
26	< 1% match (publications) <u>El Nasri, N.A., "Functional properties of fenugreek (Trigonella foenum graecum) protein</u> <u>concentrate", Food Chemistry, 2007</u>
27 harac	< 1% match (publications) Ngoc Yen Tran-Thi, Novy S. Kasim, Maria Yuliana, Lien Huong Huynh, Wen-Lian Chang, Yi- Hsu Ju, "Polysaccharides-induced precipitation of protein from defatted roselle seed and its terization: Antinutritional factors and functional properties", Journal of the Taiwan Institute of cal Engineers, 2013
28	< 1% match (student papers from 14-Dec-2010) Submitted to National Chung Hsing University on 2010-12-14
	< 1% match (Internet from 18-Jan-2008)

reports the isolation of protein from defatted cashew nut shell (CNS), with the crude protein product containing 91.07% protein. Under its natural conditions, the solubility of this protein isolate is comparable (74.02%) to that of mustard green meal protein. The solubility of the protein isolate decreases with decreasing pH, with the minimum solubility observed at its isoelectric point (pH 3). The water holding capacity, foaming capacity, foam stability, emulsifying capacity and emul- sion stability were found to be 2.56 cm3 H2O/g protein, 4.28 cm3 oil/g protein, 76.88%, 70.98%, 62.0% and 79.0%, respectively. The profiles of these functional properties were determined with varying pH values and NaCl concentrations, and improved properties were observed in the alkaline pH range and in the presence of NaCl. Electrophoretic analysis showed that the high molecular weight protein globulin was the major protein in the protein isolate. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction Production of high protein food from under-exploited sources is one response to the growing protein malnutrition in developing countries. Several new protein sources have been identified, such as cashew nut protein isolate (Mila, Roque, & Wuc, 2009). The

After removing lipids and phenols, the residue (60% of CNS) has a protein content of 26.17% (Yuliana, Huynh, Ho, Truong, & Ju, 2012). The use of CNS as a protein source not only helps to reduce waste from cashew nut production but also represents a low-cost protein source for human consumption. Abbreviations: CNS, cashew nut shell; WAC, water absorption capacity; OAC, oil absorption capacity; FC, foaming capacity; FS, foam stability; EC, emulsifying ca- pacity; ES, emulsion stability; LGC, lowest gelation concentration; pl, isoelectric point; MW, molecular weight. * Corresponding author. Tel.: b886 2 2737 6612; fax: b886

192 2737 6644. E-mail address: yhju@mail.ntust.edu.tw (Y.-H. Ju). 0023-6438/\$ e see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx .doi.

org/10.1016/j.lwt.2013.10.022 Plant protein should ideally possess several desirable physico- chemical and functional characteristics such as solubility, foaming and emulsification, water and oil binding capacity and gelation (Wang & Kinsella, 1976). These intrinsic properties affect the behavior of proteins in foods during processing, manufacturing and storage (Kinsella, 1979). Therefore, it is important to study the re- lationships between functional properties and the environment of the protein such as pH and ionic strength to enable the effective utilization of low-cost proteins (Aluko & Yada, 1995; Myers, 1988). The

18isolation and characterization of proteins from defatted CNS have not previously

been studied. The aim of this study was to isolate protein from defatted CNS, characterize the protein isolate by studying its chemical composition, and monitor the effects of environmental conditions such as pH and NaCl concentration on its

17functional properties. 2. Materials and methods 2.1. Materials and chemicals

......

CNS was obtained from the waste of cashew nut (variety Ven- guria-4) production in a factory in Solo, Indonesia. The nuts were ground, sieved, and stored at ?4 C. Defatted CNS was obtained by subjecting CNS to soxhlet extraction using methanol

8for 10 h fol- lowed by n-hexane for another 10 h.

Methanol (99.5% purity) and ethanol (95% purity) were pur- chased from Echo Chemical (Miao Li, Taiwan) while n-hexane (95% purity) was obtained from Tedia (OH, USA). Hydrochloric acid (37% purity) was provided by Thermo Fisher Scientific (MA, USA). Deionized water was supplied from a mixed bed deionizer, model MB18-PVN/m9060 (Pure Aqua Inc., Santa Ana, CA, USA). The chemicals used in protein functional analysis were obtained from Sigma Aldrich (St. Louis, MO, USA). Bovine serum albumin (BSA), protein assay dye reagent concentrate and SDS-PAGE anal- ysis kits were purchased from Bio-Rad (CA, USA). 2.2. Protein isolation from defatted CNS Protein was isolated from defatted CNS following the method of Chavan, McKenzie, and Shahidi (2001).

18CNS (10 g) was soaked in water

(90 g) and stirred for 1 h at 30 C. The mixture was then centrifuged (1500 g, 30 min) and the

18supernatant was decanted. The residue was

extracted consecutively by a 0.15 mol dm?3 NaCl solution, ethanol solution (4ethanol ¼ 0.7) and 0.2 mol dm?3 NaOH solution under the same conditions. Extraction and centrifugation were repeated twice. All supernatants were combined, adjusted to pH 4.4, and left to stand for 1 h. The precipitate was recovered by centrifugation (1500 g, 30 min) and freeze dried (Labconco Free Zone 2.5 Benchtop freeze dryer model 7670520, Kansas City, MO). The dried protein was ground and stored at ?20 C. 2.3. Chemical composition of protein isolate Protein and ash contents were determined by

8AOCS Official Methods Ba 4a-38 (1997) and Ba

52-49 (1997), respectively. Total dietary fiber (TDF) was analyzed using the modified method described by

8Fabian, Ayucitra, Ismadji, and Ju (2011). TDF content was

measured as the residue weight minus the protein and ash weight. Retained starch, expressed as soluble sugar, was analyzed by the modified AOAC Official Method 996.11 (1996) using 3,5- dinitrosalicylic acid (DNS) as the reagent. 2

21.4. Protein solubility Protein solubility was analyzed according to the method of

Cepeda (1998). The protein sample (125 mg) was dissolved in NaOH solution (20 cm3, 0.1 mol dm?3) and stirred at 30 C for 1 h. The pH of the mixture (10 cm3) was adjusted using 1.0 mol dm?3 HCl so- lution or 1.0 mol dm?3 NaOH solution.

10The mixture was then centrifuged (1500 g, 15 min).

The protein content of the super- natant was analyzed using the Bradford method. The protein sol- ubility was also analyzed at its pl at various NaCl concentrations (0, 0.5, 1.0, 1.5, 2.0 mol dm?3).

42.5. Functional properties of the protein isolate 2.

5.1. Water absorption capacity (WAC) The WAC of the protein was measured using a modified version of the method of Lopez, Falomir, and Olivares-Vasquez (1991). Protein isolate was vigorously mixed with water (1:10, w/w) for 5 min. The slurry was then centrifuged (1500 g, 30 min). The su- pernatant was weighed and WAC was determined. 2.5.2. Oil absorption capacity (OAC) The OAC of the protein isolate

9was determined using the method of Chavan et al. (2001). Protein isolate (0.5 g) was mixed with

castor oil (5 cm3) for 1 h at 30 C. The mixture was centrifuged (1500 g, 30 min) and the oil was decanted. The oil trapped mixture was weighed. OAC was expressed as cm3 of oil trapped per g protein isolate. 2.5

25.3. Foaming capacity (FC) and foam stability (FS) FC and FS were studied using a method adopted from Sze-Tao and Sathe

(2000). Protein isolate (250 mg)

17was mixed with water (250 cm3) and the mixture was adjusted to the

desired pH (2e11) and NaCl concentration (0, 0.5, 1.0, 1.5, 2.0 mol dm?3). The mixture was blended for 5 min. FC was determined as the percentage vol- ume increase due to blending. In measuring FS, the change in foam volume was monitored for 60 min and the FS was expressed ac- cording to the following equation. FSð%P ¼ volume after 60 minstanding ? volume before blending volume after blending ? volume before blending 100% 2.5.4. Emulsifying capacity (EC)

5and emulsion stability (ES) EC and ES were analyzed by the method of Chau and Cheung (1998) with

minor modification. Protein isolate in water (1%, 5 cm3) was vigorously blended with 5 cm3 castor oil for 5 min.

27The mixture was then centrifuged (1500 g, 5 min).

EC was deter- mined by dividing the height of the emulsifying layer by the total height. The mixture was then heated at 80 C for 30 min, followed by centrifugation (1500 g, 5 min). ES was expressed as the ratio of the height of the emulsifying layer after heating to that before heating. 2.6. Bulk density The bulk density of the protein was measured following the method of Wang and Kinsella (1976). A graduated cylinder was weighed and the isolated protein was added until it reached 10 cm3. The cylinder was tapped and the total weight was measured. Bulk density was calculated as the weight of 10 cm3 of protein isolate. 2.7. Gelation properties The gelation properties of protein isolates were determined using the method described by Coffman and Garcia (1977). Sample suspensions with a protein fraction (xprotein) of 0.02e0.2 were prepared with an interval of 0.02. The samples

29were heated for 1 h in boiling water and abruptly cooled in an ice bath, and then cooled further at 4 C for 2 h. The

lowest

6gelation concentration (LGC) was taken as the lowest concentration of the suspension when the sample from the inverted tube did not fall or slip. The effect of pH on the sample gelation was

investigated. The suspension was adjusted to the desired pH before heating. The ef- fect of the NaCl concentration on gelation was also studied. The LSDs were determined as described above. 2.8. SDS-PAGE analysis SDS-PAGE analysis was carried out using a modified version of the method of Shiu, Ju, Chen, and Lee (2013). The sample was prepared by dissolving the protein isolate in water (10 mg cm?3) and adding 2-mercaptoethanol. The mixture was heated in boiling water for 10 min. SDS-PAGE electrophoresis was performed on a 0.12 g cm?3 acrylamide resolving gel and a 0.05 g cm?3 acrylamide stacking gel. Approximately 30 ml of the protein solution

21was loaded onto the gel. The pre -electrophoresis was conducted at

70 kV

9for 30 min, followed by 110 kV for 75 min. After the gel was

soaked in ethanol-based Coomassie blue, protein bands were visualized by de-staining the background color of the gel using acetic acid in ethanol. Native-PAGE was carried out using the non-denatured protein solution. M. Yuliana et al. / LWT - Food Science and Technology 55 (2014) 621e626 623 3. Results and discussion 3.1. Chemical composition of the protein isolate Four extraction agents (water, 0.15 mol dm?3 NaCl, a 4ethanol ¼ 0.7 ethanol solution and 0.1 mol dm?3 NaOH) were used to separate protein from the defatted CNS. Acid precipitation was used to separate proteins from other components such as carbo-hydrates and fine fiber. Approximately 86 g of crude protein product was recovered from 100 g of defatted CNS. The isolated crude protein product contained 91.07% protein, 2.34% fiber, 4.72% ash and 1.38% soluble sugar. The proportions of protein in the water, salt, alcohol and alkaline fractions were 53.12%, 7.65%, 11.43% and 27.80%, respectively. The ash content of this crude protein is considerably higher than that of cashew nut protein isolate, perhaps due

24to salt formation during precipitation at the

I.....

pl (Chavan et al., 2001). 3.2. Effect of pH on the solubility and functional properties of the protein The

5effect of pH on the solubility and functional properties of isolated protein is shown in Table

1. A minimum solubility of 48.44% was observed at pH 3, and the solubility increased rapidly with both increasing and decreasing pH. At pH 2 and 11, 82.31% and 84.75% protein were soluble, respectively. In general, the depen- dence of the solubility of this protein product on pH agrees with the observations of

previous studies (Chau & Cheung, 1998; Shanmugasundaram & Venkataraman, 1989). Damodaran (1997) stated that the minimal protein solubility occurs at its pl and that

32the majority of food proteins are acidic, with minimum solubilities at pH 4e5 and maximum solubilities at alkaline pH.

At low or high pH, proteins have either net positive or net negative charges, leading to an electrostatic repulsive force that helps to keep protein molecules apart, disrupting the native protein structure,

34shifting the equilibrium toward the unfolded form and subsequently exposing the buried functional groups in protein molecules,

thus

30leading to an increase in protein solubility. In contrast, near the

pl, proteins aggregate due to strong intermolecular interactions, resulting in less interaction with water and thus reducing protein solubility. At neutral pH, the solubility of the protein isolated from CNS is comparable to that of mustard green meal (77.9%) (Aluko, McIntosh, & Katepa-Mupondwa, 2005) but higher than that of peanut protein isolate (60.5%) (Cherry, 1990) and soya protein isolate (71.7%) (Lin, Humbert, & Sosulski, 1974). The solubility of defatted CNS protein should be adequate for food formulation without requiring pH adjustment. WAC profiles as a function of pH are shown in Table 1. At pH 3, the protein isolate has a minimum WAC of 1.2 cm3 H2O/g protein. Near the pI, proteins tend to aggregate due to strong intermolecular interactions, decreasing their interaction with water, and thus 20 18 16 LGC (g cm-3) 14 12 10 8 6 0 2 4 6 8 10 12 pH 0.0 0.5 1.0 1.5 2.0 2.5 NaCl concentration (x10-3 mol cm-3) Fig. 1. Effect of pH and NaCl concentration on the lowest gelation concentration (LGC) of protein isolated from defatted CNS. (LGC (g cm?3) vs. pH, LGC (g cm?3) vs. NaCl concentration (mol dm?3)). decreasing WAC. Higher WAC values were observed on either side of pl. WAC increased significantly as pH was increased from 3 to 8 and decreased slightly as the pH was increased further. The minimum FC occurs at pH 3 (28.65%) because of the behavior of proteins at their pls, and FC increases with pH above the pl, with FC values ranging from 32.34% to 90.01% (Table 1). The increase in FC with pH is likely due to the increased net charges on the proteins, which weakened the hydrophobic interactions and increased the flexibility of protein. This allowed the

16protein to diffuse more rapidly to the airewater interface to encapsulate air particles, enhancing foaming.

Deng et al. (2011) also mentioned that high protein solubility is required to increase FC and FS.

13A similar trend was observed in the dependence of

FS on pH. FS is the lowest (38.89%) at the pI (pH 3), while increasing the pH to 10 resulted in the highest FS. The high FS values at pHs above the pI could be attributed to the greater amount of solubilized proteins. This resulted in an increase in viscosity and facilitated the forma- tion of a multilayer cohesive protein film at the interface. The in- crease in FS at higher pH may have been due to a decreased tendency for foam particles to coalesce as a result of the higher net negative charge of the protein. Deng et al. (2011) mentioned that the decrease in FS at pH > 10 might be due to ionic repulsion among peptides. Makri and Doxastaskis (2006) added that pH actually alters the structure of protein molecules, leading to differences in FC and FS. Table 1 shows that pH has similar effects on the emulsifying properties of the protein isolate as it does on the foaming Table 1 Effect of pH on the protein solubility and functional properties (WAC,

33FC, FS, EC and ES). a Protein properties pH 2

3 4 5 6 7 8 9 10 11 Solubility (%) WAC (cm3 H2O/g protein) FC (%) FS (%) EC (%) ES (%) 82.31 48.44 2.13 1.20 60.13 28.65 52.39 38.89 54.0 40.0 44.0 50.0 50.98 59.05 1.50 2.03 32.34 48.77 40.98 50.57 42.0 54.0 62.0 68.0 72.23 74.02 2.49 2.56 67.91 76.88 65.77 70.98 58.0 62.0 75.0 79.0 75.78 79.33 2.97 2.88 83.45 89.43 76.43 83.88 64.0 68.0 80.0 82.0 80.45 2.78 90.01 84.51 70.0 84.0 84.75 2.75 86.51 83.75 66.0 85.0 a These results represent the means of three determinations. The SD values range from 0 to less than 5%, and thus are regarded as insignificant. properties. The lowest EC value (40.0%) was found at the pl (pH 3), while the highest (70.0%) was observed at pH 10. The relationship between EC and pH is similar to that between protein solubility and pH. This agrees with the report of

10Lawal, Adebowale, Ogunsanwo, Sosanwo, and Bankole (2005). pH

affects EC primarily by altering the charge distribution of protein molecules (Deng et al., 2011). At pH above 10, hydrophobic forces decrease as a result of the increased protein net charge and the increased flexibility. This enables proteins to rapidly diffuse to the airewater interface, resulting in poor EC. ES was also observed to increase with increasing pH. The low stability of the emulsion under acidic conditions

14may be attributed to the increased interaction between emulsified droplets,

thus facilitating protein aggregation and reducing ES. When the pH was increased toward alkaline values,

24coulombic repulsion increased between neighboring droplets and the hydration of the charged protein molecules

increased. These factors reduced the interfacial energy and led to the coalescence of emulsion droplets (Chavan et al., 2001). As shown in Fig. 1, the highest and lowest LGC values were observed at pH 10 and pH 3, respectively. At its natural pH, the LGC of the defatted CNS protein isolate was found to be 10%, comparable to that of lupine

10protein concentrate (12%) (Lqari, Vioque, Pedroche, & Millán, 2002) and

that of wheat protein isolate (7.5%) (Schmidt, 1981). Electrostatic repulsion was minimal at the pl and may enhance the intermolecular forces among protein molecules, facilitating gelation. 3.3. Effect of NaCl concentration on protein solubility and functional properties Table 2 shows the effect of NaCl concentration on protein sol- ubility and functional properties. Protein solubility increased from 48.44% to 75.37%

33when the NaCl concentration was increased from 0 to

0.5 mol dm?3. The addition of a small amount of NaCl induced salting-in, increasing protein solubility. However, further increases in NaCl concentration resulted in the interaction of negatively charged chloride ions with positively charged protein molecules, leading to a decrease in electrostatic repulsion, thus enhancing hydrophobic interactions. WAC increased from 1.23 to 2.04 cm3/g as the NaCl concentra-tion was increased from 0 to 0.5 mol dm?3 and then decreased moderately with further increases in NaCl concentration. Lawal et al. (2005) stated

16that at low salt concentration, hydrated salt ions

neutralize charges on the protein surface, reduce the ordered water around the protein and increase the system entropy. How- ever, as salt concentration increases,

7much of the existing water is bound to the salt

ion, thus enhancing the intermolecular in- teractions among proteins and leading to the dehydration of the protein and a reduction in WAC. The effects of NaCl concentration on FC and FS are similar to the effects on other functional properties. The results show that FC, FS Table 2 Effect of NaCl

26concentration on protein solubility and functional properties.a Protein

properties Salt concentration (mol dm?3) 0 0.5 1 1.5 2 Protein solubility (%) WAC (cm3 H2O/g protein) FC (%) FS (%) EC (%) ES (%) 48.44 75.37 1.23 2.04 28.65 81.34 56.03 65.94 42.0 72.0 50.0 88.0 73.33 69.36 1.92 1.78 80.66 79.15 74.82 75.09 66.0 62.0 72.0 68.0 66.72 1.73 76.53 76.91 56.0 66.0 a The results represent the means of three determinations. The SD values range from 0 to less than 5%, and thus are regarded as insignificant. and protein solubility increased with increasing NaCl concentration up to 0.5 mol dm?3 due to the weakening of hydrophobic in- teractions. Increasing NaCl also increases the propensity for adhe- sion between protein molecules and results in the formation of interfacial protein layer with improved rheological properties, maintaining the integrity of the foam during mechanical whipping. Further increases in NaCl concentration had adverse effects on FC due to the salting-out effect. Lawal et al. (2005) explained that the ion screening effect at high salt concentrations improves the hy- drophobic interactions of proteins and destroys protein films, promoting flocculation, aggregation and precipitation. On the other hand, further

addition of NaCl improves the FS of the protein. This phenomenon is likely due to the increased solubility and surface activity of soluble protein. As shown in Table 2, EC and ES increase rapidly with increasing NaCl concentration up to 0.5 mol dm?3. This might be attributed to enhanced hydrophobic proteineprotein interactions. This condi- tion could favor emulsion by improving the

12rheological properties of the interfacial protein films that encapsulate the oil droplets.

An increase in rheological strength

12could reduce the mechanical deformation and desorption of the interfacial protein, resulting in more emulsified droplets.

The increase in ES may be due to the

23formation of charged layers around fat globules, resulting in mutual repulsion due to the formation of a hydrated layer around the interfacial material

and retarding droplet coalescence (Kinsella, Damodaran, & German, 1985). However, at NaCl concentrations above 0.5 mol dm?3, the salting-out effect resulted in a rapid decrease in EC and ES

30with increasing NaCl concentration. LGC decreases with increasing NaCl concentration up to

0.5 mol dm?3 (Fig. 1).

7Protein gels are formed by intermolecular interactions, which produce a

continuous three-dimensional network exhibiting structural rigidity.

Cross-linking involves the formation of hydrogen bonds (Eldrigde & Ferry, 1954), disulfide bonds (Huggins, Tapley, & Jensen, 1951) and the exchange and formation of peptide groups (Bello, 1965). Low ionic strength enhanced the unfolding of buried functional groups within protein matrices, improving interactions among protein molecules. How- ever, further increases in ionic strength caused salting-out, thus impairing gelation.

Schmidt (1981) also stated that for a given

2type of protein, a critical concentration is required for gelation, and the type of gel

varies with protein concentration.

2Considerably higher protein concentrations are usually required for the gelation of globular proteins.

3.4. Oil absorption capacity (OAC) At neutral pH and without NaCl addition, the OAC

26was found to be 4.28 cm3 oil/g protein. This value is

20was round to be 4.20 cm3 only protein. This value is

similar to the OAC of cashew nut protein isolate (4.42 cm3/g) (Ogunwolu et al., 2009) and soy- bean protein isolate (4.88 cm3/g) (Okezie & Bello, 1988).

22Kinsella (1976) stated that the oil binding mechanism can be explained as the physical entrapment of oil by capillary attraction.

3.5. Bulk density

14The bulk density of the protein isolate was found to be 0. 148 g cm?3. This is lower than

that of commercial soybean protein isolate (0.238e0.47 g cm?3) (Aremu, Olaofe, & Akintayo, 2007; Chau & Cheung, 1998), comparable to that of the protein isolate of processed defatted fluted pumpkin seed flour (0.180e 0.380 g cm?3) (Fagbemi, Oshoudi, & Ipinmoroti, 2006), and higher than that of the peanut protein isolate of conarachin I (0.080 g cm?3) and conarachin II (0.084 g cm?3) (Monteiro & Prakash, 1994). Bulk density depends on interrelated factors such M. Yuliana et al. / LWT - Food Science and Technology 55 (2014) 621e626 625 Fig. 2. Coomassie-stained SDS-acrylamide gel (0.12 g cm?3 acrylamide) containing protein isolated from defatted CNS. Lefteright: Molecular weight (MW), Marker (M), Native-PAGE (N), SDS-PAGE (S).

4as the intensity of attractive interparticle forces, particle size and the number of contact points (Peleg & Bagley, 1983).

3.6. SDS-PAGE The MW distribution of the protein isolate is shown in Fig. 2. The protein bands range from less than 14e97 kDa and can be divided into 11 fractions. Fractions 1e4 are high-MW proteins, and the other seven fractions are low-MW proteins. Based on the Native- PAGE pattern, the high-MW protein fraction has a greater in- tensity than the low-MW fraction, and fractions 3 and 4 are the major fractions. The absence of fractions 3 and 4 and the presence of fractions 6 and 7 in the SDS-PAGE analysis indicated the dissociation of high-MW proteins to lower MW subunits by heating. According to El-Adawy (2000), the high-MW protein may be mostly globulin, while the other fractions consist of albumin, glu- telin and gliadin. 4. Conclusion A product with 91.07% protein content was successfully isolated from defatted CNS. The product also contains 2.34% fiber, 4.72% ash and 1.38% soluble sugar. The solubility of the protein isolated from defatted CNS was 74.02% at neutral pH and decreased with decreasing pH. The minimum solubility occurred at the pl of the protein isolate (pH 3). Other properties were investigated at the pl including WAC, OAC, FC, FS, EC and ES. Adjusting the pH and NaCl concentration can improve the characteristics of this protein product by affecting its solubility, water holding capacity, foaming and emulsifying properties. The PAGE results demonstrate that this protein product mainly contains high-MW protein. Acknowledgment

13This work was supported by the National Taiwan University of Science and Technology

through grant 100H451403, References Aluko, R. E., McIntosh, T., & Katepa-Mupondwa, F. (2005). Comparative study of the polypeptide profiles and functional properties of Sinapis alba and Brassica juncea seed meals and protein concentrates. Journal of the Science of Food and Agriculture, 85, 1931e1937. Aluko, R. E., & Yada, R. Y. (1995). Structureefunction relationships of cowpea (Vigna unguiculata) globulin isolate: influence of pH and NaCl on physicochemical and functional properties. Food Chemistry, 53, 259e265. AOAC Official Method 996.11. (1996). Starch (total) in cereal products: amyloglu- cosidase-aamylase method. In W. Horwitz (Ed.), Official methods of analysis of AOAC International. Gaithersburg, Maryland, United States: AOAC International. AOCS Official Method Ba 4a-38. (1997). Nitrogen-ammoniaprotein modified Kjel- dahl method. In D. Firestone (Ed.), Official methods and recommended practices of the AOCS. Champaign, IL, USA: American Oil Chemists' Society. AOCS Official Method Ba 5a-49. (1997). Ash. In D. Firestone (Ed.), Official methods and recommended practices of the AOCS. Champaign, IL, USA: American Oil Chemists' Society. Aremu, M. O., Olaofe, O., & Akintayo, E. T. (2007). Functional properties of some Nigerian varieties of legume seed flours and flour concentration effect on foaming and gelation properties. Journal of Food Technology, 5(2), 109e115. Bello, J. (1965). The effects of biuret-complex formation and of salts on the collagen helix and on the gelation of gelatin. Biochemical and Biophysical Acta, 109, 250e260. Cepeda, E. (1998). Functional properties of faba bean protein flour dried by spray drying and freeze drying. Journal of Food Engineering, 36, 303e310. Chau, C. F., & Cheung, P. C. K. (1998). Functional properties of flours prepared from three Chinese indigenous legume seeds. Food Chemistry, 61(4), 429e433. Chavan, U. D., McKenzie, D. B., & Shahidi, F. (2001). Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chemistry, 74, 177e187. Cherry, J. P. (1990). Peanut protein and product functionality. Journal of the American Oil Chemists' Society, 67, 293e301. Coffman, C. W., & Garcia, V. V. (1977). Functional properties and amino acid content of a protein isolate from mung bean flour. Journal of Food Technology, 12, 473e484. Damodaran, S. (1997). Food proteins: an overview. In S Damodaran, & A. Paraf (Eds.), Food proteins and their applications (pp. 1e21). New York: Marcel Dekker. Deng, Q. C., Wang, L., Wei, F., Xie, B. J., Huang, F. H., Huang, W., et al. (2011). Functional properties of protein isolates, globulin and albumin extracted from Ginkgo biloba seeds. Food Chemistry, 124, 1458e1465. El-Adawy, T. A. (2000). Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chemistry, 70, 83e91. Eldrigde, J. E., & Ferry, J. D. (1954). The cross-linking process in gelatin gels III. Dependence of melting point on concentration and molecular weight. Journal of Physical Chemistry, 58(11), 992e995. Fabian, C., Ayucitra, A., Ismadji, S., & Ju, Y. H. (2011). Isolation and characterization of starch from defatted rice bran. Journal of the Taiwan Institute of Chemical En- gineers, 42, 86e91. Fagbemi, T. N., Oshoudi, A. A., & Ipinmoroti, K. O. (2006). Effects of

processing in the functional properties of full fat and defatted fluted pumpkin seed flours. Journal of Food Technology, 4, 70e79. FAOSTAT. (2009). Crops production statistics. FAO. Huggins, C., Tapley, D. F., & Jensen, E. V. (1951). Sulphydryl-disulphide relationships in the induction of gels in proteins by urea. Nature, 167(4250), 592e593. Kinsella, J. E. (1976). Functional properties of proteins in foods: a survey. CRC Critical Review in Food Science and Nutrition, 7, 219e280. Kinsella, J. E. (1979). Functional properties of soy proteins. Journal of American Oil Chemists' Society, 56, 242e257. Kinsella, J. E., Damodaran, S., & German, J. B. (1985). Physicochemical and functional properties of oilseed proteins with emphasis on soy proteins. In A. Altshul, & H. Wilcke (Eds.), New protein foods: Seed proteins (pp. 107e179). London: Academic Press. Lawal, O. S., Adebowale, K. O., Ogunsanwo, B. M., Sosanwo, O. A., & Bankole, S. A. (2005). On the functional properties of globulin and albumin protein fractions and flours of African locust bean (Parkia biglobosa). Food Chemistry, 92, 681e691. Lin, M. J. Y., Humbert, E. S., & Sosulski, F. W. (1974). Certain functional properties of sunflower meal products. Journal of Food Science, 39, 368e370. Lopez, O. P., Falomir, C. O., & Olivares-Vasquez, M. R. (1991). Chickpea protein iso- lates: physicochemical, functional and nutritional characterization. Journal of Food Science, 56, 726e729. Lqari, H., Vioque, J., Pedroche, J., & Millán, F. (2002). Lupinus angustifolius protein isolates: chemical composition, functional properties and protein character- ization. Food Chemistry, 76, 349e356. Makri, E. A., & Doxastaskis, G. I. (2006). Emulsifying and foaming properties of Phaseolus vulgaris and coccineus proteins. Food Chemistry, 98, 558e568. Mila, P. H., Roque, L. E., & Wuc, Y. V. (2009). Characterization of milkweed (Asclepias spp.) seed proteins. Industrial Crops and Products, 29, 275e280. Monteiro, P. V., & Prakash, V. (1994). Functional properties of homogeneous protein fractions from peanut (Arachis hypogaea L.). Journal of Agricultural and Food Chemistry, 42, 274e278. Myers, C. (1988). Functional attributes of protein isolates. In F. Francis (Ed.), Char- acterisation of proteins (pp. 491e549). Clifton, NJ, USA: Humana Press. Ogunwolu, S. O., Henshaw, F. O., Mock, H.-P., Santros, A., & Awonorin, S. O. (2009). Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. Food Chemistry, 115, 852e858. Okezie, B. O., & Bello, A. B. (1988). Physicochemical and functional properties of winged bean flour and isolate compared with soy isolate. Journal of Food Sci- ence, 53(2), 450e454. Peleg, M., & Bagley, E. B. (1983). Physical properties of foods. Westport, CN: AVI Pub. Co. Schmidt, R. H. (1981). Gelation and coagulation. In J. P. Cherry (Ed.), Protein functionality in foods. Washington, D.C.: American Chemical Society. ACS Symp. Ser. 147. Shanmuqasundaram, T., & Venkataraman, L. V. (1989). Functional properties of defatted and detoxified Madhuca (Madhuca butyraceae) seed flour. Journal of Food Science, 54, 351e353. Shiu, P. J., Ju, Y. H., Chen, H. M., & Lee, C. K. (2013). Facile isolation of purple membrane from Halobacterium salinarum via aqueous-two-phase system. Pro- tein Expression and Purification, 89(2), 219e224. Sze-Tao, K. W. C., & Sathe, S. K. (2000). Functional properties and in vitro digestibility of almond (Prunus dulcis L.) protein isolate. Food Chemistry, 69, 153e160. Wang, J. C., & Kinsella, J. E. (1976). Functional properties of novel protein: alfalfa leaf protein. Journal of Food Science, 41(2), 286e292. Yuliana, M., Huynh, L. H., Ho, Q. P., Truong, C. T., & Ju, Y. H. (2012). Defatted cashew nut shell starch as renewable polymeric material: isolation and characteriza- tion. Carbohydrate Polymers, 87(4), 2576e2581. 622 M. Yuliana et al. /

15LWT - Food Science and Technology 55 (2014)

621e626 624 M. Yuliana et al. /

15LWT - Food Science and Technology 55 (2014)

621e626 626 M. Yuliana et al. / LWT - Food Science and Technology 55 (2014) 621e626