turnitin Originality Report

FLUID9626 by Suryadi Ismadji From paper 2 (Hippo-hippo 02)

Processed on 16-Feb-2018 06:34 WIB ID: 916685277 Word Count: 5052

Similarity Index

14%

Similarity by Source

Internet Sources: Publications: Student Papers:

14%

sources: 2% match (Internet from 28-Nov-2017) 1 http://faculty.fims.uwo.ca/exfiles/Wathen%20Files/Wathen%20External%20Review%20Research%20Package%2020 1% match (publications) 2 Tiwikrama, Ardila Hayu, and Ming-Jer Lee. "Comment on "Solubilities of 3-acetylpyridine in supercritical carbon dioxide at several temperatures and pressures: Experimental and modeling" Fluid Phase Equilib. 354 (2013) 127-132", Fluid Phase Equilibria, 2016. 1% match (Internet from 09-Sep-2016) 3 http://www.studymode.com/essays/Plc-Selection-52722428.html 1% match (publications) 4 Soetaredjo, Felycia Edi, Alfin Kurniawan, Ong Lu Ki, and Suryadi Ismadji. "Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system", Chemical Engineering Journal, 2013. 1% match (publications) 5 Kurniawan, Fredi, Michael Wongso, Aning Ayucitra, Felycia Edi Soetaredio, Artik Elisa Angkawijaya, Yi-Hsu Ju, and Suryadi Ismadji. "Carbon microsphere from water hyacinth for supercapacitor electrode", Journal of the Taiwan Institute of Chemical Engineers, 2015. 1% match (Internet from 22-Dec-2017) 6 https://etd.ohiolink.edu/rws_etd/document/get/ohiou1089819131/inline 1% match (publications) 7 Chandra, Ivon Kusmijo, Novy Srihartanti Kasim, Phuong Lan Tran Nguyen, Ngoc Yen Tran-Thi, Survadi Ismadji, and Yi-Hsu Ju. "Physicochemical characterization of starch isolated from red Monascus rice: STARCH ISOLATED FROM RED MONASCUS RICE", Asia-Pacific Journal of Chemical Engineering, 2013. 1% match (Internet from 17-Jan-2018) 8 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.940.5183&rep=rep1&type=pdf 1% match (publications) 9 Jerinic, D.. "Measurement of the triethylene glycol solubility in supercritical methane at pressures up to 9MPa", Fluid Phase Equilibria, 20080301

http://onlinelibrary.wiley.com/doi/10.1002/cjce.5450640516/full 10 < 1% match (publications) 11

< 1% match (Internet from 09-Sep-2017)

https://skemman.is/bitstream/1946/20184/1/PhD%20thesis%20Johanna%20Mareile%20Schwenteit.pdf

Kwak, T.Y.. "Van der waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling", Chemical Engineering Science, 1986

< 1% match (publications) 13

12

Cherif Si-Moussa, Aicha Belghait, Latifa Khaouane, Salah Hanini, Asmaa Halilali. "Novel density-based model for the correlation of solid drugs solubility in supercritical carbon dioxide", Comptes Rendus Chimie, 2017

< 1% match (publications) 14

> Hosseini, M.H.. "Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system", The Journal of Supercritical Fluids, 201002

< 1% match (publications) 15 Giner, B.. "Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes", The Journal of Chemical Thermodynamics, 200701

< 1% match (publications) 16

Wong, Jon W., Kai Zhang, Katherine Tech, Douglas G. Hayward, Alexander J. Krynitsky, Irene Cassias, Frank J. Schenck, Kaushik Banerjee, Soma Dasgupta, and Don Brown. "Multiresidue Pesticide Analysis of Ginseng Powders Using Acetonitrile- or Acetone-Based Extraction, Solid-Phase Extraction Cleanup, and Gas Chromatography-Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) or -Tandem Mass Spectrometry (GC-MS/MS)¹, Journal of Agricultural and Food Chemistry, 2010.

< 1% match (publications) 17

> Wai, Chien. "Non-Thermal Treatment Technologies", Handbook Series for Mechanical Engineering, 2001.

< 1% match (Internet from 20-Apr-2016) 18 http://www.plantphysiol.org/content/129/3/1003.full

< 1% match (student papers from 23-Jun-2016) 19 Submitted to Indian Institute of Technology, Kharagpure on 2016-06-23

< 1% match (publications) 20

> Hwang, B.J.. "Effect of Al-substitution on the stability of LiMn"20"4 spinel, synthesized by citric acid sol-gel method", Journal of Power Sources, 20011201

< 1% match (publications) 21 Pitchaiah, K. C., N. Sivaraman, Neha Lamba, and Giridhar Madras. "Experimental determination and model correlation for the solubilities of trialkyl phosphates in supercritical carbon dioxide", RSC Advances, 2016.

22

< 1% match (publications)

Ohta, T.. "Prediction of ternary excess enthalpies at high pressures using an equation of state", Thermochimica Acta, 19940402

23

< 1% match (publications)

Sunarso, J.. "Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: A review", Journal of Hazardous Materials, 20090115

24

< 1% match (publications)

Zuknik, Mark Harris, N.A. Nik Norulaini, W.S. Wan Nursyazreen Dalila, Nur Raihan Ali, and A.K. Mohd Omar. "Solubility of virgin coconut oil in supercritical carbon dioxide", Journal of Food Engineering, 2016.

paper text:

1This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights

3Fluid Phase Equilibria 354 (2013) 127-132 Contents lists available at SciVerse ScienceDirect Fluid Phase Equilibria journal homepage: www.elsevier.com/locate/fluid

10Solubilities of 3-acetylpyridine in supercritical carbon dioxide at several temperatures and pressures: Experimental and modeling

Bely Agustina,b,

10Shi-Yow Linb, Alfin Kurniawana, Yi-Hsu Jub,**, Felycia Edi Soetaredjoa,b, Suryadi

Ismadjia,* a

5Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia b Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Sec. 4 Keelung Road, Taipei 106, Taiwan

12article info Article history: Received 9 December 2012 Received in revised form 14 June 2013 Accepted 18 June 2013 Available online 27 June 2013 **Keywords:**

3-Acetylpyridine Solubility Density-based model Equations of state Phase equilibria abstract 3-Acetylpyridine (methyl 3-pyridyl ketone) is one of the important compounds to impart flavor and fra- grance in various food products. In this work, the solubility data of 3-acetylpyridine in supercritical carbon dioxide (SC-CO2) were experimentally measured at several temperatures

19(313.15 K, 323.15 K, 333.15 K, and 343.15 K) and pressures from 10 MPa to 26 MPa under static mode. The experimental

solubilities over the measurement range were correlated using Chrastil and Del Valle and Aguilera densitydependent models while phase equilibrium behavior of the studied system was interpreted by Peng-Robinson equa- tion of state (PR-EoS) incorporated with quadratic and Stryjek-Vera mixing rules. The agreement between the model predictions and experimental solubilities was assessed in respect to rootmean-square devi- ation (RMSD) and consistency of physical meaning of model parameters. Concerning phase equilibria of the studied supercritical system, PR-EoS incorporated with quadratic mixing rule was superior to PR-EoS incorporated with Stryjek-Vera mixing rule and capable to describe the dependency of adjustable binary interaction parameters with temperature. © 2013 Elsevier B.V. All rights reserved. 1. Introduction Pyridines represent a class of heterocyclic organic compounds that significantly contribute to the organoleptic properties of many food products. Of particular interest is 3-acetylpyridine (or methyl 3pyridyl ketone), a colorless to yellowish clear liquid with peanut- like odor and can be naturally found in roasted hazelnuts/filberts and cocoa [1,2]. This compound is frequently used as a flavoring agent and to impart a distinctive scent in the baked goods, candies, puddings, and non-alcoholic beverages. The isolation techniques of 3-acetylpyridine from grounded roasted hazelnuts/filberts are mostly conducted by steam or molecular distillation processes [2]. Denaturation risk and low purity of the final product are two main disadvantages of those conventional processes, which drive the searching of alternative techniques to appropriately isolating this heat-labile compound. Over the past decades, supercritical fluid extraction has gained increasing awareness as a promising method for isolating valu- able bioactive compounds from various natural products for *

4Corresponding author. Tel.: +62 31 389 1264; fax: +62 31 389 1267.

20Corresponding author. Tel.: +886 2 273 766 12; fax: +886 2 273 766 44. Email addresses: yhju@mail .ntust.edu.tw

(Y.-H. Ju), suryadiismadji@yahoo.com, a1f1n kwn

3@yahoo.com (S. Ismadji). 0378-3812/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.fluid.

2013.06.036 pharmaceutical and food industries. This technique is considered greener compared to conventional extraction processes which usu- ally involve the use of harmful organic solvents and fairly high operating temperature [3]. Another uniqueness of supercritical fluid extraction is that this process generates zero waste because the solvent is completely recyclable and can be conducted at nearly- ambient temperature, thus ensuring the stability and quality of the final product. To date, carbon dioxide (CO2) is the most widely used supercritical solvent due to its practical advantages such as non-toxic, non-flammable, and non-explosive, environmentally acceptable, cheap, low critical temperature (Tc of 304.2 K), and eas-ily obtained in ultra high purity [3,4]. The information about solubilities of the compounds of interest in supercritical solvents at wide range of pressures and tem- peratures is of crucial importance for the process design and optimizing supercritical-based processes, particularly for indus- trial practice.

4To the best of our knowledge, there is no previous report available in the literatures about the solubilities of

3- acetylpyridine in supercritical carbon dioxide. In the present work, the solubilities of 3-acetylpyridine in supercritical carbon dioxide is measured in a static operation mode at four temperatures ran-ging

2from 313.15 K to 343.15 K and several pressures range between 10 MPa and 26 MPa. The

experimental solubility data were modeled with Chrastil and Del Valle and Aguilera semi-empirical densitydependent correlations and Peng-Robinson cubic equation of state Table 1 Some chemical information about 3-acetylpyridine compound. V-2 E F Name 3-Acetylpyridine CAS number 350-03-8 Purity ≥98%, food grade C Physical appearance Clear, dark yellow liquid Organoleptic Nutty; sweet B Empirical formula C7H7NO Molecular mass 121.14 g/mol Boiling point 493.15 K A D incorporated with quadratic and Stryjek-Vera mixing rules was V-1 applied to interpret phase equilibria of the studied system. 2. Materials and methods 2.1. Chemicals Food grade 3-acetylpyridine was purchased from Sigma-Aldrich chemical company, Singapore without further purification. Some information about this flavoring compound are given in Table 1. Food grade carbon dioxide (99.98% pure) was supplied by a local gas company in a deep tube liquid supply cylinder. Ethanol was

21Fig. 1. Schematic of experimental set-up for solubility

measurement in high pres- obtained from Sigma-Aldrich with a purity of 96% and used as a sure condition (dip tube liquid CO2 supply cylinder (A); high pressure liquid liquid medium for trapping 3-acetylpyridine. metering pump (B); high pressure equilibration cylinder (C); pressure transducer (D); thermostated oven (E); receiving vial (F); valve – (V-1) inlet line, (V-2) outlet 2.2. Solubility measurements line). The schematic of experimental set-up for static measurements on the receiving vial to allow the expanded gas to exit and total of 3-acetylpyridine solubilities in supercritical carbon dioxide is volume of solute-free ambient gas was measured with a calibrated displayed in Fig. 1. The supercritical apparatus consists of a vac- wet gas flow meter (±0.05 L) at a known pressure and tempera- uum pump (GAST DOA-P504-BN), a calibrated wet gas

flow meter ture. Care was taken to prevent sample precipitation during the (ZEAL DM3B), a high pressure liquid metering pump with two recip- decompression of high-pressure stream by gently heating the disrocating pistons (Eldex AA-100-S-2), a pressure transducer (Druck charge line and flushing with fresh CO2. The ethanol containing PTX 611) connected to digital process indicator (Druck DPI 280), 3-acetylpyridine was then analyzed on a Shimadzu GC-2014 gas a thermostated oven (Memmert UM400), and a 150 ml high pres- chromatograph under prescribed condition. sure double-ended sample cylinder (17.22 cm long × 4.85 cm i.d.). The quantification of 3-acetylpyridine concentration in ethanol All fittings and tubings are made of 316SS-grade stainless steel was conducted by means of gas chromatography analysis, adopting (Swagelok, USA). The maximum working temperature and work- operation condition reported by Kulshreshtha and Moldoveanu [5]. ing pressure of the system is 423.15 K and 40 MPa, respectively. The The gas chromatograph was equipped with a split/splitless injector, measurement uncertainties were ±0.01 MPa for pressure and ±1 K an Agilent narrowbore

18DB-Wax capillary column (30 m × 0.25 mm; for temperature. 0.25

?m) as the stationary phase, and a flame ionization detector Briefly,

2a known amount of cotton (±1 g) was wetted with

liq- (FID). The

16injection volume was 1 ?I in splitless mode. The

injector uid

23-acetylpyridine (±1 ml) and packed into the sample cylinder.

and FID temperature was operated at 280 °C and 300 °C, respec- Both ends of the cylinder were fitted with sintered stainless steel tively. Highly pure helium (99.98%) was employed as the carrier gas filter discs (50 ? m) to prevent any entrainment loss. Then, the sys- at pressure of 134.9 kPa and a column flow of 2 ml/min. The initial tem was evacuated with a vacuum pump. The evacuated system column oven temperature was set at 40 °C for 5 min, then ramped was heated to predetermined temperatures. Subsequently, liquid to 110 °C with a heating rate of 4 °C/min and increased to 230 °C at CO2 was compressed and delivered passing through the tubing to

1610 •C/min and held for 5.5 min. Total program time was 40 min.

the sample cylinder

18at a constant flow rate of 10 ml/min (mea- Identification of

3-acetylpyridine peak in the samples was con- sured at 6.8 MPa and 303.15 K) until desired pressures reached. The ducted by matching retention time with that previously obtained system pressure was monitored real-time and the system tempera- by the injection of authentic standard. Calibration curve was

pre- ture was controlled by a built-in PID-type temperature controller of pared by injecting five standard solutions of 3-acetylpyridine with the oven to maintain isobar and isothermal conditions. Preliminary different concentrations (0.1-10 mg/L) and plotting the average experiments show that equilibrium was established within 2 h. The peak areas as ordinate vs. the concentrations of each analyte as equilibrated supercritical phase was thereafter released from the abscissa. Then, the concentration of 3-acetylpyridine in the samsample cylinder at the same condition by fresh CO2 into a receiving ples (wt.%) was determined from asprepared calibration curve vial containing some volume of 96% ethanol to completely separate based on the detected peak area. The solubilities at a given pres- 3-acetylpyridine and carbon dioxide. A vent needle was mounted sure and temperature were determined by quantifying the amount B. Agustin et al. / Fluid Phase Equilibria 354 (2013) 127-132 129 Table 2 Experimental

2solubilities of 3-acetylpyridine in supercritical

CO2 over the measure- ment range. P (MPa) Solubility (×10-2) (kg/m3) 313.15 K 323.15 K 333.15 K 343.15 K 10 1.541 \pm 0.005 12 1.915 \pm 0.009 14 2.426 \pm 0.007 16 2.790 \pm 0.004 18 2.986 \pm 0.008 20 3.593 \pm 0.044 22 3.916 ± 0.033 24 4.717 ± 0.008 26 5.423 ± 0.018 1.152 ± 0.013 1.715 ± 0.051 2.683 ± 0.049 3.622 ± $0.022\,4.416\pm0.008\,5.055\pm0.005\,6.041\pm0.036\,6.757\pm0.051\,7.754\pm0.044\,0.904\pm0.006\,1.473\pm0.022$ $2.722 \pm 0.019 \, 4.258 \pm 0.022 \, 5.754 \pm 0.036 \, 7.116 \pm 0.018 \, 8.682 \pm 0.024 \, 9.824 \pm 0.053 \, 11.292 \pm 0.084 \, 0.69 \pm 0.024 \, 0.02$ $0.012\ 1.38\pm0.044\ 2.93\pm0.036\ 4.75\pm0.027\ 7.03\pm0.006\ 9.42\pm0.008\ 11.37\pm0.018\ 13.91\pm0.043\ 16.19\pm0.043$ 0.055 of 3-acetylpyridine in ethanol for a given volume of CO2. All measurements were repeated three times at identical operational conditions and presented as mean ±SD for three replicate determi- nations. 3. Results and discussion 3.1. Solubilities of 3-acetylpyridine in supercritical carbon dioxide The quantity of a particular compound that can dissolve in a par-ticular supercritical solvent to form a saturated supercritical phase strongly depends on the solvent density. In this regards, the den-sities of supercritical CO2 at various temperatures and pressures were estimated using

22Stryjek-Vera modification of Peng-Robinson (PRSV) equation of state

and the results are given in Supplementary Material Table S1. The

22use of PRSV equation of state

is generally superior to other equations for estimating the fluid densities of many materials in moderately non-ideal systems, typically nonpo- lar ones with relatively accurate correlation results [6]. Moreover, PRSV equation of state is convenient to use since it only requires the knowledge of critical properties and acentric factor for the generalized parameters and computationally efficient to solve this equation. The critical pressure, critical temperature, and acen- tric factor for carbon dioxide and 3-acetylpyridine is 7.39 MPa, 304.25 K, 0.225 and 4.47 MPa, 729.15 K, and 0.464, respectively. At isothermal condition (e.g., 313.15 K), the increase of

2pressures from 10 MPa to 20 MPa causes the solvent power of the

fluid to increase from $(1.541 \pm 0.005) \times 10-2$ kg/m3 to $(3.593 \pm 0.044) \times 10-2$ kg/m3. Similar trends were noticed in other three temperatures studied. The experimental solubilities of 3-acetylpyridine in SC-CO2 over the measurement range were summarized in Table 2. It can be seen that the solubilities increased at elevated pressures and tempera- tures, except those at two pressures of 12 MPa and 14 MPa. It is clearly

understandable that increasing pressure at a constant tem- perature enhances the solvent density, leading to increased amount of solute dissolved in the solvent phase. Meanwhile, the system temperature has different effects on solubility

14due to the influences of temperature on the vapor pressure, the density of supercritical solvent, and the molecular interaction of supercritical phase. Near the critical region of

CO2 (304.25 K, 7.39 MPa), a small tempera- ture rise

2from 313.15 K to 323 .15 K at 10 MPa may lead to

a large fall in the solvent density (565 kg/m3 to 376 kg/m3) and a result- ing change in 3-acetylpyridine solubilities ((1.541 \pm 0.005) \times 10–2 to (1.152 \pm 0.013) \times 10–2 kg/m3). Increasing temperature would increase the solute's volatility and the diffusivities of both solvent and solute species, but cause the reduction in solvent capacity. These opposing effects resulted in the crossover phenomena in the solubility isotherms as illustrated in Fig. 2. The actual solubility data and regression models are designated as dot symbols and dashed lines, respectively. A near-linear relationship between pressure and mole fraction of 3-acetylpyridine in the mixture is obviously seen Mole fraction of 3-acetylpyridine (x 10-5) 10 313.15 K 323.15 K 8 333.15 K 343.15 K 6 4 2 0 80 100 120 140 160 180 200 220 240 260 280 Pressure (Bar) Fig. 2. Mole fraction of 3-acetylpyridine at various pressures and linear regression analysis (experimental data – dot symbols; regression model – dashed lines). in this figure, with fairly small errors below 2%. At pressures below the crossover point, the density effect dominates such that the solubilities decrease with temperature rise (referred as retrograde solubility behavior) [7]. On other hand, beyond the crossover pres- sure (in this system is 12 MPa), the solubilities of 3-acetylpyridine in supercritical CO2 increase both with solvent density and volatility effect in which the latter factor is more prominent. 3.2. Semi-empirical density-based correlations Several

21mathematical models have been developed to date for correlating the solubility data

of a particular compound in a particular supercritical solvent

23at various pressures and tempera- tures. Some of these correlation models are highly empirical while some of them have a strong fundamental

theory with thermody- namics consideration. In the present work, the solubility data of 3-acetylpyridine in SC-CO2 were correlated using semi-empirical density-dependent models and cubic equations of state for eval- uating phase equilibria of the system.

24Chrastil and Del Valle and Aguilera mathematical models were

used to correlate actual solu- bilities of 3-acetylpyridine in SC-CO2 at studied pressures and temperatures. The main advantage of using density-based cor- relations such as Chrastil and Del Valle and Aguilera is

they do not require any thermophysical properties such as critical point,

13acentric factor, vapor pressure, and molar volume of the

stud- ied compound [8], which often cannot be easily determined using experimental approach. Chrastil (1982) was the first who devel- oped a semi-empirical equation by assuming the formation of solvato complex between solute and supercritical solvent at equi- librium [9,10]: $A + kB \leftrightarrow (AB)k$ (1) where

17one molecule of solute A associates with k molecules of supercritical solvent B to form one molecule of solvato complex (AB)k.

Chrastil model has mathematical form as follows: y = kexp + b a T (2) The adjustable constants a and b are defined as: () a = ?H R (3) b = -ln MAM+c kkMc + q (4) Fig. 3. Correlations of experimental solubilities of 3-acetylpyridine in supercritical CO2 (dot symbols) and those predicted with Chrastil (A) and Del Valle and Aguilera (B) mathematical models (wire-mesh). where y is the solubility (kg/m3), is the solvent density (kg/m3), k is the average association number,

6T is the absolute temperature (K), R is the universal gas constant (8.314 J mol/K), a is a

func-tion of

13enthalpy of solvation (?Hsolv) and enthalpy of vaporization (?Hvap), b is a function of average association number

that depends on the molecular mass of solute (MA, 121.14 g/mol) and supercrit- ical solvent (Mc, 44.01 g/mol), ?HR is total heat of reaction, which equals to the sum of enthalpy of solvation and enthalpy of vaporization, and q is an adjustable constant. The fitting of experimental solubility data was conducted concurrently at all temperatures using nonlinear least-squares regression technique with

4SigmaPlot software package (Version 12.3, Systat Software Inc.)

by minimizing root-mean-square devi- ation (RMSD): RMSD = n n=1 yexp – ycalc 2 N (5) 0.5 [\sum ()] Here, yexp is the actual solubilities, ycalc is the calculated solubilities, and N is the number of experimental data. The nonlinear least-squares regression technique involves an iterative curve fit- ting procedure to obtain the optimal parameter values that satisfy convergence and tolerance limit. A set of initial values of fitted parameters of the model (i.e., a, b, and k) was determined to start the computation. The number of iterations and step size was designed in such a way to reduce unnecessary computation without affecting the accuracy of predictions. Fig. 3 clearly displays that Chrastil model can visually corre- late experimental solubility data very well with root-mean-square deviation of 0.0027. The optimal fitted parameter values are tabu- lated in Table 3. The adjustable parameter k expresses an average equilibrium association number of which the values of this param- eter are often not an integer based on the fact that the formation of solvato complexes not stoichiometrically takes place, with more or less stable solvato complexes [10]. The value of parameter k obtained from Chrastil model fitting is 3.38, which means that one molecule of 3-acetylpyridine

associates with 3.38 molecules of supercritical CO2 to form one molecule of solvato complex at equilibrium state. Considering the value of adjustable constant a, total reaction heat of the dissolution process of 3acetylpyridine in supercritical CO2 can be estimated to be -56.10 kJ/mol. The nega- tive value indicates that the dissolution process of 3-acetylpyridine in supercritical CO2 is exothermic in nature with greater magnitude of energy liberated from the associating process than that required to vaporize solute and solvent molecules by breaking intermolec- ular forces, characterizing a non-ideal fluid system. Chrastil model has been intensively modified by a number of authors over past few years and one of them is Del Valle and Aguil- era. Del Valle and Aguilera (1988) density-based model was chosen because this model compensates for the variation of solute's vapor- izing heat with temperature [11]. Del Valle and Aguilera

4model has a mathematical form as follows: y = k'

exp b' + a 'T + dT2 (6) ?H = R a' + 2d' () T (7) The a(djustable)parameters k', b', and a' have the same physi- cal meaning to those of Chrastil model. The constant term d'/T2 is an adjustable parameter associated with the variation of solute's vaporization heat with temperature. Fig. 4 shows that Del Valle and Aguilera model can represent experimental solubility data of 3-acetylpyridine in supercritical CO2 over the measurement range satisfactorily (RMSD of 0.0026). The optimal fitted parameter values of Del Valle and Aguilera model are presented in Table 3. From the values of adjustable parameters Table 3 The fitted

24parameters of Chrastil and Del Valle and Aguilera models for

correlating system supercritical CO2 (1) + 3-acetylpyridine (2). Model T (K) Parameters a b k d RMSD Chrastil 313.15 323.15 333.15 343.15 Del Valle and Aguilera 313.15 323.15 333.15 343.15 -6746.67 -4.50 3.38 - 0.0027 -16409.25 10.09 3.39 1.59 × 106 0.0026 B. Agustin et al. / Fluid Phase Equilibria 354 (2013) 127-132 131 Fig. 4. Correlation results of mole fraction of 3-acetylpyridine at various pressures and temperatures with

11Peng-Robinson equation of state incorporated with quadratic (A) and

Stryjek-Vera (B) mixing rules. a' and d', one can estimate total reaction heat that ranges between -51.76 kJ/mol and -59.16 kJ/mol. As aforementioned, Del Valle and Aguilera density-dependent model was developed based on the predecessor model (Chrastil equation) therefore this model should give a similar value of fitted parameters. The average association number obtained from Del Valle and Aguilera model fitting is com- parable to that of Chrastil model, which means that both models are able to adequately describe the formation of solvato complex between 3-acetylpyridine and supercritical CO2 at equilibrium. By examining constant b', it was found that the calculated values of constant q for Chrastil and Del Valle and Aguilera equations are considerably different (2.69 vs. 17.32). 3.3. Phase equilibria evaluation using cubic equations of state A number of cubic equations of state with either an empirical, semi-empirical, or theoretical basis are available and have been widely used for phase equilibria evaluation of high-pressure sys- tems and the most popularly used is

9Peng-Robinson equation of state. With this approach, the

vapour-liquid coexistence or super- critical phenomena of a particular fluid mixture can be represented with single equation of state without any conceptual difficulties. However, it should be noted that the applicability of different equations of state is limited and generally accurate over certain measurement range for a

particular system. Peng–Robinson equa- tion of state has a mathematical form: P = RT - a(T) V - b V 2 + 2Vb - b2 (8) where P is the absolute pressure (atm), T is the absolute tem- perature (K), V is the molar volume (L/mol), and

6R is the gas constant (8.314 J mol/K). The adjustable parameters a and b are both temperature-independent. For

single compound system, the constants a and b can be determined using a series of equations as follows: $a(T) = ...(Tr, \omega) = 0.4572 R2PTcc 2 (Tr, \omega) = 1 + 1 - Tr 2 = 0.3746 + 1.54(22\omega - \sqrt{0.2})6)92\omega 2$ (b = 0.0778 RPTcc (9) (10) (11) (12) (13) where Pc, Tc, ω, and are critical pressure (MPa), critical temper- ature (K), acentric factor, and adjustable parameter characteristic for each compound, respectively. The critical properties (Tc and Pc) and acentric factor (ω) of 3-acetylpyridine were predicted using the Joback and Lee– Kesler group contribution methods, respectively with PE2000 computational software (Version 2.9.9a). The prediction of critical pressure and critical temperature using Joback method is simply performed by inputting the number of each func- tional group and normal boiling point of the compound. This group contribution method has found reasonable accuracy in predict- ing the critical properties of large variety of compounds [12,13]. Once the critical pressure and critical temperature are obtained, the acentric factor of the compound can be easily determined. To correlate vapour-liquid equilibria of multicomponent systems, appropriate mixing and combining rules should be directly inte- grated into equations of state parameters. In this regards, both

15parameters a and b of Peng-Robinson equation of state can be expressed in the

form of classical van der Waals mixing rule, as shown below [14–16]: N N a = xixjaij (14) ∑i=1∑j=1 N N b = xixjbij (15) \(\subseteq i=1 \) j=1 In this work, two frequently used mixing rules namely quadratic and Stryjek–Vera (SV) mixing rules were employed for correlat- ing phase equilibrium behavior of 3-acetylpyridine in supercritical CO2 over the measurement range. The adjustable parameters aij and bij for quadratic mixing rule can be written in the following mathematical forms [3,9,16]: aij = aiiajj 1 − kij with kji = kij (16) bij = √bii + bjj (1 − lij) with Iji = Iij 2 (17) while for Stry(jek-Ve)ra mixing rule, the constants a and b are given as follows [17]: aij = aiiajj 1 - xikikji+jkjxijkji with k ji =/ kij (18) √bii + bjj 1 - lij [] bij = 2 with lji = lij (19) kji = kij - ij () (20) where kij, kji, and lij are all binary interaction parameters and can be determined by iterative curve fitting procedure of experimen- tal data. For this purpose, PE2000 software was applied to obtain Table 4 Optimal values of

11binary interaction parameters of Peng-Robinson equation of state

incorporated with quadratic and Stryjek-Vera mixing rules. Mixing rules T (K) Binary interaction parameters RMSD kij lij kji ij Quadratic 313.15 323.15 333.15 343.15 0.544 0.621 0.739 0.932 -0.013 0.016 0.037 0.115 -----0.084 0.071 0.060 0.051 Stryjek-Vera 313.15 323.15 333.15 343.15 0.816 0.521 0.786 0.568 $0.090 - 0.025 \ 0.057 - 0.029 \ 0.578 \ 0.608 \ 1.479 \ 0.901 \ 0.238 - 0.087 - 0.693 - 0.333 \ 0.084 \ 0.075 \ 0.062 \ 0.053$ the optimal values of fitted binary interaction parameters by mini- mizing objective function and satisfying convergence. The optimal values of

11binary interaction parameters of Peng-Robinson equation of state

incorporated with quadratic and Stryjek-Vera mixing rules are tabulated in Table 4. Fig. 4 displays the correlation results between predicted and experimental solubility data of 3-acetylpyridine in supercriti- cal CO2 using Peng-Robinson equation of state with quadratic and Stryjek-Vera

15mixing rules. The root-mean-square devia- tion between actual and predicted values was in the

range of 0.051 to 0.084 for quadratic mixing rule, which is comparable with Stryjek-Vera mixing rule. The interaction parameter val- ues of kij and lij for quadratic mixing rule (Table 4) increase at higher temperature. This result indicates that higher tempera- ture facilitates interaction between "like" molecules, for example solute-supercritical solvent interaction to form a solvato complex. On other hand, the values of binary parameters kij, lij, and ij for Stryjek-Vera mixing rule show inconsistency with temperature variation. The value of kji at temperature of 333.15 K is larger than unity, which gives the values of a and aij less than zero. Regardless of similarity of RMSD values, it can be deduced that

9Peng-Robinson equation of state incorporated with quadratic mixing rule

is supe- rior and more sensitive in describing the dependency of binary interaction parameters with temperature than PR-EoS incorpo- rated with Stryjek-Vera mixing rule. 4. Conclusions New

2solubility data of 3-acetylpyridine in supercritical car- bon dioxide

over wide range of pressures and temperatures have experimentally measured in this work under static mode. The crossover phenomenon was observed at pressure of 12 MPa and the solubilities of solute in supercritical solvent increased with increas- ing both pressure and temperature of the system. For mathematical modeling, semi-empirical density-dependent equations namely Chrastil and Del Valle and Aguilera equations gave satisfactory agreement for solubilities correlation over the measurement range. The exothermicity nature of associating process and the equilib- rium formation of solvato complexes between 3acetylpyridine and supercritical carbon dioxide could be consistently described by both equations. The evaluation of phase equilibria of supercritical system using

9Peng-Robinson equation of state incorporated with quadratic mixing rule

show that temperature was the influential factor toward adjustable binary interaction parameters while PR-EoS incorporated with Stryjek-Vera mixing rule failed to describe this behavior. Acknowledgment The first author (Bely Agustin)

7would like to express her sincere gratitude to Department of Chemical **Engineering, National Taiwan University of Science and Technology for** undergraduate exchange student grant and provision of all research facilities.

8Appendix A. Supplementary data Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j. fluid .2013.06.

036. References [1] J.A. Maga, J. Agric. Food Chem. 29 (1981) 895-898. [2] T.E. Kinlin, R. Muralidhara, A.O. Pittet, A. Sanderson, J.P. Walradt, J. Agric. Food Chem. 20 (1972) 1021–1028. [3] M. Richter, H. Sovova, Fluid Phase Equilib. 85 (1993) 285-300. [4] D.E. Knox, Pure Appl. Chem. 77 (2005) 513-530. [5] N.P. Kulshreshtha, S.C. Moldoveanu, J. Chromatogr. A 985 (2003) 303-312. [6] S.I. Sandler, Chemical and Engineering Thermodynamics, third ed., Wiley, New York, 1999. [7] Ö. Güçlü-Üstündag, F. Temelli, J. Supercrit. Fluids 31 (2004) 235–253. [8] D.L. Sparks, R. Hernandez, L.A. Estevez, Chem. Eng. Sci. 63 (2008) 4292-4301. [9] P. Subra, S. Castellani, H. Ksibi, Y. Garrabos, Fluid Phase Equilib. 131 (1997) 269-286. [10] J. Chrastil, J. Phys. Chem. 86 (1982) 3016–3021. [11] J.M. Del Valle, J.M. Aguilera, Ind. Eng. Chem. Res. 27 (1988) 1551–1553. [12] K.G. Joback, R.C. Reid, Chem. Eng. Commun. 57 (1987) 233–243. [13] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill Co., New York, 1987. [14] K.K. Liong, N.R. Foster, S.S.T. Ting, Ind. Eng. Chem. Res. 31 (1992) 400–404. [15] S. Ismadji, J. Chem. Eng. Data 53 (2008) 2207–2210. [16] P. Coimbra, M.R. Blanco, H.S.R.C. Silva, M.H. Gil, H.C. de Sousa, J. Chem. Eng. Data 51 (2006) 1097–1104. [17] R. Stryjek, J.H. Vera, Can. J. Chem. Eng. 64 (1986) 820-826. Author's personal copy 128 Author's personal copy B. Agustin et al. / Fluid Phase Equilibria 354 (2013) 127-132 Author's personal copy 130 Author's personal copy B. Agustin et al. / Fluid Phase Equilibria 354 (2013) 127-132 Author's personal copy 132 Author's personal copy B. Agustin et al. / Fluid Phase Equilibria 354 (2013) 127-132