RESEARCH PROJECT

BENTONITE-ALGINATE POLYMER NANOCOMPOSITE FOR THE REMOVAL OF WATER-SOLUBLE CATIONIC DYE

Submitted by:

Rizka Fabryanty Chrissila Valencia NRP. 5203014033 NRP. 5203014035

DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING WIDYA MANDALA CATHOLIC UNIVERSITY SURABAYA 2017

LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:

Name : Rizka Fabryanty

NRP : 5203014033

has been conducted on May 22nd 2017, therefore for student has fulfilled one of several requirements for **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University Surabaya.

Surabaya, 02 June 2017

Committees

Principal Supervisor

Sla

NIK. 521.93.0198

Chairman

Sandy Budi Hartono, Ph.D NIK. 521.99.0401

etary

Felycia E. Soetaredjo, Ph,D

NIK. 521.99.0391

Co-Supervisor

Suryadi Ismadji, Ph.D NIK, 521,93,0198

Member

Dra. Adriana A. A. M.Si. NIK. 521.03.0563

Member

Member RAHAUN

Felycia E. S., Ph,D Ery S.R., ST., MT NIK. 521.98.0348

IK WTO Deap of ingineering Faculty 0198 ii

NIK, 521,99,0391 Authorized by 1011K WIDYA HAL Head of Chemical Engineering Department artono, Ph.D 9:0401

LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:

Name : Chrissila Valencia

NRP : 5203014035

has been conducted on May 22nd 2017, therefore for student has fulfilled one of several requirements for **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University Surabaya.

Surabaya, 02 June 2017

Principal Supervisor

hrvadi Ismadji, Ph.D NIK. 521.93.0198

Chairman

Co-Supervisor

Felycia E. Soetaredjo, Ph,D NIK, 521,99.0391

Committees

Segretary

Sandy Budi Hartono, Ph.D NIK. 521.99.0401

Member

NIK.,521.03.0563

Dean of

Engineering Faculty

.93.0198

Dra. Adriana A. A.

Survadi Ismac

M.Si.

Supradi Ismadji, Ph.I NIK. 521.93.0198

Member

Felycia E. S., Ph,D Ery S.R., ST., MT NIK. 521.99.0391, NIK. 521.98.0348

Authorized by

Member

Head of Chemical Engineering Department Sandy Budy Hartono, Ph.D NIK, 521,99,0401

iii

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:

Name : Rizka Fabryanty

NRP : 5203014033

agree to transfer the copyright of my research project:

Title:

Bentonite-Alginate Polymer Nanocomposite for the Removal of Water-Soluble Cationic Dye

to be published in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

Surabaya, May 22nd 2017

Author <u>Rizka Fabryanty</u> NRP. 5203014033

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:

Name : Chrissila Valencia

NRP : 5203014033

agree to transfer the copyright of my research project:

Title:

Bentonite-Alginate Polymer Nanocomposite for the Removal of Water-Soluble Cationic Dye

to be published in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

NRP. 5203014035

v

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain **Bachelor of Engineering** degree.

Surabaya, May 22nd 2017 Student,

<u>Rizka Fabryanty</u> NRP. 5203014033

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain **Bachelor of Engineering** degree.

Surabaya, May 22nd 2017 Student,

Chrissila Valencia NRP. 5203014035

CONTENTS

LETTER OF A	PPROVAL	ii
COPY RIGHT	AGREEMENT	. iv
LETTER OF D	ECLARATION	. vi
CONTENTS		viii
LIST OF FIGU	RES	x
LIST OF TABI	LES	xii
PREFACE		xiii
ABSTRACT		xv
CHAPTER I	INTRODUCTION	1
I.1. I.2. I.3. CHAPTER II	Background Research of Objectives Problem Limitations LITERATURE REVIEW	2 2
П.1. П.1.1 П.2. П.2.1 П.2.2 П.3 П.4 П.4.1 П.4.2 П.5 СНАРТЕР Ш	Adsorption Crystal Violet Adsorbent Bentonite Alginate Nanocomposite Preparation Method Isotherm Adsorption Freundlich Isotherm Langmuir Isotherm Kinetic Adsorption RESEARCH METHODOLOGY	6 7 8 9 11 12 12 13
III.1 III.2 III.3 III.3.1 III.3.2 III.4 III.4.1 III.4.2	Materials Instruments Variables Fixed Variables Manipulated Variables Research Methodology Bentonite preparation (Pre-treatment Bentonite) Preparation Bentonite-Alginate Nanocomposite Isotherm Adsorption	16 17 17 17 17 18 18 18

III.4.4	Kinetic Adsorption	
III.5	Characterization	
CHAPTER IV	RESULT AND DISCUSSION	. 24
IV.1	Characterization of Bentonite-Alginate Nanocomposite	
	Fourier Transform Infra-Red (FT-IR)	
IV.2	Effect of pH	
IV.3	Adsorption Kinetic Studies	
IV.4 CHAPTER V	Adsorption Isotherm Studies CONCLUSION AND RECOMMENDATION	
CHAPTER V		
V.1.	Conclusion	
V.2.	Recommendation	
REFERENCES	5	. 40
APPENDIX A	SOLUTION PREPARATION	. 45
A.1.	Hydrochloric acid (HCl) 37%, 5N for 1500 mL	. 45
A.2.	Nitric Acid (HNO ₃) 65%, 0.01 M for 200 mL	
A.3.	Mother liquor of crystal violet 25 ppm for 100 ml	
A.4.	Standard solution of crystal violet for 0.8 ppm until 2 pp	
A.5.	Calcium chloride 1% w/v for 500 mL	
APPENDIX B	ADSORPTION PROCESS	. 47
B.1.	Standard Curve of Crystal Violet	. 47
B.2.	Adsorption Process in Determining the Optimum pH	
APPENDIX C	pH _{pzc} OF PRISTINE AND BENTONITE-ALGINATE	
	COMPOSITE	. 55
APPENDIX D	CALCULATION OF ADSORPTION KINETIC DATA	. 60
D.1.	Plot design of t and qt	. 60
D.2.	Determination of Pseudo-First Order and Pseudo-Second	
	Order Parameter Values	
APPENDIX E	CALCULATION OF ADSORPTION ISOTHERM DAT	'A
		. 65
E.1.	Plot design of Ce and qe	. 65
APPENDIX F	NANOCOMPOSITE CHARACTERIZATION	
F.1.	Fourier Transform Infra-Red (FT-IR)	. 73

LIST OF FIGURES

Figure II.1	Adsorption Process	6
Figure II.2	Chemical Structure of Crystal Violet	6
Figure II.3	Structure of Bentonite	
Figure II.4	Chemical Structure of Alginate	9
Figure II.5	Iontropic Gelation Method	10
Figure III.1	Scheme of Bentonite preparation	18
Figure III.2	Scheme of Bentonite-Alginate Preparation Composite	20
Figure III.3	Scheme of Isotherm Adsorption Mechanism	21
Figure III.4	Scheme of Kinetic Adsorption	
Figure IV.1	FT-IR Spectra of adsorbent	
Figure IV.2	The Protonation and Deprotonation of Silanol Species	28
Figure IV.3	Kinetic Adsorption of of Pristine: Pseudo-First Order (a)	
-	and Pseudo-Second Order Model (b)	30
Figure IV.4	Adsorption of Composite: Pseudo-First Order (a) and	
-	Pseudo-Second Order Model (b)	31
Figure IV.5	Experimental Adsorption Data for Crystal Violet dye onto	
-	2:5 (w/w) Bentonite: Alginate Composite and the fits of the	
	(a) Langmuir, (b) Freundlich	33
Figure IV.6	Experimental Adsorption Data for Crystal Violet dye onto	
-	3:5 (w/w) Bentonite: Alginate Composite and the fits of the	
	(a) Langmuir, (b) Freundlich	34
Figure IV.7	Experimental Adsorption Data for Crystal Violet dye onto	
	4:5 (w/w) Bentonite: Alginate Composite and the fits of the	
	(a) Langmuir, (b) Freundlich	34
Figure IV.8	Experimental Adsorption Data for Crystal Violet dye	
	onto Sodium Alginate and the fits of the (a) Langmuir,	
	(b) Freundlich	35
Figure IV.9	Experimental Adsorption Data for Crystal Violet dye onto	
	Acid Activated Bentonite and the fits of the (a) Langmuir,	
	(b) Freundlich	35
Figure B.1	Standard Curve of Crystal Violet	48
Figure B.2	Scheme of Adsorption Mechanism in for Determining	
-	the Optimum pH	49
Figure B.3	Effect of pH on The Adsorption Capacity of Pure	
-	Bentonite	50
Figure B.4	Effect of pH on The Adsorption Capacity of Pure Sodium	
-	Alginate	51
Figure B.5	Effect of pH on The Adsorption Capacity of 2:5 w/w Ratio	

of Bentonite-Alginate Nanocomposite	52
Effect of pH on The Adsorption Capacity of 3:5 w/w Ratio	
of Bentonite-Alginate Nanocomposite	53
Effect of pH on The Adsorption Capacity of	
4:5 w/w Ratio of Bentonite-Alginate Nanocomposite	54
pH _{pzc} of Bentonite	55
pH _{pzc} of Alginate	56
pH _{pzc} of 2:5 (w/w) Bentonite:Alginate	57
pH _{pzc} of 3:5 (w/w) Bentonite:Alginate	58
pH _{pzc} of 4:5 (w/w) Bentonite:Alginate	59
Plot design of t and q _t of Pristine	63
Plot design of t and qt of Composite	64
The Plot Design of C_e and q_e at 30°C	70
The Plot Design of C_e and q_e at 50°C	71
The Plot Design of C_e and q_e at 70°C	
	Effect of pH on The Adsorption Capacity of 3:5 w/w Ratio of Bentonite-Alginate Nanocomposite Effect of pH on The Adsorption Capacity of 4:5 w/w Ratio of Bentonite-Alginate Nanocomposite pH _{pzc} of Bentonite pH _{pzc} of Alginate pH _{pzc} of Alginate pH _{pzc} of 3:5 (w/w) Bentonite:Alginate pH _{pzc} of 4:5 (w/w) Bentonite:Alginate pH _{pzc} of 4:5 (w/w) Bentonite:Alginate Plot design of t and q _t of Pristine Plot design of t and q _t of Composite The Plot Design of C _e and q _e at 30°C The Plot Design of C _e and q _e at 50°C

LIST OF TABLES

Table II.1	Adsorption Capacity of Crystal Violet on Various Adsorbe	
Table II.2	Parameters of Adsorption Isotherm of Crystal Violet on	4
	Various Adsorbents	15
Table IV.1	FT-IR Assignments of Adsorbents	
Table IV.2	pH _{pzc} and pH optimum each adsorbents	
Table IV.3	Parameter of Pseudo-First Order and Pseudo-Second	
	Order Equation for Crystal Violet Adsorption onto	
	Bentonite-Alginate Composite	32
Table IV.4.	Parameter of Langmuir and Freundlich Isotherm Equation	
	for Crystal Violet Adsorption onto	
	Bentonite-Alginate Composite	36
Table B.1	Ce versus A for Standard Curve of Crystal Violet	47
Table B.2	pH versus Qe for Pure Bentonite	
Table B.3	pH versus Qe for Pure Sodium Alginate	
Table B.4	pH versus Qe for 2:5 (w/w) Bentonite:Alginate	
Table B.5	pH versus Qe for 3:5 (w/w) Bentonite:Alginate	
Table B.6	pH versus Qe for 4:5 (w/w) Bentonite:Alginate	
Table C.1	pH _{pzc} of Bentonite	55
Table C.2	pH _{pzc} of Alginate	
Table C.3	pH _{pzc} of 2:5 (w/w) Bentonite:Alginate	57
Table C.4	pH _{pzc} of 3:5 (w/w) Bentonite: Alginate	
Table C.5	pH _{pzc} of 4:5 (w/w) Bentonite:Alginate	59
Table D.3	The Data of Adsorption Kinetic	60
Table E.4	The Adsorption Isotherm Data of 2:5 (w/w)	
	Bentonite:Alginate Composite	65
Table E.5	The Adsorption Isotherm Data of 3:5 (w/w)	
	Bentonite: Alginate Composite	66
Table E.6	The Adsorption Isotherm Data of 4:5 (w/w)	
	Bentonite: Alginate Composite	67
Table E.7	The Adsorption Isotherm Data of Sodium Alginate	
	Adsorbent	68
Table E.8	The Adsorption Isotherm Data of Acid Activated	
	Bentonite Adsorbent	69

PREFACE

The authors would like to thank God for His blessing that the Research Project entitled Bentonite-Alginate Polymer Nanocomposite for the Removal of Water-Soluble Cationic Dye has been accomplished. This report is a prerequisite in achieving Bachelor of Engineering degree in Chemical Engineering.

The authors realize that the completion of this report is achieved by the help of many people. There for, the authors would like to thank the persons below:

- 1. Suryadi Ismadji, Ph.D as Principal Supervisor and Felycia Edi Soetaredjo, Ph.D as Co-Supervisor;
- Sandy Budi Hartono, Ph.D as Head of the Committees, Dra. Andriana Anteng Anggorowati, M.Si and Ery Susiany Retnoningtyas, ST., MT as members of committees;
- Suryadi Ismadji, Ph.D as the Head of Chemical Engineering Process laboratory and Dra. Adriana Anteng Anggorowati, M.Si. as the Head of Chemical Analysis Laboratory;
- Mr. Novi as laborant of Chemical Engineering Process Laboratory and Mr. Pudjo as laborant of Chemical Engineering Operation Laboratory;
- 5. Sandy Budi Hartono, Ph.D as Head of Chemical Engineering Department;
- 6. Suryadi Ismadji, Ph.D as Dean of Engineering Faculty;

- 7. Our parents and family who have given a lot of help and support, both materially and morally;
- 8. Our lecturers, friends and also those who are too many to be listed by name that had contributed their kind assistance.

The authors realize that this report is far from perfect, therefore any critics and comments which will better improve the research is gladly accepted. Lastly the authors hope that the report will be useful to all readers who need information regarding the research of the report.

Surabaya, May 22nd 2017

The authors

ABSTRACT

Dyes in wastewater produced from textile industry are hazardous pollutants and caused many environmental and health problems. There are various wastewater treatment for dyes removal, however one of the low cost and effective method is adsorption. In adsorption, good adsorbent is adsorbent that has high adsorption capacity, inexpensive and regeneratable. Activated carbon usually used as an adsorbent that has higher adsorption capacity compare to bentonite, but price of activated carbon is more expensive. In order to increace the adsorption capacity of bentonite as adsorbent, bentonite will be combine with natural polymer (alginate) to produce a composite, which called nanocomposite. This nanocomposite will be used to adsorpt cationic dye in wastewater of textile industry.

In this research, the process of nanocomposite preparation and performance was studied. Bentonite-alginate nanocomposite was made with ionotropic gelation method. First, bentonite was pre-treatment using hydrochloride acid 5 N, then bentonite dispersion and alginate solution was mixed in certain time then dropped into calcium chloride solution until gelispheres formed. Bentonite-alginate nanocomposite was tested in crystal violet dye as a model of dyes in wastewater textile industry. Adsorption capacity was measured using spectrophotometry method to determine the maximum adsorption capacity.

Keywords: adsorption, alginate, bentonite, crystal violet