

Natural Product Research

Formerly Natural Product Letters

ISSN: 1478-6419 (Print) 1478-6427 (Online) Journal homepage: www.tandfonline.com/journals/gnpl20

Anxiolytics and antidepressants properties of roasted agung banana peel: a potential therapeutic approach

Lannie Hadisoewignyo, Jefri Prasetyo, Kuncoro Foe, Kevin Owen Santoso, Eka Pramyrtha Hestianah, Ida Ayu Andri Parwitha & Ivonne Soeliono

To cite this article: Lannie Hadisoewignyo , Jefri Prasetyo , Kuncoro Foe , Kevin Owen Santoso , Eka Pramyrtha Hestianah , Ida Ayu Andri Parwitha & Ivonne Soeliono (29 Sep 2025): Anxiolytics and antidepressants properties of roasted agung banana peel: a potential therapeutic approach, Natural Product Research, DOI: 10.1080/14786419.2025.2566462

To link to this article: https://doi.org/10.1080/14786419.2025.2566462

Anxiolytics and antidepressants properties of roasted agung banana peel: a potential therapeutic approach

Lannie Hadisoewignyo^a, Jefri Prasetyo^a, Kuncoro Foe^a, Kevin Owen Santoso^a, Eka Pramyrtha Hestianah^b, Ida Ayu Andri Parwitha^a and Ivonne Soeliono^a

^aFaculty of Pharmacy, Widya Mandala Surabaya Catholic University, Pakuwon City, Surabaya, Indonesia; ^bFaculty of Veterinary Medicine, Airlangga University, Mulyorejo, Surabaya, Indonesia

ABSTRACT

Anxiety and depression are complex neurological disorders that are considered by WHO to be among the most severe health problems. The causes of depression and anxiety disorders are an imbalance between oxidants and antioxidants in favour of the oxidants, resulting in a disruption of redox signalling and control and molecular damage. Banana peels can increase the antioxidants to counteract free radicals. This study explored the effectiveness of several roasted Agung banana peel extract doses, namely 200, 400, and 800 mg/kg b.w., as anxiolytics and antidepressants. The 400 mg/kg b.w. RBPE showed the most consistent anxiolytic and antidepressant effects among the other doses. Due to the roasting process, this pharmacological effect is thought to be caused by the emergence of a new flavonoid compound, morin. Increasing the dose to 800 mg/kg did not cause an increase in pharmacological effects, presumably due to a ceiling effect.

Anxiolytics and Antidepressants Properties of Roasted Agung Banana Peel: A Potential Therapeutic Approach Banana Peel Estract Banana Peel Estract (RBE) Banana Peel Ectract (RBE) Forced Swin Test Tail Suspension Test Test Test Test Results

Abbreviations: BPE: banana peel extract; RBPE: roasted banana peel extract; SSRI: selective serotonin reuptake inhibitors; FST: forced swim test; TST: tail suspension test; LDA: light dark activity; EPM: elevated plus maze; LC-MS/MS-QTOF: liquid chromatography-tandem mass spectrometry-quadropole time of flight; NF-κB: nuclear factor

ARTICLE HISTORY

Received 24 March 2025 Accepted 21 September 2025

KEYWORDS

Antianxiety; antidepressants; SSRIs; Roasted banana peels; morin kappa-B; SH: glutathione; ROS: reactive oxygen species; ANOVA: analysis of variance; Tukey's HSD: Tukey's honestly significant difference; MAO: Monoamine oxidase; TBA: thiobarbituric acid

1. Introduction

Banana peel is a waste that has been studied by some researcher. Jabeen et al. (2024) have utilise banana peel to isolate the tyrosinase compound. On the other hand, banana peel is also could overcome anxiety and depression (Samad et al. 2017) due to its phytoantioxidant, tryptophan, and flavonoids compound (Tee and Hassan 2011; Siddique et al. 2018). In Hadisoewignyo et al. (2023), Agung var. Semeru banana peel was processed into powder and then roasted at 200 °C. Although roasting can remove some compounds with antioxidant properties, new compounds with higher antioxidant activity are potentially formed due to the Maillard reaction. Other findings reported that the RBPE from Agung var. Semeru contains the flavonoid morin, observed using LC-MS/MS-QTOF (Hadisoewignyo et al. 2024). Deepak (2025) found that morin significantly reversed the stress-induced increase in brain TBA-reactive substance (TBARS), plasma nitrite, and increase the stress-induced decrease in brain catalase levels. Morin also inhibited brain MAO-A activity in brain which lead to increase of neurotransmitter in the brain.

Those theoretical hypotheses about the anxiolytic and antidepressant effects of RBPE are explored in this study using behavioural tests such as LDA, EPM, FST, and TST.

2. Results and discussion

Depression and anxiety disorders are among the most common psychiatric disorders; they are highly comorbid with each other and together are considered to belong to the broader category of internalising disorders (Kalin 2020). Several studies have suggested a link between oxidative stress and anxiety-like behaviours. Salim et al. (2010) found that oxidative stress directly contributes to anxiety-like behaviours. In addition, Rammal et al. (2008), using the EPM test to assess anxiety-like behaviour in rodents, discovered a positive association between anxiety-like behaviour and oxidative status in several neuronal and glial cells in brain. This association was observed in the cerebellum, hippocampus, cerebral cortex, and peripheral leukocytes. Collectively, these findings highlight the involvement of oxidative stress in anxiety-like behaviour and suggest a potential therapeutic target for the treatment of anxiety and depression disorders.

When the ROS concentration exceeds an organism's antioxidant capacity, cells enter a state of oxidative stress, where excess ROS induces oxidative damage to cellular components (Hassan et al. 2014). Therefore, a preventive therapy can be given to increase antioxidant levels as a defence mechanism to minimise the effects of increased ROS. An alternative therapy to increase the number of antioxidants in counteracting free radicals is the use of traditional medicine, which is banana peel (Samad et al. 2017).

The profiling metabolites of roasted and unroasted banana peel extract show the presence of flavonoids and phenolic compounds, which are closely related to their antioxidant activity. Moreover, the results of LC-MS/MS-QTOF (Tables S1 and S2) show the flavonoid compound of Kaempferol-3-O-rutinoside. These compounds are included in natural flavonoids, which have anti-anxiety potential (Karim et al. 2018). On the other hand, morin is the main compound of RBPE. Moreover, morin hydrate can reduce anxiety and have an antidepressant effect in mice (Olonode et al. 2018).

Morin is an isomeric structure of quercetin, which is differentiated based on the pattern of hydroxylation meta on morin and ortho on guercetin. Morin has a C15 flavonoid structure, contains three phenolic rings, and has a competitive binding affinity for the serum thyroxine transthyretin transport protein. Morin was ameliorated oxidative stress by reducing malonaldehyde levels and increasing the activities of antioxidant enzymes (glutathione peroxidase, superoxide dismutase) (Rajput et al. 2021). This study performed molecular docking on the morin contained in RBPE binding with the human serotonin transporter (SERT). The known binding affinity for morin (-8.8) and alprazolam (-9.1) strengthens the notion that morin is an active substance in RBPE with antianxiety activity.

The tests were conducted on mice, including light-dark activity (n=4 mice/group), elevated plus maze (n=5 mice/group) for anti-anxiety test, forced swim test (n=5 mice/group)mice/group), and tail suspension test (n=5 mice/group) for antidepressant test to evaluate the effect of BPE and RPBE in several doses (200, 400, and 800 mg/kg b.w.).

From the individual test results of both the anxiety test and the depression test (Figures S1-S6), it can be seen that only RBPE 400 mg/kg b.w. provides the most consistent results as an anxiolytic and antidepressant agent. The lack of increased anxiolytic and antidepressant effects was observed when increasing the RBPE dose from 400 to 800 mg/kg b.w. likely reflects a typical dose-response relationship. Generally, a pharmacological effect initiates at a threshold dose and intensifies with escalating doses (Snyder 1984). However, a plateau is eventually reached where further dose increases yield no significant improvement. In some cases, excessively high doses can even diminish or negate the observed response due to the potential toxic effects of the compound. While this dose-response relationship holds across a reasonable concentration range, in this instance, the optimal dose for the observed anxiolytic and antidepressant effects of RBPE was at 400 mg/kg b.w.

3. Experimental

Detailed experimental procedures, are provided in the supplementary material.

4. Conclusion

RBPE 400 mg/kg b.w. has been proven to have an anxiolytic and antidepressant effect. Increasing the dose to 800 mg/kg b.w. Even so, this research doesn't perform long term toxicity assessment. Therefore, it is recommended to test the influence of RBPE on neurotransmitter and toxicity test to assess long term safety so it can be formulated and continued with clinical trials.

Acknowledgments

The authors are grateful to the Ministry of Education, Culture, Research, and Technology of Indonesia under the National Competition Scheme for supporting our research (2023). Lannie Hadisoewignyo: Conceptualisation, Writing – review and editing, Supervision, Project administration. Kuncoro Foe: Investigation, Methodology. Jefri Prasetyo: Investigation, Methodology. Kevin Owen Santoso: Visualisation, Writing – original draft, Writing – review and editing. Eka Pramyrtha Hestianah: Investigation, Formal analysis. Ida Ayu Andri Parwitha: Investigation, Formal analysis. Ivonne Soeliono: Software, Investigation, Validation, Formal analysis, Supervision, Methodology.

Author contribution statement

CRediT: Lannie Hadisoewignyo: Conceptualization, Project administration, Supervision, Writing – review & editing; Jefri Prasetyo: Investigation, Methodology; Kuncoro Foe: Investigation, Methodology; Kevin Owen Santoso: Visualization, Writing – original draft, Writing – review & editing; Eka Pramyrtha Hestianah: Formal analysis, Investigation; Ida Ayu Andri Parwitha: Formal analysis, Investigation; Ivonne Soeliono: Formal analysis, Investigation, Methodology, Software, Supervision, Validation.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

References

Deepak DD. 2025. Protective effect of morin hydrate against chronic unpredictable mild stress-induced depression in mice. PRENAP. 8:100302 https://doi.org/10.1016/j.prenap.2025.100302

Hadisoewignyo L, Foe K, Prasetyo J. 2023. Factorial experimental design for optimizing the roasting condition of banana peel (*Musa paradisiaca* var Semeru): characteristics and antioxidant activity. Food Res. 7(6):48–53. https://doi.org/10.26656/fr.2017.7(6).462

Hadisoewignyo L, Santoso KO, Sinansari R, Prasetyo J. 2024. Tablet formulation of ethanol-water agung banana var. Semeru (*Musa paradisiaca*) peel extract using moisture-activated dry granulation (MADG) method. J Pharm Innov. 19(6):1–8. https://doi.org/10.1007/s12247-024-09888-w

Hassan EM, Hassan RA, El-Toumy SA, Mohamed SM, Omer EA. 2014. Phenolic metabolites and antioxidant activity of *Codiaeum variegatum* cv. *Spirale*. J. Pharm. Res. 8(5):619–623. https://doi.org/10.13140/2.1.3450.1761.

Jabeen R, Habiba U, Mustafa T, Rehman T. 2024. Isolation, identification and optimization for tyrosinase production by banana peel waste for industrial application. Nat Prod Res. 1–5. https://doi.org/10.1080/14786419.2024.2426209. https://www.tandfonline.com/doi/full/10.108 0/14786419.2024.2426209?scroll=top&needAccess=true

Kalin NH. 2020. The critical relationship between anxiety and depression. Am J Psychiatry. 177(5):365–367. https://doi.org/10.1176/appi.ajp.2020.20030305

Karim N et al. 2018. Anxiolytic potential of natural flavonoids. SM J. Endocrinol. Metab. 4:1018s.

- Olonode ET, Aderibigbe AO, Adeoluwa OA, Ajayi AM. 2018. Protective effects of morin hydrate on acute stress-induced behavioral and biochemical alterations in mice. Basic Clin Neurosci. 9(3):195-208. https://doi.org/10.29252/NIRP.BCN.9.3.195
- Rajput SA, Wang XQ, Yan HC. 2021. Morin hydrate: a comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother. 138:111511. https://doi.org/10.1016/j.biopha.2021.111511
- Rammal H, Bouayed J, Younos C, Soulimani R. 2008. The impact of high anxiety level on the oxidative status of mouse peripheral blood lymphocytes, granulocytes and monocytes. Eur J Pharmacol. 589(1–3):173–175. https://doi.org/10.1016/j.ejphar.2008.06.053
- Salim S et al. 2010. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res. 208(2):545-552. https://doi.org/10.1016/j.bbr.2009.12.039
- Samad N, Muneer A, Zaman A, Ayaz MM, Ahmad I. 2017. Banana fruit pulp and peel involved in antianxiety and antidepressant effects while invigorate memory performance in male mice: possible role of potential antioxidants. Pak. J. Pharm. Sci. 3(30):989–995.
- Siddique S, Nawaz S, Muhammad F, Akhtar B, Aslam B. 2018. Phytochemical screening and in-vitro evaluation of pharmacological activities of peels of Musa sapientum and Carica papaya fruit. Nat Prod Res. 32(11):1333-1336. https://doi.org/10.1080/14786419.2017.1342089
- Snyder R. 1984. Basic concepts of the dose-response relationship. In: Assessment and management of chemical risks. ACS Symp Ser. 239:37-55.
- Tee TP, Hassan H. 2011. Antidepressant-like activity of banana peel extract in mice. Am J Med. 2(2):59-64.