
BAB V ​

KESIMPULAN & SARAN 

V.1 Kesimpulan

Penelitian ini berhasil mengembangkan adsorben berbasis bahan alam 

dari pemanfaatan total buah lerak (Sapindus rarak) melalui sintesis 

komposit residu-MPN dengan variasi rasio Fe:Ekstrak (1:1 dan 1:2). 

Karakterisasi menggunakan FTIR, XRD, dan SEM-EDS berhasil 

mengonfirmasi terbentuknya fasa α-Fe₂O₃ dalam struktur organik residu. 

Material RM11 dengan (rasio 1 Fe:1 ekstrak lerak) menunjukkan kapasitas 

adsorpsi (Qm) sebesar 52,46 mg/g pada suhu 30°C, sedangkan RM12 dengan 

(rasio 1 Fe:2 ekstrak lerak) memiliki kapasitas adsorpsi yang lebih tinggi, 

yaitu 65,49 mg/g pada suhu yang sama. Peningkatan performa adsorpsi ini 

disebabkan oleh penambahan ligan dari ekstrak lerak yang mampu 

mengoptimalkan struktur material. Selain itu, proses adsorpsi yang terjadi 

bersifat endotermik, sebagaimana ditunjukkan oleh peningkatan kapasitas 

adsorpsi seiring naiknya suhu. Hal ini didukung oleh distribusi nanopartikel 

Fe₂O₃ yang homogen serta ketersediaan situs aktif dari gugus hidroksil dan 

karboksil terprotonasi pada permukaan material, sehingga interaksi dengan 

zat teradsorpsi menjadi lebih efektif. 

Proses adsorpsi optimal terjadi pada pH 2, dimana protonasi 

permukaan menghasilkan interaksi elektrostatik kuat dengan anion HCrO₄⁻ 

melalui mekanisme pertukaran ion. Analisis kinetika mengikuti model 

Pseudo Second Order (R²>0,99) yang menunjukkan dominasi 

chemisorption, sedangkan isoterm mengikuti model Langmuir (R² > 0,975) 

mengindikasikan terjadinya adsorpsi monolayer pada situs homogen. Kajian 
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termodinamika mengungkap bahwa proses berlangsung secara endotermik 

(ΔH° = 36,342 kJ/mol, ΔS° = 0,0503 untuk RM11 dan ΔH° = 46,793 kJ/mol, 

ΔS° = 0,0856 untuk RM12), serta semua kondisi spontan (ΔG° negatif), 

dengan peningkatan entropi sistem akibat pelepasan molekul air terikat 

selama adsorpsi. Temuan ini membuktikan potensi residu lerak 

termodifikasi sebagai adsorben ramah lingkungan untuk remediasi air 

tercemar Cr(VI), serta menawarkan solusi berbasis circular economy 

melalui pemanfaatan limbah pertanian. Optimasi rasio Fe:Ekstrak dan suhu 

sintesis dapat menjadi aspek penting dalam pengembangan material 

adsorpsi skala industri di masa mendatang. 

V.2 Saran

Berdasarkan hasil penelitian yang dilakukan, direkomendasikan agar 

pemanfaatan residu buah lerak yang telah dimodifikasi dengan coating 

MPN berbasis besi (Fe) terus dikembangkan dan dioptimalkan sebagai 

bahan baku adsorben ramah lingkungan untuk penanganan limbah logam 

berat, khususnya ion kromium Cr(VI) dari air limbah industri. Penggunaan 

residu buah lerak yang dimodifikasi MPN terbukti dapat meningkatkan 

kapasitas adsorpsi serta menawarkan solusi yang ekonomis dan 

berkelanjutan dalam mengatasi pencemaran lingkungan. Keunggulan lain 

dari material ini adalah penggunaan bahan alami yang dapat mengurangi 

risiko pencemaran dan mendukung prinsip circular economy. Untuk 

penelitian selanjutnya, disarankan diperlukan uji aplikasi adsorben ini 

dalam skala yang lebih besar dan pada kondisi air limbah nyata, serta 

evaluasi aspek keberlanjutan dan potensi dampak lingkungan dari 

penggunaan dan regenerasi adsorben. Hambatan yang perlu dihindari oleh 
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peneliti lain antara lain adalah ekstrak buah lerak sebagai prekursor 

memiliki kandungan fitokimia beragam, yang masing-masing berpotensi 

sebagai senyawa organik yang berikatan dengan Fe3+ dalam pembentukan 

MPN, seluruh residu dimanfaatkan tanpa memisahkan pengotor. Larutan 

sampel adsorpsi yang digunakan adalah larutan sampel yang dibuat, bukan 

limbah. Selain itu, studi lanjutan terhadap potensi ekstrak buah lerak 

sebagai ligan MOF, mengingat kandungan saponin dengan banyak gugus 

–OH dapat menyediakan banyak situs koordinasi logam. Penggunaan ligan

ekstrak buah lerak dengan pengaturan rasio dan pelarut yang sesuai.

Diharapkan adsorben berbasis residu buah lerak yang dimodifikasi MPN

dapat menjadi solusi efektif dan ramah lingkungan untuk remediasi limbah

industri di masa mendatang.
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