
PRELIMINARY PLANT DESIGN OF RICINOLEIC ACID FROM CASTOR OIL CAPACITY 1 TONNE/DAY

MARIO ANDREAN EKA WIBISONO NRP. 5203099074 NRP. 5203099082

CHEMICAL ENGINEERING DEPARTMENT
ENGINEERING FACULTY
WIDYA MANDALA SURABAYA
CATHOLIC UNIVERSITY
2003

APPROVAL SHEET

PRELIMINARY PLANT DESIGN Seminar for student:

Name: Mario Andrean

NRP : 5203099074

was held on August 23rd, 2003. It has been approved and accepted as one of the requirements for **Bachelor of Engineering degree** by the **Department of Chemical Engineering**, Faculty of Engineering, Widya Mandala Catholic University.

Surabaya, 23rd of August 2003

Examiners

Ir. Yohanes Sudaryanto, MT

Ir. Yohanes Sudaryanto, MT

Secretary

Supervisor

Antaresti, ST, M.Eng, Sc.

Member

Approved By

Chemical Engineering Department

r Survadi sanadji, MT, Ph.D.

iik 521.93/0198

Ir. Nani Indraswati

1111

Herman/Hindarso, ST, MT.

Member

Chairman

Engineering Faculty

Ir. Nani Indraswati

APPROVAL SHEET

PRELIMINARY PLANT DESIGN Seminar for student:

Name: Eka Wibisono

NRP : 5203099082

was held on August 23rd, 2003. It has been approved and accepted as one of the requirements for Bachelor of Engineering degree by the Department of Chemical Engineering, Faculty of Engineering, Widya Mandala Catholic University.

Surabaya, 23rd of August 2003

Examiners

Ir. Yohanes Sudaryanto, MT

Ir. Yohanes Sudaryanto, MT

Secretary

Supervisor

Antaresti, ST, M.Eng, Sc.

Member

Approved By

Chemical Engineering Department

Ir Suryadi Ismadji, MT, Ph.D.

NIK. 521.93.0198

Chairman Hindarso, ST, MT. Herman Membei **Engineering Faculty**

ir. Nami Indraswat

NIK. 521.86.01

Ir. Nani Indraswati

PREFACE

High quality matter with less expensive price is always needed and wanted. The Ricinoleic acid we produced fullfils this statement. In the future we hope that our final assignment, "Ricinoleic Acid Plant Design", would be able to help the bad economical situation in Indonesia.

We would like to express our appreciation to the followings,

- 1. Ir. Nani Indraswati, Dean of Engineering Faculty
- 2. Ir. Suryadi Ismadji, Ph.D, Head of Chemical Engineering

 Department
- 3. Ir. Yohanes Sudaryanto, MT, Supervisor
- 4. Widya Nugraha, for her helpful reviews
- Our teachers, friends and also to those who are too many to be listed by name that has contributed their kind assistances.

Any further comments and suggestions for the improvement of this final assignment would be gratefully received.

Surabaya, August 2003

Writers

CONTENTS

Cover			i	
Approval Shee	et		ii	
Preface		·	iv	
Contents			v	
Abstract			vii	
Chapter I.	Introduction			
	1.1.	Background	1-1	
	1.2.	Raw Material and Product Properties	1-2	
	1.3.	Product Utility	1-4	
Chapter II.	Process Description and Selection			
	П.1.	Various Process of Ricinoleic Acid Production	II-1	
		II.1.1. Hydrolysis	II-1	
		II.1.2. Methanolysis	11-2	
		II.1.3. Saponification	11-2	
		II.1.4. Aminolysis	11-2	
	11.2.	Process Selection	11-2	
	11.3.	Process Description		
Chapter III.	Mass E	Mass Balance		
Chapter IV.	Heat Balance			
Chapter V.	Equipment Specification			
Chapter VI.	Plant Utility			
	VI.1.	Steam Unit	VI-1	
	VI.2.	Unit Supply and Water Treatment	VI-4	
		VI.2.1. Unit Water Supply	VI-4	
		VI.2.2. Water Treatment	VI-6	
	V1.3.	Electricity Unit	VI-26	
	VI.4.	.4. Fuel Oil Unit		
	VI.5.	Waste Water Treatment	V1-28	
Chapter VII.	Location, Plant Lay Out, and Instrumentation			

C1	
Content	
-	

	VII.1.	Plant Location	VII-1
	VII.2.	VII.2. Plant Layout	
	VII.3.	Instrumentation	VII-7
	VII.4.	Schedule	VII-8
Chapter VIII.	Economic Analysis		
	VIII.1.	Total Capital Investment Calculation	VIII-2
		VIII.1.1. Fixed Capital Investment	VIII-2
		VIII.1.2. Working Capital Investment	VIII-2
	VIII.2.	Total Product Cost	VIII-3
		VIII.2.1. Manufacturing Cost	VIII-3
		VIII.2.2. General Expenses	VIII-3
	VIII.3.	Economic Analysis with Discounted Cash Flow	VIII-4
		Methods	
		VIII.3.1. Investment	VIII-5
		VIII.3.2. Cash Flow	VIII-5
		VIII.3.3. Investment Feasibility	VIII-6
Chapter IX.	Discussion and Summary		
References			viii
Appendix A.	Mass Balance Calculation		
Appendix B.	Heat Balance Calculation		
Appendix C.	Equipment Design Calculation		
Appendix D.	Economic Analysis Calculation		

ABSRACT

Castor oil is the main source of ricinoleic acid because of its high consentration of triglyceride ricinoleate. There is many uses of ricinoleic acid in chemical industries such as raw material for nylon polyester, grease, sinthetic lubricant, paint additives, and many other usage. In Indonesia the needs of castor oil become high these days, it can be seen at BPS import data which can be predicted the need in 2006 is about 2250 tonne.

The splitting of ricinoleic acid from castor oil starts with the hydrolysis process, where triglyceride fatty acid splits to fatty acid. Then, ricinoleic acid separated in distillation column from other fatty acid and unsplitted triglyceride.

This plant is feasible to be built because of the abundance of the raw material used, where most of these raw materials are produced in Semarang. Semarang is an industrial area; therefore the product's marketing is easier and cheaper. Thus, Semarang is chosen to be the plant location. From the process, this plant is feasible because the process is simple and does not require complex equipments.

Based on our planning, this plant is feasible to build technically, environmentally, and economically. Technically, this plant can be built using the condition in this plant design. Environmentally, this plant produce harmless treated-waste product (no pollution). Economically, this plant is profitable. The plant's Total Capital Investment (TCI) is Rp. 5,976,366,185,727.22, where the Fixed Capital Investment (FCI) is Rp. 17,091,612,935.12 and the Working Capital Investment (WCI) is Rp. 5,959,274,572,792.10.

Rate of Return before taxes
Rate of Return after taxes
Rate of Equity before taxes
Rate of Equity after taxes
Pay Out Time before taxes
Pay Out Time after taxes
Sreak Event Point

1.52.28 %
1.48.96 %
1.73.24 %
1.9841 years
1.9841 years