
PERENCANAAN DAN PEMBUATAN ALAT UNTUK MEMPERBAIKI POWER FACTOR DENGAN MIKROKONTROLLER 80C31

SKRIPSI

AGUS BUDI SETYAWAN

NRP: 5103093020

NIRM: 93.7.003.31073.01158

JURUSAN TEKNIK ELEKTRO
FAKULTAS TEKNIK
UNIVERSITAS KATOLIK WIDYA MANDALA
SURABAYA
2000

LEMBAR PENGESAHAN

Ujian Skripsi bagi mahasiswa tersebut di bawah ini:

NAMA: AGUS BUDI SETYAWAN

NRP : 5103093020

NIRM: 93.7.003.31073.01158

telah diselenggarakan pada:

tanggal: 8 Maret 2000

Karenanya yang bers in nyatakan telah memenuhi sebagian persyaratan SARJANA TEKNIK di bidang TEKNIK baya, 14 Maret 2000 embimbing resetvo, M. Sc.

Ir. Rasional Sitepu, M. Eng. Anggota

F.Lumban Tobing, M.T.

Anggota

JURUSAN TEKNIK ELEKTRO

Ketua

Ir. R. Sumarno, B.Sc.

FAKULTAS TEKNIK

Dekan

Ir. Vincent W. Prasetyo, M.Sc.

Abstrak

Dewasa ini pemakaian alat elektronik semakin meningkat seiring dengan meningkatnya kebutuhan hidup manusia. Banyaknya penggunaan alat elektronik tersebut akan menimbulkan efek samping berupa meningkatnya biaya pembayaran rekening listrik. Adapun sebab dari semua itu ada beberapa macam, salah satunya adalah jenis beban yang digunakan, beban yang bersifat induktif (trafo, motor, kipas angin, ballast, dll) cenderung menyerap energi listrik yang lebih banyak daripada beban-beban yang bersifat resistif. Ini disebabkan karena beban induktif cenderung mempunyai nilai faktor daya kecil, yang menyebabkan penyerapan energi listrik lebih banyak. Faktor daya dapat didefinisikan sebagai perbandingan antara daya nyata dalam watt dengan voltampere dari rangkaian AC. Harga faktor daya bergantung pada besarnya beda fase antara arus dan tegangan, jika arus dan tegangan sefase, daya sama dengan IxV, atau dengan kata lain faktor dayanya satu.

Untuk menanggulangi nilai faktor daya yang kecil maka perlu dilakukan perbaikan faktor daya tersebut, dengan salah satu cara yaitu menambah sebuah kapasitor yang dipasang secara paralel dengan beban dapat direduksi, sehingga dapat menurunkan biaya pembayaran rekening listrik.

Untuk penggunaan terhadap beban yang lebih banyak, maka diperlukan cara otomatisasi, dengan menggunakan perangkat pembantu yaitu mikrokontroller 80C31agar lebih mudah dan lebih praktis.

Peralatan mikrokontroller ini untuk pengukuran beda fase dari beban serta melakukan tindakan untuk memutuskan atau menyalakan relay dari kapasitor secara otomatis, serta menampilkan data dari cos φ beban. Data-data yang terbaca oleh rangkaian pengkonversi merupakan data input bagi mikrokontroller pada peralatan ini, setelah dilakukan pengukuran dan perbaikan terhadap rangkaian beban induktif, ternyata nilai cos φ yang dihasilkan/perbaikan sampai sebesar 0,98.

Kata Pengantar

Skripsi dengan judul "Perencanaan dan Pembuatan Alat untuk memperbaiki Power Factor secara Otomatis dengan menggunakan Mikrokontroller 80C31" telah terselesaikan dengan baik berkat jerih payah penulis dan bantuan dari semua pihak.

Penyusunan Skripsi ini merupakan salah satu syarat untuk menyelesaikan program Sarjana di Fakultas Teknik Jurusan Teknik Elektronika Universitas Katolik Widya Mandala.

Dengan terselesaikannya Skripsi ini, tak lupa penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu dan memberi dorongan serta semangat, agar penulis tidak kenal putus asa dalam menghadapi segala rintangan dan hambatan selama melaksanakan Skripsi ini. Rasa terima kasih yang penulis ucapkan diantaranya kepada:

- Kepada Ayah dan Ibu yang selama ini memberikan dorongan moral dan tidak henti-hentinya memberi semangat kepada penulis agar tidak pantang menyerah dan putus asa dalam menyelesaikan Skripsi ini.
- Kepada kakak, adik serta saudara-saudara penulis yang telah memberikan dukungan selama penyusunan Skripsi ini.
- Bapak Ir. Vincent W. Prasetyo, MSc, selaku Dekan Fakultas Teknik, atas dukungan, dan fasilitas yang telah disediakan selama penyelesaian Tugas Akhir ini.
- 4. Bapak Ir. R. Soemarno, BSc, selaku Dosen Pembimbing I serta Ketua Jurusan Teknik Elektro, atas segala bimbingan, dorongan dan pengarahan yang telah diberikan selama penyelesaian Tugas Akhir ini.

 Bapak Tikto, selaku Dosen Pembimbing II, atas segala bimbingan, dorongan, pengarahan dan masukkan yang telah disumbangkan selama penyelesaian Tugas Akhir ini.

 Seluruh Dosen dan Staff Pengajar Fakultas Teknik Jurusan Elektronika Universitas Katolik Widya Mandala yang telah banyak membantu selama masa studi penulis.

7. Rekan-rekan mahasiswa Jurusan Teknik Elektronika, pada khususnya dan rekan-rekan mahasiswa Universitas Katolik Widya Mandala, pada umumnya, atas dorongan, bantuan dan semangat yang telah diberikan.

 Terima kasih yang sebesar-besarnya kepada semua pihak yang tak dapat penulis sebutkan satu-persatu.

Menyadari akan keterbatasan yang penulis miliki, maka dari itu saran dan kritik membangun sangat penulis harapkan agar tercapai hasil yang lebih baik.

Dengan terselesaikannya buku Tugas Akhir ini, penulis berharap akan bermanfaat bagi rekan-rekan mahasiswa Jurusan Teknik Elektronika pada khususnya dan pembaca sekalian pada umumnya.

Surabaya, Maret 2000

penulis

DAFTAR ISI

Halaman Judul	i
Halaman Pengesahan	ii
Abstrak	iii
Kata Pengantar	iv
Daftar Isi	vi
Daftar Gambar	ix
Daftar Tabel	xi
BAB I PENDAHULUAN	1
1.1 Latar belakang	1
1.2 Maksud dan Tujuan	2
1.3 Pembatasan Masalah	2
1.4 Metodologi	2
1.5 Sistematika Pembahasan	3
BAB II TEORI PENUNJANG	4
2.1 Daya Rata-rata	4
2.2 Faktor Daya dan Daya Kompleks	6
2.3 Rangkaian Satu Phase	8
2.3.1 Rangkaian Arus Bolak-balik dengan Resistor Murn	i 8
2.3.2 Rangkaian Arus Bolak-balik dengan Induktor Murn	i 10
2.3.3 Rangkaian Arus Bolak-balik dengan Kapasitor Mur	ni 13
2.4 Perbaikan Faktor Daya	15

2.5 Penggunaan segitiga daya untuk analisa perbaikan faktor daya	16
2.6 Transformator Arus	18
2.7 Transformator Tegangan	19
2.8 Mikrokontroller 8031	20
2.8.1 Arsitektur Mikrokontroller 8031	22
2.8.1.1 Memori	22
2.8.1.2 Penyemat (Pin-pin) 8031	27
2.9 Programmable Peripheral Interface 8255	29
BAB III PERENCANAAN DAN PEMBUATAN ALAT	35
3.1 Perencanaan Perangkat Keras	35
3.1.1 Blok Diagram Perencanaan Alat	35
3.1.2 Rangkaian Detektor	37
3.1.3 Rangkaian Konversi	38
3.1.4 Rangkaian Keyboard	40
3.1.5 Rangkaian Driver	42
3.1.6 Rangkaian Display	42
3.1.7 Rangkaian Mikrokontroller 80C31	43
3.1.7.1 Perencanaan Input/Output	45
3.1.7.2 Rangkaian Reset	45
3.2 Perencanaan Perangkat Lunak	46
3.2.1 Perencanaan Alamat Memori	47
3.2.2 Subrutin Program Utama	47
3.2.2.1 Program Utama	48
3.2.2.1.1 Inisialisasi	49

3.2.2.2 Subrutin Program	49
3.2.2.2.1 Subrutin Eksternal Interrupt 0	49
3.2.2.2.2 Subrutin Eksternal Interrupt 1	50
3.2.2.2.3 Subrutin Input	51
3.2.2.2.4 Subrutin Relay	52
BAB IV PENGUKURAN DAN PENGUJIAN ALAT	54
4.1 Pengujian Bentuk Gelombang Komparator dan Gate XOR	54
4.2 Pengujian Cos φ Rangkaian Beban dan Nilai Kapasitor	55
BAB V KESIMPULAN	60
Daftar Pustaka	61
Lampiran	62

Daftar Gambar

Gambar 2.1 Rangkaian satu phase dengan resistor murni	9
Gambar 2.2 Diagram Bentuk Gelombang	10
Gambar 2.3 Diagram Phasor	10
Gambar 2.4 Rangkaian satu phase dengan induktor murni	11
Gambar 2.5 Diagram bentuk gelombang	11
Gambar 2.6 Diagram phasor	12
Gambar 2.7 Rangkaian satu phase dengan kapasitor murni	13
Gambar 2.8 Diagram bentuk gelombang	13
Gambar 2.9 Diagram phasor	14
Gambar 2.10 Rangkaian yang terdiri dari beban aktif dan beban reaktif	16
Gambar 2.11 Segitiga Daya dari motor pada gambar 2.10	16
Gambar 2.12 Segitiga Daya dari motor dan kapasitor pada rangkaian AC	18
Gambar 2.13 Gambaran umum transformator arus	18
Gambar 2.14 Gambaran umum transformator tegangan	19
Gambar 2.15 Blok Diagram Mikrokontroller 8031	21
Gambar 2.16 Struktur Memori Mikrokontroller 8031	23
Gambar 2.17 Memori Program bagian bawah mikrokontroller 8031	24
Gambar 2.18 Eksekusi dari memori program eksternal	25
Gambar 2.19 A) Memori Data Eksternal	26
Gambar 2.19 B) Lower 126 byte dari Internal RAM	26
Gambar 2.20 Akses Data Memori data eksternal	27
Gambar 2.21 Konfigurasi Penyemat 8031	29

Gambar 2.22 Blok Diagram PPI 8255	3(
Gambar 2.23 Format dari Control Word Register	33
Gambar 2.24 Konfigurasi Penyemat PPI 8255	34
Gambar 3.1 Blok diagram sistem perbaikan faktor daya	37
Gambar 3.2 Rangkaian deteksi tegangan dan arus	38
Gambar 3.3 Rangkaian konversi beda fase	39
Gambar 3.4 Rangkaian Keyboard dan Driver	41
Gambar 3.5 Blok Diagram sistem minimum 80C31	4 4
Gambar 3.6 Rangkaian Reset	46
Gambar 3.7 Diagram Alir Program	48
Gambar 3.8 Diagram Alir Eksternal Interrupt 0	50
Gambar 3.9 Diagram Alir Eksternal Interrupt 1	51
Gambar 3.10 Diagram Alir Subrutin Input	52
Gambar 3.11 Diagram Alir Subrutin Relay	53
Gambar 4.1 Output Gelombang komparator dari gate XOR	55
Gambar 4.2 Prosedur pengukuran Cos φ beban	5€
Gambar 4.3 Digoram phasor analisa data pertama	58

Daftar Tabel

Tabel 2.1 Keluarga Mikrokontroller MCS-51	21
Tabel 2.2 Operasi dari 8255	32
Tabel 4.1 Data beban dan Cos φ beban	56
Tabel 4.2 Data perbaikan Cos φ	57