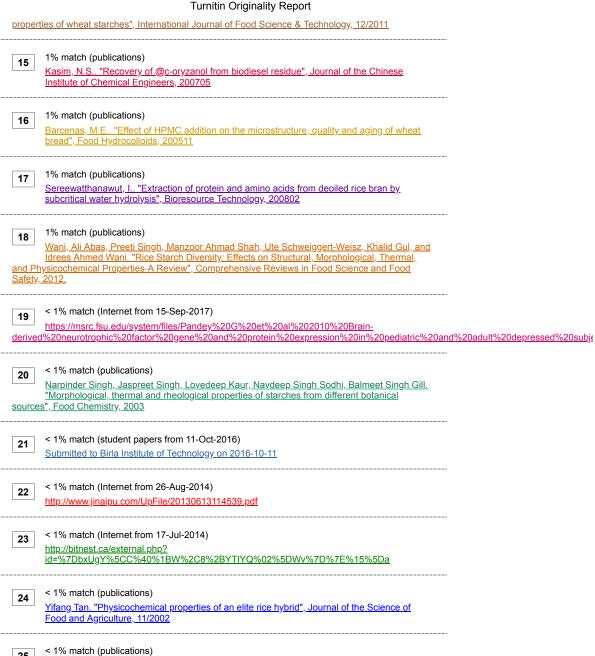
turnitin Originality Report


JTICE192 by Suryadi Ismadji From paper 2 (Hippo-hippo 02)

> Processed on 16-Feb-2018 14:36 WIB ID: 916900046 Word Count: 4800

Similarity by Source Similarity Index Internet Sources: Publications: Student Papers: 13% 15% 12% 20%

source	ls:	
1	4% match (student papers from 13-Jul-2017) Submitted to CVC Nigeria Consortium on 2017-07-13	
2	1% match (Internet from 01-Dec-2015)	
http:/	/www.researchgate.net/profile/Aleksander_Recnik/publication/241122522_Stepwise_formation_of_ci	<u>rystalline_apatite_in_the_biomimet</u>
3	1% match (publications) Wang, S "Studies on the morphological, thermal and crystalline properties of starches separated from medicinal plants", Journal of Food Engineering, 200610	
4 Analy	1% match (publications) Sanchez-Castillo, C.P "The Starch and Sugar Content of some Mexican Cereals, Cereal Products, Pulses, Snack Foods, Fruits and Vegetables", Journal of Food Composition and visis, 200004	
5	1% match (publications) Fazary, A.E "Biochemical studies on native and cross-linked aggregates of Aspergillus awamori feruloyl esterase", International Journal of Biological Macromolecules, 20090401	
	1% match (publications) Shanfeng Wang, Lichun Lu, James A. Gruetzmacher, Bradford L. Currier, Michael J. Yaszemski. "A Biodegradable and Cross-Linkable Multiblock Copolymer Consisting of propylene fumarate) and Poly(ɛ-caprolactone): Synthesis, Characterization, and Physical erties", Macromolecules, 2005	
7	1% match (Internet from 07-Nov-2017)	•
	/www.investigo.biblioteca.uvigo.es/xmlui/bitstream/handle/11093/636/Aplicaci%c3%b3n_de_t%c3%a :3%admicas.pdf?isAllowed=y&sequence=1	a9cnicas_f%c3%adsico-
8	1% match (Internet from 06-Nov-2017) http://spaces.isu.edu.tw/upload/19434/2/files/dept_2_lv_2_2374.pdf	
9	1% match (publications) Singh, S "Effects of gamma-irradiation on the morphological, structural, thermal and rheological properties of potato starches", Carbohydrate Polymers, 20110201	_
10 of Ag	1% match (publications) Singh, Vasudeva, Hiroshi Okadome, Hidechika Toyoshima, Seiichiro Isobe, and Ken'ichi Ohtsubo. "Thermal and Physicochemical Properties of Rice Grain, Flour and Starch", Journal ricultural and Food Chemistry, 2000.	
11	1% match (publications) Zullaikah, S "A two-step acid-catalyzed process for the production of biodiesel from rice bran oil", Bioresource Technology, 200511	
12	1% match (Internet from 26-Jan-2012) http://techno.msu.ac.th/files/paper_food1.pdf	
13	1% match (publications) Mohammadkhani, A "Survey of amylose content in Secale cereale, triticum monococcum, T. turgidum and T. tauschii", Journal of Cereal Science, 199811	
14	1% match (publications) Khetan Shevkani "Relationship between physicochemical and rheological properties of	

starches from Indian wheat lines: Relationship between physicochemical and rheological

25

Park, Ho-Young, A-Reum Yu, In-Wook Choi, Hee-Do Hong, Kwang-Won Lee, and Hee-Don Choi. "Immunostimulatory effects and characterization of a glycoprotein fraction from rice bran", International Immunopharmacology, 2013.

paper text:

1This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Journal of

2the Taiwan Institute of Chemical Engineers 42 (2011) 86-91 Contents lists available at ScienceDirect Journal of the Taiwan Institute of Chemical

Engineers journal homepage: www.elsevier.com/locate/jtice Isolation and characterization of

starch from defatted rice bran Cynthia Fabian a, Aning Ayucitra b, Suryadi Ismadji b, Yi-Hsu Ju a,*

5a Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan b Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia

19ARTICLE INFO Article history: Received 19 August 2009 Received in revised form 5 February 2010 Accepted 7 March 2010

Keywords: Gelatinization Starch Rice bran Thermogravimetric analysis ABSTRACT Rice starch is one of the most expensive yet very useful starches due to its unique characteristics. This study aimed to isolate starch from defatted rice bran, an underutilized byproduct of milling and is a relatively inexpensive source of rice starch. Starch was extracted from the bran by first soaking it in water. The mixture was then subjected to blending and washing with water, alcohol and alkali solution. About 83% of the rice bran starch was recovered. Characterization of the rice bran starch showed that its gelatinization and retrogradation properties as well as its granule size are similar to those of starch from rice endosperm. Based on the results of this study, defatted rice bran can be a good source of starch that is suitable for applications in food and pharmaceutical industry and other new applications such as a potential material in the biomedical field. β 2010

7Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 1. Introduction Starch serves as the major reserve of

polysaccharide in plants that provides the bulk nutrient and energy source in human diet (Galliard, 1987; Shelton and Lee, 2000). It finds wide applications not only in food but also in pharmaceutical and biomedical industries because of its biocompatibility, biodegradability, non- toxicity, and abundant sources (Kaur et al., 2007). One of the most interesting applications of starch is in the biomedical field. Starch has been recognized as a potential material in tissue engineering of bone, bone fixation, carrier for the controlled release of drugs and hormones, and as hydrogels (Chakraborty et al., 2004; Lenaerts et al., 1998; Mano and Reis, 2004; Pal et al., 2006; Pereira et al., 1998; Won et al., 1996). Biodegradable bone cements made from starch are highly advantageous because they can provide for immediate structural support and, as

6they degrade at the site of application, allow the ingrowth of new bone for complete healing of bone fracture

(Domb et al., 1996; Pereira et al., 1998). Nanoparticles, nanospheres, and nanogels from starch have also been used as base materials for nanoscale construction of sensors, tissues, mechanical devices, and drug delivery systems (Chakraborty et al., 2004). From rice starch, a patented process for the production of starch nanoparticles by extrusion method has been described by Giezen et al. (2004). They claimed that the nanoparticles produced can be used as a matrix material like resin materials in coating application, as a thickener, as a fat replacer and as carrier of *

11Corresponding author. Tel.: +886 2 2737 6612; fax: +886 2 2737 6644. E-mail address: yhju@mail .ntust.edu.tw (Y.-H. Ju).

colorants, medicaments, flavors and other compounds such as drugs that require slow-release agent. Rice starch is advantageous for nanotechnology applications and other special applications because among plant starch, it has the smallest and narrowest size range of about 2–10 mm (Dendy and Dobraszczyk, 2001). Its contaminating protein is generally considered to be hypoallergenic since there have been no reports related to the occurrence of allergic reactions after eating rice (Helm and Burks, 1996). However, according to Matsuda et al. (1988), a 16-kDa allergenic protein in rice is present but can be decreased or totally removed by enzymatic decomposition

6as reported by Ito et al. (2005) and Watanabe et al. (1990). Despite the

known unique properties and impressive potential applications of rice starch, it is still not widely used because of its relatively high price compared to other cereal starches and because the co-products of these other grains are currently more valuable than those from rice (Bao and Bergman, 2004; Dendy and Dobraszczyk, 2001). Thus, the possibility of extracting rice starch from cheaper sources would be advantageous. One source of relatively inexpensive rice starch is rice bran, an underutilized byproduct of rice milling. Rice bran is usually not consumed as food because of its high fiber content and possible hull contamination (Luh, 1991). It also has limited food application because of the rapid development of rancidity due to the activation of lipase in bran upon milling that breaks down glycerides into fatty acids (Juliano, 1985). Development of stabilization techniques has led to the use of a small percentage of rice bran as commercial food products. However, most rice bran is either

25used directly as an ingredient in animal feed

or as fuel in boiler. Rice bran is an

25undervalued byproduct of rice milling and is rich

in carbohydrates, protein, lipids, dietary fibers, vitamins and minerals (Saunders, 1990).

81876-1070/\$ - see front matter ß 2010 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jtice.

2010.03.013 Rice bran contains high amount of carbohydrates. According to Luh (1991), starch which occurs abundantly only in the endosperm has been identified in the germ and aleurone layers that is part of rice bran. Commercial bran thus contains a fair amount of starch and the value can range from 10 to 55% depending on the type of milling and amounts of endosperm present (Saunders, 1990). Mihara et al. (1974) isolated a starch-rich fraction from full-fat rice bran with similar properties to rice starch. However, the properties and composition of the starch they obtained were not reported. Also, there is no report on starch extraction from defatted rice bran. Thus, in this study, starch is isolated from defatted rice bran. Furthermore, the obtained rice bran starch was characterized to provide information for its possible application. This study is also part of our efforts in developing a method for the total utilization of defatted rice bran. Complete utilization of defatted rice bran would play an important role in lowering the total cost of biodiesel production if rice bran oil is used as the raw material.

152. Materials and methods 2.1. Materials Rice bran fresh from milling was purchased from a local rice mill in Taoyuan County, Taiwan. The bran

is not specifically from one variety of rice but is a mixture of rice harvested in northern Taiwan. Bran collected from the mill was stored at 60 8C before use. Defatting of rice bran was done using hexane in a Soxhlet extractor at 60 8C for 4 h. Standards for amylopectin from maize and amylose from potato starch

23were purchased from Sigma-Aldrich (St. Louis, MO).

Enzymes for starch analysis such as amylase and glucoamylase were also obtained from Sigma–Aldrich. All other chemicals used were of reagent grade and were also supplied by the said company. 2.2. Preparation of rice bran starch The isolation of starch from rice bran is shown in Fig. 1. About 10 g rice bran was soaked in 50 mL water for 3 h. The mixture was blended in a Philips blender for 5 min. A 60-mesh screen attached ([]GIF\$DT)1_.giF Fig. 1. Wet-milling method for the isolation of starch from rice bran. in the blender aided the separation of the extract from the bran when the extract was poured out of the blender. The bran was then blended again with 70% ethanol and 0.1 M NaOH for 5 min for each solvent. The filtrate was

7centrifuged at 11,000 g for 15 min. The supernatant was then carefully separated

from the solid residue. The residue was reslurried, washed with deionized water and filtered through a 200-mesh screen. The filtrate was filtered again by using a 2.5-mm filter paper (Whatman Grade No. 5) and successively washed with 0.1 M NaOH and deionized water. The residue collected on the filter paper was dried at 55 8C for 48 h. The dried starch was ground with mortar and pestle and stored in a plastic jar at room temperature for later analyses. All extraction experiments and subsequent analyses were carried out at least twice. 2.3. Starch product analysis 2.3.1. Total starch Analysis for total starch extracted was accomplished by using the enzymatic method of Sachez-Castillo et al. (2000) with slight modification. About

0.25 g of the dried starch product was dispersed in 40 mL sodium acetate buffer (0.2 M, pH 5.0) in a 60-mL glass vial.

4One hundred microliters of thermostable a- amylase (Termamyl

300L, Trump Chemical Corp., Taiwan)

4was added and the vial was heated in a boiling water bath for 30 min with constant stirring. The tube was then transferred to a 55 8C water bath and allowed to equilibrate.

About 0.5 mL 0

4.2%, w/v, solution of amyloglucosidase (67.4 U/mg)

4was added. Then, the tube contents were mixed and incubated for about 16 h. The

hydrolyzed sample was filtered, transferred to a volumetric flasks and added with deionized water to a final volume of 50 mL. About 3 mL

23of the hydrolyzed sample was placed in a 5-mL tube.

Then, 1% DNS solution

17was added. The mixture was heated

at 90 8C until its color turned to brownish yellow. After heating, 1 mL of 40%

17Rochelle salt solution was added. The

17mixture was cooled to room temperature

before its glucose content was

22analyzed using a Jasco UV-vis spectrophotometer (UV- V 550) at

540 nm. The starch content was then calculated by multiplying 0.9 on the glucose content determined (Aman and Hesselman, 1984). 2.3.2. Amylose content The blue value method was used in the determination of amylose content of rice bran starch (Singh et al., 2000). About 0.5 mg starch was placed in a volumetric flask containing 1 mL ethanol and 2.7 mL NaOH (1 M). The mixture was heated at 175 8C for 15 min, cooled and diluted with deionized water to a total volume of 25 mL. About 2.5 mL aliquot of the sample was taken and mixed with 2 mL citric acid (0.15 M), 1 mL

13iodine solution (0.2 g I2, 2 g KI and 250 mL water) and 14.5 mL deionized water. The mixture was stored for 20 min

before being

22analyzed using a Jasco UV-vis spectrophotometer (UV- V 550) at

620 nm. 2.3.3. Total dietary fiber The method of Prosky et al. (1988) was employed for the determination of total dietary fiber (TDF). About 0.25 g rice bran starch was treated with three enzymes. Firstly, the starch was digested with 0.1 mL thermostable a-amylase at pH 6 for 30 min in a boiling water bath. The pH of the mixture was adjusted to 7.5 and 0.01 g of protease (16 U/g) was added. The mixture was incubated for 30

min at 60 8C. Lastly, pH of the mixture was adjusted to 4.5 and amyloglucosidase was added followed by incubation for another 30 min at 60 8C. Then, 250 mL preheated 95% ethanol was added to the mixture and the solution was allowed to precipitate at room temperature for 60 min. The mixture was then filtered using an ashless filter paper (Advantec No. 5C) and the residue was successively washed with 78% ethanol, 95% ethanol and acetone. Also, the ash and protein contents of the residue were analyzed by 88 C. Fabian

2et al. / Journal of the Taiwan Institute of Chemical Engineers 42 (2011)

86–91 AOCS standard methods. Then, the TDF content was determined as the weight of residue less its ash and protein content.

32.3.4. Swelling and solubility Swelling and solubility of

rice bran starch were studied using the methods of Singh et al. (2000). About 500 mg starch was added in 20 mL water and the solution was heated at various temperatures (30–90 8C) for 30 min. The mixture was weighed and water was added to make the total weight equal to 25 g. The weighed mixture was then centrifuged and the

10supernatant was decanted. The residue was weighed for the determination of swelling power

by using the following formula (Singh et al., 2000): Swelling power ¼ wet residue weight ðgÞ=500 dried starch weight ðgÞ For starch solubility determination, about 10 mL supernatant obtained from the centrifugation of the starch solution was

10dried at 105 8C for 3 h and then weighed. The solubility was calculated using the following

formula (Singh et al., 2000): Solubility ¼ dry residue weight ðgÞ 2:5 100=starch weight ðgÞ 2.3.5. Thermal analysis Thermal properties of rice bran starch were analyzed using a DSC Jade (Perkin Elmer) and the methods were based from the study of Singh Sodhi and Singh (2003). About 3.5 mg rice bran starch was weighed and put in a 40-mL aluminum pan (TA Instruments, USA). Distilled water was added

3to achieve a starch- water suspension containing 70% water. The sample was sealed and allowed to stand for 1 h at room temperature before heating in the DSC. The DSC was calibrated using indium and an empty aluminum pan was used as the reference. Sample pans were heated

16from 25 to 100 8C at 10 8C/min.

9Onset temperature (To), peak temperature (Tp) and enthalpy of gelatinization (DHgel) were calculated automati- cally using the

Pyris thermal data analysis software. After cooling the sample was stored at 4 8C for 7 days. Retrogradation was measured by reheating the sample pan contain- ing rice bran starch

16from 25 to 100 8C at 10 8C/min.

The

9enthalpy of retrogradation (DHret) was calculated automatically and the percentage of retrogradation (%R) was calculated as

follows (White et al., 1989): DHret %R ½ DHgel A Perkin Elmer Diamond TG/DTA Instrument (Perkin Elmer, Japan) was used for thermal stability studies. Approximately 6 mg rice bran starch was placed on a platinum pan. The sample was heated from 30 to 950 8C at 10 8C/min to determine the temperature at which decomposition occurs. During the entire run, air at atmospheric pressure was allowed to flow through the

system containing the sample at 20 mL/min. 2.3.6. Scanning electron microscopy The scanning electron micrographs of rice bran starch were taken with a Cambridge scanning electron microscope (S-360) at an accelerating voltage of 20 kV. Starch granules were sprinkled onto a double-sided

24tape attached to a stub and coated with gold.

Table 1 Composition of rice bran starch product. Component % weighta Starch 84.24 Fiber 5.76 Protein 0.66 Ash 9.23 a Dry basis. about 36% was utilized. Using the process in Fig. 1, the starch obtained has a purity of 84% with a corresponding recovery of 83%. The amylose content of rice bran starch is 5.66% which characterizes low-amylose rice. The source of rice bran used in this study may have come from a low-amylose variety of rice in Taiwan. Minor components of the rice bran starch obtained in this study are ash, fiber and protein as shown in Table 1. During starch isolation, it is usually required to remove protein from crude starch obtained. In this study, water and 0.1 M NaOH were used to wash the crude starch product which resulted in reducing the protein content to 0.66%. The protein in the starch product was difficult to remove because it is not only associated with starch granule surface as in the case of wheat starch (Galliard, 1987) but also bound

24to the amylose and amylopectin of the starch

forming a carbohydrate–protein complex (Chrastil, 1990). 3.2. Thermal properties The thermal decomposition profile of rice bran starch shows three events (Fig. 2). The first thermal decomposition occurred in the temperature interval of 28–131 8C, which corresponds to the dehydration of the starch sample. The second and third events were consecutive and correspond to decomposition in the temperature interval of 210–540 8C. At 302 8C, rice bran starch had a major decomposition that resulted in a mass loss of 45%. Rice bran starch

21in any application should avoid being subjected to such high temperature to ensure no significant thermal degradation. As shown in the

gelatinization thermogram in Fig. 3, rice bran starch gelatinization is characterized by a broad endothermic peak at 67-78 8C. At this temperature range, irreversible granule swelling, loss of birefringence, and loss of crystallinity occurred after the regions of amorphous starch first melted or undergone glass transition (Bao and Bergman, 2004; Slade and Levine, 1988). The onset and peak gelatinization temperatures for rice bran starch were found at 67 8C and 73 8C, respectively. The gelatinization ef[GIF\$DT)2 .giF(nthalpy is about 9.56 J/g. This heat energy is the amount required 3. Results and discussion 3.1. Starch yield and purity The wet-milling process for the isolation of rice bran starch shown in Fig. 1 yielded four fractions, viz. starch. protein, course Fig. 2. Thermogravimetric curves of rice bran starch. Weight loss curve (—). fiber and fine fiber. In this study, rice bran with a starch content of Derivative of weight loss (—). ([]GIF\$DT)3 .giF ([]GIF\$DT)4 .giF Fig. 3. DSC curve of gelatinization of rice bran starch. Fig. 4. DSC curve of retrogradation of rice bran starch, to completely gelatinize starch in rice which is critical to the rice processor, who must optimize heat input, cooking time, and temperature and, at the same time, minimize the cost of the entire process (Bao and Bergman, 2004). Both the transition temperature and enthalpy observed for rice bran starch in the present study were found to agree, within experimental error, with those earlier reports on rice starch (Lii et al., 1995; Russell and Juliano, 1983; Singh Sodhi and Singh, 2003). The endothermic peaks of starch, after storing the gelatinized rice starch at 4 8C for 7 days, appeared between 39 and 60 8C as can be observed in Fig. 4. Retrogradation occurred at about 52 8C which is lower than the gelatinization temperature of 73 8C. According to Ward et al. (1994),

20recrystallization of amylopectin branch chains has been reported to occur in a less ordered manner in a stored

Table 2 Thermal properties of rice bran starch. Thermal property Rice bran Rice starch (Singh starch Sodhi and Singh, 2003) Gelatinization Onset temperature, To (8C) Peak temperature, Tp (8C) Enthalpy, DHgel (J/g) 63.97 72.62 9.555 Retrogradation Peak temperature (8C) Enthalpy, DHret (J/g) Retrogradation (%) 51.85 2.929 30.65 Decomposition temperature (8C) 302.73 67.26 71.94 11.88 – 31.23 – starch gel

18than in native starch. This explains the occurrence of amylopectin retrogradation endotherm at a temperature range below that for gelatinization.

The enthalpy of retrogradation

14provides a quantitative measure of energy transformation that occurs during the melting of re- crystallized rice bran starch. The enthalpy needed for the break down of retrograded starch is 31% of the

enthalpy needed to gelatinize the native starch because of the less ordered structure of the re-crystallized starch granules. The thermal properties of rice bran starch obtained in this study and rice starch from previous study are summarized in Table 2. ([]GIF\$DT)5_.giF Fig. 5. SEM images of rice flour (a) and rice bran starch (b) (c). 9[]GIF\$DT)6_.giF(0 C. Fabian

2et al. / Journal of the Taiwan Institute of Chemical Engineers 42 (2011)

86-91 4. Conclusions Rice bran starch was isolated from defatted rice bran using a wet-milling process. About 83% of rice bran starch was recovered. The starch product contains 0.66% protein. The size of starch (2-8 mm), gelatinization (73 8C) and retrogradation (31%) properties are within the range reported for rice starch. Thus, rice bran starch maybe used as functional ingredient in food and pharmaceutical industry like starch from rice endosperm as well as find new applications such as a potential material for biomedical applica- tions since it is from a cheap raw material and can compete economically with other cereal starches. References Aman, P. and K. Hesselman, "Analysis of Starch and Other Main Constituents of Cereal Grains," Swed. J. Agric. Res., 14, 135 (1984). Bao, J. and C. J. Bergman, "The Functionality of Rice Starch," Starch in Food: Structure, Fig. 6. Swelling power and solubility of rice bran starch. Function and Application, (2004). Chakraborty, S., B. Sahoo, I. Teraoka, L. M. Miller, and R. A. Gross, "Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles," Macromolecules, 38, 61 (2004). Chrastil, J., "Protein-Starch Interactions in Rice Grains. Influence of Storage on 3.3. Morphology of starch Oryzenin and Starch," J. Agric. Food Chem., 38, 1804 (1990). Dendy, D. A. V. and B. J. Dobraszczyk, Cereals and Cereal Products: Chemistry and The scanning electron micrographs in Fig. 5 show the granules Technology, Aspen Publishers, Gaithersburg, MD (2001). Domb, A. J., N. Manor, and O. Elmalak, "Biodegradable Bone Cement Compositions in rice flour (90% starch) and rice bran starch obtained in this Based on Acrylate and Epoxide Terminated Poly(Propylene Fumarate) Oligomers study. Rice bran starch is composed of polyhedral granules with and Calcium Salt Compositions," Biomaterials, 17, 411 (1996). sizes of 2-8 mm. The granules agglomerate and are very similar to Galliard, T., Starch-Properties and Potential, Published for the Society of Chemical Industry, Wiley, Chichester, England (1987). the starch granules of rice flour. However, the surfaces of rice bran Giezen, F. E., R. O. J. Jongboom, H. Feil, K. F. Gotlieb, and D. B. Boersma, "Biopolymer starch appear to be rougher than that of rice flour. The differences Nanoparticles," U.S. Patent 6, 677, 386B1 (2004). in the appearance of surfaces of the starch granules maybe due to Helm, R. M. and A. W. Burks, "Hypoallergenicity of Rice Bran Protein," Cereal Food World, 41, 839 (1996). the processing method used. For rice bran starch, alkali treatment Ito, M., T. Kato, and T. Matsuda, "Rice Allergenic Proteins, 14–16 kDa Albumin and a- was employed while the rice flour was obtained by just subjecting Globulin, Remain Insoluble in Rice Grains Recovered from Rice Miso (Rice-Contain- rice kernel to milling. ing Fermented Soybean Paste)," Biosci. Biotechnol. Biochem., 69, 1137 (2005). Juliano, B. O., Rice: Chemistry and Technology, American Association of Cereal Che-mists, St. Paul, Mimm., USA (1985). 3.4. Swelling power and solubility Kaur, L., J. Singh, and Q. Liu, "Starch a Potential Biomaterial for Biomedical Applications," Nanomater. Nanosyst. Biomed. Appl., 83 (2007). According to Leach (1965), the most important property of Leach, H. W., "Gelatinization of starch," Whistler, R.L., Paschall, E.F. (Eds.), Academic Press, New York, p. 294, (1965). starch in a commercial application is its ability to swell and Lenaerts, V., I. Moussa, Y. Dumoulin, F. Mebsout, F. Chouinard, P. Szabo, M. A. Mateescu, produce a viscous paste when heated with water. As shown in L. Cartilier, and R. Marchessault, "Cross-linked High Amylose Starch for Controlled Fig. 6, both swelling power and solubility of rice bran starch Release of Drugs: Recent Advances," J. Control. Release, 53, 225 (1998). Lii, C. Y., Y. Y. Shao, and K. H. Tseng, "Gelation Mechanism and Rheological Properties of increase with increasing temperature. The trend for the Rice Starch," Cereal Chem., 72, 393 (1995), increase in swelling power and solubility of rice bran starch Luh, B. S., Rice Production, Van Nostrand Reinhold, New York (1991), with temperature reported in this study are similar to the Mano, J. F. and R. L. Reis, "Viscoelastic Monitoring of Starch-Based Biomaterials in Simulated Physiological Conditions," Mater. Sci. Eng. A, 370, 321 (2004), results for starch from low-amylose rice variety (Singh et al., Matsuda, T. M., N. R. Sugiyama, and S. Torii, "Purification and Properties of an 2000). Allergenic Protein in Rice Grain," Agric. Biol. Chem., 52, 1465 (1988). In Fig. 6, the swelling power of the starch gradually increased Mihara, S., Y. Inaba, K. Tachibana, T. Endo, and E. Yasui, "Process for the Complete Separation of Constituents of Rice Bran and the Like," U.S. Patent 3, 852, 504 (1974). at the temperature range of 25-60 8C followed by a very sharp Pal, K., A. K. Banthia, and D. K. Majumbar, "Starch Based Hydrogel with Potential increase at 80-90 8C. Leach (1965) reported that for the Biomedical Application as Artificial Skin," Afric. J. Biomed. Res., 9, 23 (2006). swelling of cereal flours, two stages occur that reflects the Pereira, C. S., B. Vásquez, A. M. Cunha, R. L. Reis, and J. San Román, "New Starch-Based Thermoplastic Hydrogels for Use as Bone Cements or Drug-Delivery Carriers," J. properties of linear and branched polymers. The branched Mater. Sci. Mater. Med., 9, 825 (1998). polymer, amylopectin swells to a greater extent along Prosky, L., G. N. Asp, T. F. Scheweizer, J. W. de Vries, and I. Furda, "Determination of with protein and fat as individual components, but in Insoluble, Soluble, and Total Dietary Fiber in Foods and Food Products: Interla- combination with amylose, a linear polymer, it is more resistant

boratory Study," J. Assoc. Off. Anal. Chem., 71, 1017 (1988). Russell, P. L. and B. O. Juliano, "Differential Scanning Calorimetry of Rice Starches," to swelling. Starch - Starke, 35, 382 (1983). The extent of the solubility of rice bran starch is also shown Sachez-Castillo, C. P., P. J. S. Dewey, J. J. Lara, D. L. Henderson, M. de Lourdes Solano, and in Fig. 6. Its solubility increased gradually to 8% at 70 8C. The W. P. T. James, "The Starch and Sugar Content of some Mexican Cereals, Cereal Products, Pulses, Snack Foods, Fruits and Vegetables," J. Food Comp. Anal., 13, increased in solubility become sudden at 70-90 8C reaching to 157 (2000). 15% solubility of the rice bran starch. Higher solubility was Saunders, R. M., "The Properties of Rice Bran as a Food Stuff," Cereal Food World, 35, 632 observed for the rice bran starch obtained in this study (1990). Shelton, D. R. and W. J. Lee, "Cereal Carbohydrates," Kulp, K., Ponte, J.J.G. (Eds.), Marcel compared to the rice starch derived from the study of Singh Dekker Inc., New York, p. 385 (2000). et al. (2000). It is generally well documented that pregelatinized Singh Sodhi, N. and N. Singh, "Morphological, Thermal and Rheological Properties of flours or starches will have high solubility although in this study Starches Separated from Rice Cultivars Grown in India," Food Chem., 80, 99 (2003). Singh, V., H. Okadome, H. Toyoshima, S. Isobe, and K. Ohtsubo, "Thermal and no pregelatinization of starch was done. Probably, higher Physicochemical Properties of Rice Grain, Flour and Starch," J. Agric. Food Chem., solubility of rice bran starch can be attributed to the processes 48, 2639 (2000). it has undergone such as defatting and soaking in water during Slade, L. and H. Levine, "Non-Equilibrium Melting of Native Granular Starch: Part I. Temperature Location of the Glass Transition Associated with Gelatinization of A- the extraction procedure. Type Cereal Starches," Carbohydr. Polym., 8, 183 (1988). Ward, K. E. J., R. C. Hoseney, and P. A. Seib, "Retrogradation of Amylopectin from Maize and Wheat Starches," Cereal Chem., 71, 150 (1994). Watanabe, M., J. Miyakawa, Z. Ikezawa, Y. Suzuki, T. Hirao, T. Yoshizawa, and S. Arai, "Production of Hypoallergenic Rice by Enzymatic Decomposition of Constituent Proteins," J. Food Sci., 55, 781 (1990). White, P. J., I. R. Abbas, and L. A. Johnson, "Freeze-Thaw Stability and Refrigerated- Storage Retrogradation of Starch," Starch - Starke, 41, 176 (1989). Won, C. Y., C. C. Chu, and T. J. Yu, "Synthesis of Starch-Based Drug Carrier for the Control/Release of Estrone Hormone," Carbohydr. Polym., 32, 239 (1996).

1Author's personal copy Author's personal copy C. Fabian et al. / Journal of

12the Taiwan Institute of Chemical Engineers 42 (2011) 86–91

1Author's personal copy Author's personal copy C. Fabian et al. / Journal of

87

89 Author's personal copy Author's personal copy C. Fabian et al. / Journal of the Taiwan Institute of Chemical Engineers 42 (2011) 86–91 91

12the Taiwan Institute of Chemical Engineers 42 (2011) 86-91