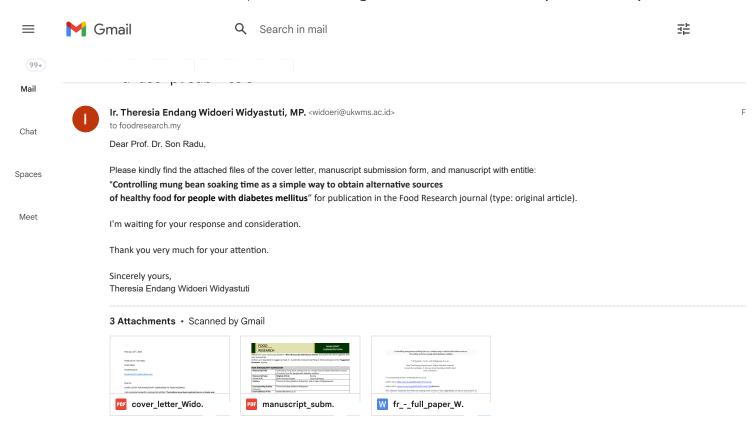
BUKTI KORESPONDENSI

Judul Artikel: Controlling mung bean soaking me as a simple way to obtain alterna ve sources


of healthy food for people with diabetes mellitus

Jurnal : Food Research 2025, Vol. 9, Issue 2 (April)

Penulis: Widyastuti, T.E.W, and Widjajaseputra, A.I.W.

No	Perihal	Tanggal
1.	Bukti konfirmasi submit artikel dan persyaratan lain (cover letter,	15 Februari 2023
	manuscript submission form, dan manuscript), serta respon	dan
	editor	17 Februari 2023
2.	Bukti konfirmasi <i>re-submit</i> + <i>manuscript</i> hasil revisi, dan respon	20 Februari 2023
	editor	dan
		23 Februari 2023
3.	Bukti konfirmasi review oleh reviewer I dan II (Evaluation form +	5 April 2023
	hasil review masing-masing Reviewer) dari Editor	
4.	Bukti pengiriman Revisi <i>Manuscript</i> berdasar <i>review</i> (Revisi	18 April 2023
	manuscript dan Respon Evaluation Form untuk Reviewer), dan	dan
	balasan Editor	26 April 2023
5.	Pemberitahuan antrian publikasi yang panjang dari Editor	24 Agustus 2023
6.	Bukti konfirmasi artikel diterima (Acceptance letter dan APC	22 April 2024
	form), dan respon kepada Editor	dan
		24 April 2024
7	Bukti konfirmasi galley proof artikel + invoice, dan balasan ke	10 Maret 2025
	editor (koreksi artikel terlampir)	dan
		15 Maret 2025
8	Bukti konfirmasi revisi artikel galley proof dan persetujuan galley	16 Maret 2025
	proof	dan
		18 Maret 2025
9	Bukti konfirmasi artikel published online	26 Maret 2025

Bukti konfirmasi submit artikel + lampiran
(cover letter, manuscript submission form, dan manuscript)
(15 Februari 2023)
dan
Respon editor
(17 Februari 2023)

February 14th, 2023

Professor Dr. Son Radu

Chief Editor

Food Research

foodresearch.my@outlook.com

Dear Sir,

COVER LETTER FOR MANUSCRIPT SUBMISSION TO FOOD RESEARCH

I am enclosing herewith a manuscript entitled "Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus" submitted to "Food Research" journal for possible evaluation. With the submission this manuscript I would like to share the information about the nutrition scientific views of the soaked mung bean which obtained by controlling the soaking time. This article contains the results of original research based on the local wisdom that needs to be published in this journal, so that it is useful for treating people with diabetes mellitus.

For the Chief Editor, I would like to undertake that the mentioned manuscript has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere.

I also would like to suggest the following potential reviewers

Name	Expertise	Email address
Dr. Ignatius Srianta, S.TP, MP	Food Science and	srianta2601@gmail.com
	Technology	
Dr. Maria Matoetina Suprijono, SP,	Nutrition and Food	maria-matoetina@ukwms.ac.id
MSi	Science	
Chatarina Yayuk Trisnawati, S.TP, MP	Food Science and	tchatarinayayuk@yahoo.com
	Technology,	
	Nutrition	
Dr. Paini Sri Widyawati, S.Si., M.Si.	Food Chemistry	wiwiedt@gmail.com

Sincerely,

Ir. Theresia Endang Widoeri Widyastuti, MP

Department of Food Technology, Widya Mandala Catholic University Surabaya

MANUSCRIPT SUBMISSION FORM

Please fill in your manuscript details in 'New Manuscript Submission Section' and submit this form together with your manuscript.

Authors are requested to suggest at least 3 – 4 potential reviewers by filling in their particulars in the **'Suggested Reviewer'** section.

NEW MANUSCRIPT SUBMISSION		
Manuscript Title	Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus	
Manuscript Type	Original Article	Review
(Please Bold)	Short Communication	Technical Notes
Authors	Theresia Endang Widoeri Widyastuti, and A Ingani Widjajaseputra	
Corresponding Author (Only one)	Theresia Endang Widoeri Wid	yastuti
Email address of the	widoeri@ukwms.ac.id	
Corresponding Author		

SUGGESTED REVIEWERS		
Name	Ignatius Srianta	
Salutation	Dr., S.TP, MP	
Area of Expertise	Food Science and Technology	
(Please use comma for		
more than one)		
Email	srianta2601@gmail.com	

Name	Maria Matoetina Suprijono	
Salutation	Dr., SP, MSi	
Area of Expertise	Nutrition and Food Science	
(Please use comma for		
more than one)		
Email	maria-matoetina@ukwms.ac.id	

Name	Chatarina Yayuk Trisnawati
Salutation	S.TP, MP
Area of Expertise Food Science and Technology, Nutrition	
(Please use comma for	
more than one)	
Email	tchatarinayayuk@yahoo.com

Name	Paini Sri Widyawati
Salutation	Dr., S.Si., M.Si.
Area of Expertise	Food Chemistry
(Please use comma for	
more than one)	
Email	wiwiedt@gmail.com

Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus

* Widyastuti, T.E.W. and Widjajaseputra, A.I.,

Food Technology Department, Widya Mandala Catholic University Surabaya, Jl. Dinoyo 42-44 Surabaya 60265, East Java, Indonesia

*Corresponding author: widoeri@ukwms.ac.id

10 Author No.1: https://orcid.org/0000-0002-5772-1138

Author No.2: https://orcid.org/0000-0003-0186-708X

Abstract

This research examines the effect of soaking time on the in vitro digestibility of starch and protein of mung bean, in order to obtain an alternative source of healthy food in a simple way. A single factor of randomized block design used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6 and 8 hrs. Total starch, in vitro starch digestibility, protein content and in vitro protein digestibility of freeze dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during longer soaking time, in a range of 39.14-33.52 % dry basis and 57.46-49.82% respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking, up to 6 hours of soaking time (in a range of 46.93%-51.29%). Based on these results, the suggested soaking time was 6 hours that gave optimum digestibility of starch and protein for human consumption. The recommendation in order to obtain the benefits as a healthy food source for people with diabetes mellitus.

Keywords: in vitro digestibility, starch, protein, mung beans, soaking time

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is being an important part of the dietaries of Indonesian people and contribute substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most component of carbohydrates in mung beans, about $30.74 \pm 3.39\%$ (Widjajaseputra *et al.*, 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its

suitability for its end use. Mung bean which its high amylose content can improve the swelling power and gel texture of a starch noodle product. This is as reported by Li *et al.* (2008), that the high-quality starch noodle made from mung bean starch results from its high amylose content. Menon *et al.* (2016) studied gluten-free starch noodles from sweet potatoes and got that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in vitro condition. The high amylose content showed higher viscosities which could be used in food products that require this property, such as thickeners for creams, sauces, soups and puddings. However, Li *et al.* (2011) declared that starches from different mung bean varieties showed significant differences in the physicochemical, thermal, and pasting properties. So that they may suit diverse applications such as porridge, cakes, snacks, beverages etc.

Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its usage to supplement cereals and rice in particular. The mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi *et al.*, 2016). However, the original properties of the components in the mung bean will change depending on the processing applied.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water entered the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment result in alteration of their nutritional quality which could either be reduction in nutrients and antinutrients or improvement in digestibility or availability of nutrients (Kaur et al., 2015). Pagar et al. (2021) who studied the horse gram, found that treatment having 6 hrs soaking, 72 hrs germination, and drying at 70°C was the best where a maximum decrease in the anti-nutritional factors at the same time flour functional properties got enhanced due to the soaking and germination. It is essential to understand these changes to select appropriate techniques to obtain maximum nutritional and health benefits. In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) increased during four hours of soaking (Widjajaseputra et al., 2019a). Widjajaseputra et al. (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia.

All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6 and 8 h, afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2% - 3% moisture content. The dried grains were ground (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5 ± 1 °C until analyzed.

83 2.3 The experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hours (P4). Each treatment level was conducted in triplicates. Total starch, in vitro starch digestibility, protein content and in vitro protein digestibility of freeze dried and grounded whole mung beans were analyzed. Water content analysis was used to dry basis calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n=3). The data were subjected to one-way ANOVA (p < 0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis Methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured as glucose by incubating the sample suspension in the optimum condition of amyloglucosidase for 45 min measuring activity. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch in vitro (Goni *et al.*, 1996 and Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch during 180 minutes within a 30 minute

interval, then calculated the percentage of hydrolyzed starch (digestible starch) in equations (a) and (b) as follows:

- (a) Digestible starch = (total starch undigested Starch)
- (b) Starch digestibility (%) = (total starch undigested starch)/total starch x 100%

2.4.3 Protein content analysis

The principle of determining protein content using the macro Kjeldahl method (AOAC, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N). The measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample. Nitrogen content was measured using the Kjeldahl micro method. Calculation of protein digestibility as stated in equation (c).

(c) Protein digestibility = $\frac{N \text{ total filtrate}}{N \text{ total ingredients}} \text{ x diluting factor x } 100\%$

3. Results and discussion

3.1. Effects of soaking time on total starch, undigested starch and starch digestibility

The total starch of mung bean seeds decreased from 41.13% dry to 33.52% dry basis during 8 hours of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease of total starch was due to the leaching out of the soluble part of starch in soaking water and hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra $et\ al.\ (2019a)$ stated about amylose level of mung beans $(32.56\pm0.31\%)$ is higher than cereal (around 25%) and tuber starch (around 17%-19%). Singh $et\ al.\ (2003)$ state that the factors which could influence starch retrogradation were the amylopectin content, intermediate materials, size and

shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrogradation would affect the level of digestibility.

130

131

132133

134

135136

137

138

139

140

141

142

143144

145

146 147

148149

150

151

152

153

154

155

156157

158

159 160 The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time, along with the decreasing of total starch during the soaking treatment up to 8 h of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hours resulted in a significant increase in starch digestibility. This is because there were starch granules that were more readily hydrolyzed by enzymes that become active due to the imbibition of water in the soaked mung bean seeds. After 4 hours of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch.

The increasing of undigested starch up to 3 hours of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist to digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) stated that RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hours, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hours. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hours after consumption has not been completely digested. It was due to the high level of amylose of mung bean starch (around 32 %- 34%). The difference in RS can be caused by differences in starch structure in various amylose-amylopectin ratio among of different starch granules which affects the RS level in processed food, included during seeds soaking and freeze-drying treatment in samples preparation. Retrogradation of amylose can be occurred during soaking and freeze drying treatment in sample preparation, and part of starch was being to exist as RS3. RS3 is starch that has been retrograded into more highly stabile crystalline structures. In addition, Fabbri et al. (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. This phenomena caused a decrease in the level of starch digestibility. The different process following the soaking would give the different effect on starch digestibility. As an example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2. Effects of soaking time on protein content and protein digestibility

The values of protein digestibility were significantly different on 6 hours (P3) and 8 hours (P4) of treated soaking time compared to Po, P1, and P2 as shown on Table 2. Protein digestibility increased during soaking treatment, up to 6 hours of soaking time, and then the protein digestibility slightly

decreased on 8 hours of seed soaking.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hours of soaking time (Widjajaseputra *et al.*, 2019b). The higher of soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hours, because a germination process has taken place longer than 6 hours of soaking. During germination periods there were hydrolyzing processes that would effect on protein and starch degradation to produce energy for the new plant. This phenomena was revealed by Grewal and Jood (2009) that germination process decreased starch content, thereby increasing soluble sugars and improved starch digestibility to be 49% and 48% in two different of green gram (*Vigna radiata L.*) cultivars respectively.

3.3. Perspective of mung bean as healthy food source for people with diabetes mellitus

The high protein digestibility of mung beans as a result of soaking for 6 hours can support its usage as a good food source of protein. Combination of mung bean protein and rice protein in 3:4 ratio respectively can increase the chemical amino acid score to be 72 (Dahiya *et al.*, 2015). Based on this recommendation, an increase in the protein bioavailability can be obtained. Consumption of legumes provides quality protein along with other micronutrients without adding extra energy or fat. According to Mak *et al.* (2018), in fact a diet high in protein-low starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also the starch, which has an advantage of consisting higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello *et al.* (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is positive attributes that could promote the product as better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity and other

malnutrition symptoms. In particular for the nutrition management of gestational diabetes mellitus, it is important to focus on quality of carbohydrates and encourage consumption of vegetables, fruits, complex carbohydrates, and high-fibre foods (Kapur *et al.*, 2020). A balanced diet consisting healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will results in weight control as well as diabetes management (Devi *et al.*, 2021).

1981994. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, the mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hours of soaking time (in a range of 46.93%-51.29%). Based on the obtained data, the recommended soaking time was 6 hours which revealed the optimum digestibility of starch and protein for people with diabetes mellitus. The further investigation will be needed to provide to get better food choice not only for diabetes mellitus patients, but also for those suffering from celiac disease, obesity and other malnutrition symptoms.

Conflict of interest

The authors declare no conflict of interest.

211 Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 115O/ WM01.5/ N/ 2018 and 200U/WM01.5/N/2019 respectively).

218 References

- AOAC. (2010). Official Methods of Analysis. 18th ed. Washington, D.C.: Association of Official Analytical Chemists.
- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B., and Nout, M.J. (2015). Mung
 bean: technological and nutritional potential. *Crit Rev Food Sci Nutr*, 55(5), 670–88. doi:
 10.1080/10408398.2012.671202

- Devi M, P., Mudraganam, S., and Saraf, V. (2021). A Review on the role of carbohydrates in the
 management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6 (6), 33 38. www.foodsciencejournal.com
- Dipnaiki, K., and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase
 activity in pulses. *Int J Res Med Sci.*, 5(10), 4271-4276. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20174158

- Fabbri, A.D.T.,Schacht, R. W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. *NFS Journal*, 3, 8–2. Journal homepage: http://dx.doi.org/10.1016/j.nfs.2016.02.002
- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604. http://doi.org/10.19193/0393-6384_2018_2s_94
- Goni, I., Garcia-Diz, L., Manas, E., and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. *Food Chemistry*, 56(4), 445-449
- Goni, I., Garcia-Alonso, A., Saura-Calixto, F. (1997). A Starch hydrolysis procedure to estimate glycemic
 index. *Nutrition Research*, 17 (3), 427-437.
- Grewal, A. and Jood, S. (2009). Chemical Composition and digestibility (in vitro) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88(3), S293-S306. http://doi.org/10.1079/BJN2002720
- Kapur, K., Kapur, A., and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. Ann Nutr Metab, 76(suppl 3), 17–29. DOI: 10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J., and Pacher, N. (1999). Euglycemic hyperinsulinemic
 clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn
 and mung bean starches in healthy men1–3. Am J Clin Nutr, 69, 1183–1188.
- Li, W., Shu, C., Zhang, P., and Shen, Q.. (2011). Properties of starch separated from ten mung bean varieties
 and seeds processing characteristics. *Food Bioprocess Technol* 4, 814-821. DOI 10.1007/s11947-010 0421-6
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W., and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86, 162-166.

- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W., and Sun, X. (2018). Dietary patterns
 during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China.
 Nutrition Journal 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and
 chemical properties of starch and flour from different common bean (Phaseolus vulgaris L.) cultivars.
 Braz.J.Food Technol., 19, e2016005. http://dx.doi.org/10.1590/1981-6723.0516
- Menon, R., Padmaja, G., Jyothi, A.N., Asha V., and Sajeev, M.S. (2016). Gluten-free starch noodles from
 sweet potato with reduced starch digestibility and enhanced protein content. *J Food Sci Technol*. DOI
 10.1007/s13197-016-2330-9.
- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional process. *Food Chemistry*, 89(1), 485-495.
 http://doi.org10.1016/j.foodchem.2004.01.007

274

275

276

277

278 279

280

281

282 283

284

285

- Pagar, H., Athawale, G., and Raichurkar, S.(2021). Effect of soaking, germination and drying on antinutrients, minerals and functional properties of horse gram along with its commercial application. *International Journal of Food Science and Nutrition* 6 (2), 50-54. www.foodsciencejournal.com
- Rebello C. J., Greenway F. L., and Finley J. W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obes. Rev.* 15, 392–407. DOI 10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S., and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*. London, 81 (2), 219-231. http://dx.doi.org/10.1016/S0308-8146(02)00416-8.
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. Food Research 3(6), 828-832 https://doi.org/10.26656/fr.2017.3(6).209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different
 soaking times as protein source for breastfeeding women in Indonesia. *Food Research* 3 (5), 501-505.
 https://doi.org/10.26656/fr.2017.3(5).105.

293

294

295

296

297 298

Table 1. Effects of soaking time on total starch, undigested starch and starch digestibility

Soaking time (Hour)	Total starch (% dry basis ± SD)*	Undigested starch (% dry basis ± SD)*	Starch digestibility** (% ± SD)*
P0	41.13 ± 0.19 °	19.16 ± 0.45 b	53.42± 1.31 ^b
P1	39.14 ± 0.72 b	16.65 ± 0.13 ^a	57.46± 1.12°
P2	38.85 ± 0.18 b	18.70 ± 0.56 b	51.87± 1.67 ab
P3	38.18 ± 0.44 b	18.53± 0.34 b	51.47± 0.31 a
P4	33.52 ± 1.29 a	16.82± 0.21 a	49.82 ± 1.30 a

Values are means ± standard deviations (n=3).

P0 = control (without soaking), P1 = soaked 2 h , P2 = soaked 4 h, P3= soaked 6 h, P4= soaked 8 h.

Menghapus: ¶

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05).

^{**} Starch Digestibility (%) = (Total Starch – Undigested Starch)/(Total Starch) x 100%

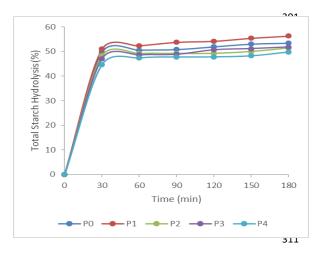
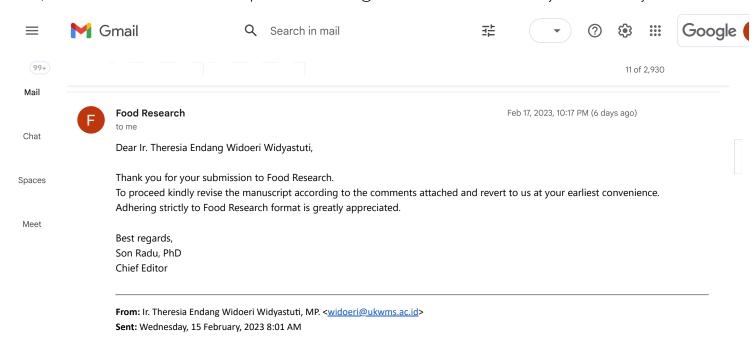


Figure 1. Mung bean starch hydrolysis rate. P0 = control (without soaking), P1 = soaked 2 h , P2 = soaked 4 h, P3= soaked 6 h, P4= soaked 8 h.


Table 2. Effects of soaking time on protein content and protein digestibility

. Effects of soaking time on protein content and protein digest			
Soaking time	Protein content	Protein digestibility*	
(hour)	(% dry basis ± SD)	(% ± SD)	
P0	26.29 ± 0.27	46.93 ± 1.53 ^a	
P1	25.88 ± 0.40	48.41 ± 0.38 ab	
P2	25.90 ± 0.25	48.56 ± 0.54 ab	
P3	25.68 ± 0.33	51.29 ± 1.20 °	
P4	26.10 ± 0.82	49.83 ± 3.00 bc	

Menghapus: ¶

Values are means ± standard deviations (n=3)
P0 = control (without soaking), P1 = soaked 2 h , P2 = soaked 4 h, P3= soaked 6 h, P4= soaked 8 h.

* Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05)

Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus,

*Widyastuti, T.E.W. and Widjajaseputra, A.I.,

Food Technology Department, Widya Mandala Catholic University Surabaya, Jl. Dinoyo 42-44 Surabaya 60265, East Java, Indonesia

7

*Corresponding author: widoeri@ukwms.ac.id

Author No.1: https://orcid.org/0000-0002-5772-1138

Author No.2: https://orcid.org/0000-0003-0186-708X 9

Abstract

1

2

3

4

5

6

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

> 26 27

> 28

29

30

31 32

33

34

35

36 37

38

This research examines the effect of soaking time on the *in vitro* digestibility of starch and protein of mung« bean, in order to obtain an alternative source of healthy food in a simple way. A single factor of randomized block design used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6 and 8 hrs. Total starch, in vitro starch digestibility, protein content and in vitro protein digestibility of freeze dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during longer soaking time, in a range of 39.14-33.52 % dry basis and 57.46-49.82% respectively._Based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking, up to 6 hours of soaking time (in a range of 46.93%-51.29%). Based on these results, the suggested soaking time was 6 hours that gave optimum digestibility of starch and protein for human consumption. The recommendation in order to obtain the benefits as a healthy food source for people with diabetes mellitus.

Keywords: In vitro digestibility, Starch, Protein, Mung beans, Soaking time

1. Introduction

Mung bean (Vigna radiata) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies and others (Fayyaz et al., 2018). Mung bean, as one of the legumes, is being an important part of the dietaries of Indonesian people and contribute substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya et al., 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most component of carbohydrates in mung beans, about 30.74 ± 3.39% (Widjajaseputra et al., 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean which its high amylose content can improve the swelling power and gel texture of a starch noodle product. This is as reported by Li et al. (2008), that the high-quality starch noodle made from mung bean starch results from its high amylose content. Menon et al. (2016) studied

Menghapus: ¶

Telah Diformat: Spasi Setelah: 0 pt, Spasi baris: tunggal, Tab berhenti: 0.64", Kiri + 1.27", Kiri + 1.91", Kiri + 2.54", Kiri + 3.18", Kiri + 3.82", Kiri + 4.45", Kiri + 5.09", Kiri + 5.73", Kiri + 6.36", Kiri + 7', Kiri + 7.63", Kiri + 8.27", Kiri + 8.91", Kiri + 9.54", Kiri + 10.18", Kiri

Menghapus: ¶

Menghapus:

Memformat: Superskrip

Telah Diformat: Inden: Kiri: -0.1", Kanan: 0"

Menghapus: https://orcid.org/0000-0002-5772-1138

Memformat: Font Paragraf Default, Pola: Bersihkan

Menghapus: https://orcid.org/0000-0003-0186-708X

Memformat: Font Paragraf Default

Dikomentari [A1]: Provide general sentence in the beginnning

Dikomentari [A2R1]: Regarding the topic

Memformat: Font: Miring

Telah Diformat: Pola: Bersihkan

Menghapus:

Memformat: Font: Miring

gluten-free starch noodles from sweet potatoes and got that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in vitro condition. The high amylose content showed higher viscosities which could be used in food products that require this property, such as thickeners for creams, sauces, soups and puddings. However, Li *et al.* (2011) declared that starches from different mung bean varieties showed significant differences in the physicochemical, thermal, and pasting properties. So that they may suit diverse applications such as porridge, cakes, snacks, beverages etc.

Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its usage to supplement cereals and rice in particular. The mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi *et al.*, 2016). However, the original properties of the components in the mung bean will change depending on the processing applied.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water entered the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment result in alteration of their nutritional quality which could either be reduction in nutrients and antinutrients or improvement in digestibility or availability of nutrients (Kaur *et al.*, 2015). Pagar et al. (2021) who studied the horse gram, found that treatment having 6 hrs soaking, 72 hrs germination, and drying at 70°C was the best where a maximum decrease in the anti-nutritional factors at the same time flour functional properties got enhanced due to the soaking and germination. It is essential to understand these changes to select appropriate techniques to obtain maximum nutritional and health benefits. In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) increased during four hours of soaking (Widjajaseputra *et al.*, 2019a). Widjajaseputra *et al.* (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia.

All the chemicals, standards, and reagents were of analytical grade.

7778 2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6 and 8 n, afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2% - 3% moisture content. The dried grains were ground (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5 ± 1°C until analyzed.

2.3 The experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hours (P4). Each treatment level was conducted in triplicates. Total starch, in vitro starch digestibility, protein content and in vitro protein digestibility of freeze dried and grounded whole mung beans were analyzed. Water content analysis was used to dry basis calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n=3). The data were subjected to one-way ANOVA (p < 0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis Methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured as glucose by incubating the sample suspension in the optimum condition of amyloglucosidase for 45 min measuring activity. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch in vitro (Goni *et al.*, 1996 and Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch during 180 minutes within a 30 minute interval, then calculated the percentage of hydrolyzed starch (digestible starch) in equations (a) and (b) as follows:

(a) Digestible starch = (total starch – undigested Starch)

Dikomentari [A3]: Please revise all

Hours: hrs Hour: hr Minutes: mins Minute: min Seconds: s

Dikomentari [A4]: Use the appropriate symbol without the underline

Dikomentari [A5]: Scientific terms must be italicized

(b) Starch digestibility (%) = (total starch – undigested starch)/total starch x 100%

2.4.3 Protein content analysis

The principle of determining protein content using the macro Kjeldahl method (AOAC, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N). The measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample. Nitrogen content was measured using the Kjeldahl micro method. Calculation of protein digestibility as stated in equation (c).

(c) Protein digestibility = $\frac{N \text{ total filtrate}}{N \text{ total ingredients}} \times \frac{\text{diluting factor x } 100\%}{\text{v}}$

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch and starch digestibility

The total starch of mung bean seeds decreased from 41.13% dry to 33.52% dry basis during 8 hours of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease of total starch was due to the leaching out of the soluble part of starch in soaking water and hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra $et\ al.\ (2019a)$ stated about amylose level of mung beans $(32.56\pm0.31\%)$ is higher than cereal (around 25%) and tuber starch (around 17%-19%). Singh $et\ al.\ (2003)$ state that the factors which could influence starch retrogradation were the amylopectin content, intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrogradation would affect the level of digestibility.

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time, along with the decreasing of total starch during the soaking treatment up to 8 h of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hours resulted in a significant increase in starch

Menghapus: x

Menghapus:

digestibility. This is because there were starch granules that were more readily hydrolyzed by enzymes that become active due to the imbibition of water in the soaked mung bean seeds. After 4 hours of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch.

140

141

142

143 144

145

146

147

148

149

150

151

152

153154

155

156

157

158

159

160

161 162

163 164

165166

167

168169

170171

The increasing of undigested starch up to 3 hours of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist to digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) stated that RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hours, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hours. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hours after consumption has not been completely digested. It was due to the high level of amylose of mung bean starch (around 32 %- 34%). The difference in RS can be caused by differences in starch structure in various amylose-amylopectin ratio among of different starch granules which affects the RS level in processed food, included during seeds soaking and freeze-drying treatment in samples preparation. Retrogradation of amylose can be occurred during soaking and freeze drying treatment in sample preparation, and part of starch was being to exist as RS3. RS3 is starch that has been retrograded into more highly stabile crystalline structures. In addition, Fabbri et al. (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. This phenomena caused a decrease in the level of starch digestibility. The different process following the soaking would give the different effect on starch digestibility. As an example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2 Effects of soaking time on protein content and protein digestibility

The values of protein digestibility were significantly different on 6 hours (P3) and 8 hours (P4) of treated soaking time compared to Po, P1, and P2 as shown on Table 2. Protein digestibility increased during soaking treatment, up to 6 hours of soaking time, and then the protein digestibility slightly decreased on 8 hours of seed soaking.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hours of soaking time (Widjajaseputra *et al.*, 2019b). The higher of soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hours, because a germination process has taken place longer than 6 hours of

Dikomentari [A6]: Revise all

Memformat: Sorot
Memformat: Sorot

Memformat: Sorot

Memformat: Sorot

Memformat: Font: Miring

Menghapus:

soaking. During germination periods there were hydrolyzing processes that would effect on protein and starch degradation to produce energy for the new plant. This phenomena was revealed by Grewal and Jood (2009) that germination process decreased starch content, thereby increasing soluble sugars and improved starch digestibility to be 49% and 48% in two different of green gram (*Vigna radiata L.*) cultivars respectively.

3.3 Perspective of mung bean as healthy food source for people with diabetes mellitus

Menghapus:

The high protein digestibility of mung beans as a result of soaking for 6 hours can support its usage as a good food source of protein. Combination of mung bean protein and rice protein in 3:4 ratio respectively can increase the chemical amino acid score to be 72 (Dahiya *et al.*, 2015). Based on this recommendation, an increase in the protein bioavailability can be obtained. Consumption of legumes provides quality protein along with other micronutrients without adding extra energy or fat. According to Mak *et al.* (2018), in fact a diet high in protein-low starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also the starch, which has an advantage of consisting higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello *et al.* (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is positive attributes that could promote the product as better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity and other malnutrition symptoms. In particular for the nutrition management of gestational diabetes mellitus, it is important to focus on quality of carbohydrates and encourage consumption of vegetables, fruits, complex carbohydrates, and high-fibre foods (Kapur *et al.*, 2020). A balanced diet consisting healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will results in weight control as well as diabetes management (Devi *et al.*, 2021).

207

208

209

210

211

212

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, the mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hours of soaking time (in a range of 46.93%-51.29%). Based on the obtained data, the recommended soaking time was 6 hours which revealed the optimum digestibility of starch and protein for people with diabetes mellitus. The further investigation will be needed to provide to get better food choice not only for diabetes mellitus patients, but also for those suffering from celiac disease, obesity and other malnutrition symptoms.

213214215

Conflict of interest

The authors declare no conflict of interest.

216217218

219

220

221

222

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 1150/ WM01.5/ N/ 2018 and 200U/WM01.5/N/2019 respectively).

223224225

226

227

231

232

233

234

235

236

237

References

- AOAC. (2010). Official Methods of Analysis. 18th ed. Washington, D.C.: Association of Official Analytical Chemists.
- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B., and Nout, M.J. (2015). Mung bean: technological and nutritional potential. *Crit Rev Food Sci Nutr*, 55(5), 670–88. doi: 10.1080/10408398.2012.671202
 - Devi M, P., Mudraganam, S., and Saraf, V. (2021). A Review on the role of carbohydrates in the management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6 (6), 33-38. www.foodsciencejournal.com
 - Dipnaiki, K., and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase activity in pulses. *Int J Res Med Sci.*, 5(10), 4271-4276. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20174158

Dikomentari [A7]: Revise strictly according to fr format Apply the comments below to all the references

Dikomentari [A8]: Remove commas before 'and'

Dikomentari [A9]: All journal names must be written in full

Menghapus: ¶

Dikomentari [A10]: Remove the spacing between initials A.R. J.H.

Replace this comma with fullstop '.'

Dikomentari [A11]: Comma missing here

Dikomentari [A12]: Remove spacing between issue and vol

- Fabbri, A.D.T., Schacht, R. W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. *NFS Journal*, 3, 8–2. Journal homepage: http://dx.doi.org/10.1016/j.nfs.2016.02.002
- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604. http://doi.org/10.19193/0393-6384 2018 2s 94
- Goni, I., Garcia-Diz, L., Manas, E., and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for
 foods and food products. Food Chemistry, 56(4), 445-449
- Goni, I., Garcia-Alonso, A., Saura-Calixto, F. (1997). A Starch hydrolysis procedure to estimate glycemic index. *Nutrition Research*, 17 (3), 427-437.
- Grewal, A. and Jood, S. (2009). Chemical Composition and digestibility (in vitro) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88(3), S293-S306. http://doi.org/10.1079/BJN2002720
- Kapur, K., Kapur, A., and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. Ann Nutr Metab, 76(suppl 3), 17–29. DOI: 10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J., and Pacher, N. (1999). Euglycemic hyperinsulinemic
 clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn
 and mung bean starches in healthy men1–3. Am J Clin Nutr, 69, 1183–1188.
- Li, W., Shu, C., Zhang, P., and Shen, Q.. (2011). Properties of starch separated from ten mung bean varieties
 and seeds processing characteristics. Food Bioprocess Technol 4, 814-821. DOI 10.1007/s11947-010 0421-6
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W., and Tan, B. (2008). Properties and qualities of vermicelli made from
 sour liquid processing and configuration starch. *Journal of Food Engineering*, 86, 162-166.
- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W., and Sun, X. (2018). Dietary patterns
 during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China.
 Nutrition Journal 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and
 chemical properties of starch and flour from different common bean (Phaseolus vulgaris L.) cultivars.
 Braz.J.Food Technol., 19, e2016005. http://dx.doi.org/10.1590/1981-6723.0516

- Menon, R., Padmaja, G., Jyothi, A.N., Asha V., and Sajeev, M.S. (2016). Gluten-free starch noodles from
 sweet potato with reduced starch digestibility and enhanced protein content. *J Food Sci Technol*. DOI
 10.1007/s13197-016-2330-9.
- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional process. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G., and Raichurkar, S.(2021). Effect of soaking, germination and drying on antinutrients, minerals and functional properties of horse gram along with its commercial application.
 International Journal of Food Science and Nutrition 6 (2), 50-54. www.foodsciencejournal.com
 - Rebello C. J., Greenway F. L., and Finley J. W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obes. Rev.* 15, 392–407. DOI 10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S., and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*. London, 81 (2), 219-231. http://dx.doi.org/10.1016/S0308-8146(02)00416-8.

284 285

289 290

291

292

- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research* 3(6), 828-832 https://doi.org/10.26656/fr.2017.3(6).209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different
 soaking times as protein source for breastfeeding women in Indonesia. *Food Research* 3 (5), 501-505.
 https://doi.org/10.26656/fr.2017.3(5).105.

 PO
 41.13 ± 0.19 °
 19.16 ± 0.45 °
 53.42± 1.31 °

 P1
 39.14 ± 0.72 °
 16.65 ± 0.13 °
 57.46± 1.12 °

 P2
 38.85 ± 0.18 °
 18.70 ± 0.56 °
 51.87± 1.67 °

Undigested

starch (% dry

 $18.53 \pm 0.34^{\,b}$

16.82± 0.21 a

Starch digestibility**

(% ± SD)*

51.47± 0.31 a

49.82 ± 1.30 a

Values are means ± standard deviations (n=3).

Total starch

(% dry basis ±

38.18 ± 0.44 b

33.52 ± 1.29 a

Soaking time

(Hour)

Р3

Ρ4

P0 = control (without soaking), P1 = soaked 2 h , P2 = soaked 4 h , P3= soaked 6 h , P4= soaked 8 h .

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05).

 $^{^{**}}$ Starch Digestibility (%) = (Total Starch – Undigested Starch)/(Total Starch) x 100%

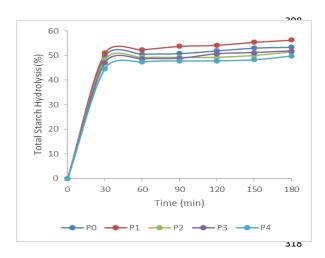


Figure 1. Mung bean starch hydrolysis rate. P0 = control (without soaking), P1 = soaked 2 h , P2 = soaked 4 h, P3= soaked 6 h, P4= soaked 8 h.

"Table 2. Effects of soaking time on protein content and protein digestibility

z. Effects of soaking time on protein content and protein digesti				
Soaking time		Protein content	Protein digestibility*	
	(hour)	(% dry basis ± SD)	(% ± SD)	
	P0	26.29 ± 0.27	46.93 ± 1.53 ^a	
	P1	25.88 ± 0.40	48.41 ± 0.38 ab	
	P2	25.90 ± 0.25	48.56 ± 0.54 ab	
	P3	25.68 ± 0.33	51.29 ± 1.20 °	
	P4	26.10 ± 0.82	49.83 ± 3.00 bc	

Menghapus: ¶

Values are means ± standard deviations (n=3)
P0 = control (without soaking), P1 = soaked 2 h , P2 = soaked 4 h,
P3= soaked 6 h, P4= soaked 8 h.
* Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05)

Bukti konfirmasi *re-submit* + *manuscript* hasil revisi
(20 Februari 2023)
dan
Respon editor
(23 Februari 2023)

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Manuscript Submission

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id> To: Food Research <foodresearch.my@outlook.com>

Mon, Feb 20, 2023 at 7:54 AM

Dear Prof.Dr. Son Radu,

Thank you very much for the opportunity. We just already revised the manuscript according to all of the comments. Please kindly receive the attached file of the revised manuscript.

Thank you very much for your attention.

My best regards, Theresia Endang Widoeri Widyastuti [Quoted text hidden]

Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus

*Widyastuti, T.E.W. and Widjajaseputra, A.I.,

Food Technology Department, Widya Mandala Catholic , University Surabaya, Jl. Dinoyo 42-44 Surabaya 60265, East Java, Indonesia

*Corresponding author: widoeri@ukwms.ac.id

Author No.1:https://orcid.org/0000-0002-5772-1138

10 Abstract

Mung bean is one of the commodities with potency sources of starch and protein that is available and inexpensive. However, healthy foods ingredients for people with diabetes mellitus are high in protein but contain starch which is slow to digest. This research examines the effect of soaking time on the *in vitro* digestibility of starch and protein of mung bean, in order to obtain an alternative source of healthy food in a simple way. A single factor of randomized block design used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6 and 8 hrs. Total starch, *in vitro* starch digestibility, protein content and *in vitro* protein digestibility of freeze dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during longer soaking time, in a range of 39.14-33.52 % dry basis and 57.46-49.82% respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93%-51.29%). Based on these results, the suggested soaking time was 6 hrs that gave optimum digestibility of starch and protein for human consumption. The recommendation in order to obtain the benefits as a healthy food source for people with diabetes mellitus.

Keywords: In vitro digestibility, Starch, Protein, Mung beans, Soaking time

Author No.2: https://orcid.org/0000-0003-0186-708X

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is being an important part of the dietaries of Indonesian people and contribute substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most component of carbohydrates in mung beans, about $30.74 \pm 3.39\%$ (Widjajaseputra *et al.*, 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean which its high amylose content can improve the swelling power and

gel texture of a starch noodle product. This is as reported by Li *et al.* (2008), that the high-quality starch noodle made from mung bean starch results from its high amylose content. Menon *et al.* (2016) studied gluten-free starch noodles from sweet potatoes and got that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles *in vitro* condition. The high amylose content showed higher viscosities which could be used in food products that require this property, such as thickeners for creams, sauces, soups and puddings. However, Li *et al.* (2011) declared that starches from different mung bean varieties showed significant differences in the physicochemical, thermal, and pasting properties. So that they may suit diverse applications such as porridge, cakes, snacks, beverages etc.

Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its usage to supplement cereals and rice in particular. The mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi *et al.*, 2016). However, the original properties of the components in the mung bean will change depending on the processing applied.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water entered the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment result in alteration of their nutritional quality which could either be reduction in nutrients and antinutrients or improvement in digestibility or availability of nutrients (Kaur *et al.*, 2015). Pagar et al. (2021) who studied the horse gram, found that treatment having 6 hrs soaking, 72 hrs germination, and drying at 70°C was the best where a maximum decrease in the anti-nutritional factors at the same time flour functional properties got enhanced due to the soaking and germination. It is essential to understand these changes to select appropriate techniques to obtain maximum nutritional and health benefits. In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) increased during four hours of soaking (Widjajaseputra *et al.*, 2019a). Widjajaseputra *et al.* (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia. All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6 and 8 hrs, afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2% - 3% moisture content. The dried grains were ground (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5° C \pm 1 until analyzed.

2.3 The experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hrs (P4). Each treatment level was conducted in triplicates. Total starch, *in vitro* starch digestibility, protein content and *in vitro* protein digestibility of freeze dried and grounded whole mung beans were analyzed. Water content analysis was used to dry basis calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n=3). The data were subjected to one-way ANOVA (p < 0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis Methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured as glucose by incubating the sample suspension in the optimum condition of amyloglucosidase for 45 mins measuring activity. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch *in vitro* (Goni *et al.*, 1996 and Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch during 180 mins within a 30 min interval, then calculated the percentage of hydrolyzed starch (digestible starch) in equations (a) and (b) as follows:

- (a) Digestible starch = (total starch undigested Starch)
- (b) Starch digestibility (%) = (total starch undigested starch)/total starch x 100%

2.4.3 Protein content analysis

The principle of determining protein content using the macro Kjeldahl method (AOAC, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N). The measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample. Nitrogen content was measured using the Kjeldahl micro method. Calculation of protein digestibility as stated in equation (c).

(c) Protein digestibility =
$$\frac{N \text{ total filtrate}}{N \text{ total ingredients}} \times \text{ diluting factor x } 100\%$$

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch and starch digestibility

The total starch of mung bean seeds decreased from 41.13% dry to 33.52% dry basis during 8 hrs of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease of total starch was due to the leaching out of the soluble part of starch in soaking water and hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra $et\ al.\ (2019a)$ stated about amylose level of mung beans (32.56 \pm 0.31%) is higher than cereal (around 25%) and tuber starch (around 17%-19%). Singh $et\ al.\ (2003)$ state that the factors which could influence starch retrogradation were the amylopectin content, intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrogradation would affect the level of digestibility.

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time, along with the decreasing of total starch during the soaking treatment up to 8 hrs of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hrs resulted in a significant increase in starch digestibility. This is because there were starch granules that were more readily hydrolyzed by enzymes that become active due to the imbibition of water in the soaked mung bean seeds. After 4 hrs of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch.

The increasing of undigested starch up to 3 hrs of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist to digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) stated that RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hrs, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hrs. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hrs after consumption has not been completely digested. It was due to the high level of amylose of mung bean starch (around 32 %–34%). The difference in RS can be caused by differences in starch structure in various amylose-amylopectin ratio among of different starch granules which affects the RS level in processed food, included during seeds soaking and freeze-drying treatment in samples preparation. Retrogradation of amylose can be occurred during soaking and freeze drying treatment in sample preparation, and part of starch was being to exist as RS3. RS3 is starch that has been retrograded into more highly stabile crystalline structures. In addition, Fabbri et al. (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. This phenomena caused a decrease in the level of starch digestibility. The different process following the soaking would give the different effect on starch digestibility. As an example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2 Effects of soaking time on protein content and protein digestibility

The values of protein digestibility were significantly different on 6 hrs (P3) and 8 hrs (P4) of treated soaking time compared to P0, P1, and P2 as shown on Table 2. Protein digestibility increased during soaking treatment, up to 6 hrs of soaking time, and then the protein digestibility slightly decreased on 8 hrs of seed soaking.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hrs of

soaking time (Widjajaseputra *et al.*, 2019b). The higher of soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hrs, because a germination process has taken place longer than 6 hrs of soaking. During germination periods there were hydrolyzing processes that would effect on protein and starch degradation to produce energy for the new plant. This phenomena was revealed by Grewal and Jood (2009) that germination process decreased starch content, thereby increasing soluble sugars and improved starch digestibility to be 49% and 48% in two different of green gram (*Vigna radiata L.*) cultivars respectively.

3.3 Perspective of mung bean as healthy food source for people with diabetes mellitus

The high protein digestibility of mung beans as a result of soaking for 6 hrs can support its usage as a good food source of protein. Combination of mung bean protein and rice protein in 3:4 ratio respectively can increase the chemical amino acid score to be 72 (Dahiya *et al.*, 2015). Based on this recommendation, an increase in the protein bioavailability can be obtained. Consumption of legumes provides quality protein along with other micronutrients without adding extra energy or fat. According to Mak *et al.* (2018), in fact a diet high in protein-low starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also the starch, which has an advantage of consisting higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello *et al.* (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is positive attributes that could promote the product as better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity and other malnutrition symptoms. In particular for the nutrition management of gestational diabetes mellitus, it is important to focus on quality of carbohydrates and encourage consumption of vegetables, fruits, complex carbohydrates, and high-fibre foods (Kapur *et al.*, 2020). A balanced diet consisting healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food

preferences as well as based on physical activity and physiological status will results in weight control as well as diabetes management (Devi *et al.*, 2021).

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, the mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93%-51.29%). Based on the obtained data, the recommended soaking time was 6 hrs which revealed the optimum digestibility of starch and protein for people with diabetes mellitus. The further investigation will be needed to provide to get better food choice not only for diabetes mellitus patients, but also for those suffering from celiac disease, obesity and other malnutrition symptoms.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 1150/WM01.5/N/2018 and 200U/WM01.5/N/2019 respectively).

References

- AOAC. (2010). Official Methods of Analysis. 18th ed. Washington, D.C.: Association of Official Analytical Chemists.
- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B. and Nout, M.J. (2015). Mung
 bean: technological and nutritional potential. *Critical Reviews in Food Science and Nutrition*, 55(5),
 670–88. doi: 10.1080/10408398.2012.671202
- Devi, M.P., Mudraganam, S. and Saraf, V. (2021). A Review on the role of carbohydrates in the management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6(6), 33-38. www.foodsciencejournal.com

Dipnaiki, K. and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase activity in pulses. *International Journal of Research in Medical Sciences*, 5(10), 4271-4276. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20174158

228

- Fabbri, A.D.T., Schacht, R. W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. *NFS Journal*, 3, 8–2. Journal homepage: http://dx.doi.org/10.1016/j.nfs.2016.02.002
- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604. http://doi.org/10.19193/0393-6384_2018_2s_94
- Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. *Food Chemistry*, 56(4), 445-449
- Goni, I., Garcia-Alonso, A., Saura-Calixto, F. (1997). A Starch hydrolysis procedure to estimate glycemic index. *Nutrition Research*, 17 (3), 427-437.
- Grewal, A. and Jood, S. (2009). Chemical Composition and digestibility (*in vitro*) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88(3), S293-S306. http://doi.org/10.1079/BJN2002720
- Kapur, K., Kapur, A., and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. Ann Nutr Metab, 76(suppl 3), 17–29. DOI: 10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J. and Pacher, N. (1999). Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn and mung bean starches in healthy men1–3. *The American Journal of Clinical Nutrition*, 69, 1183–1188.
- Li, W., Shu, C., Zhang, P. and Shen, Q. (2011). Properties of starch separated from ten mung bean varieties and seeds processing characteristics. *Food and Bioprocess Technology* 4, 814-821. DOI 10.1007/s11947-010-0421-6
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W. and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86, 162-166.
- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W. and Sun, X. (2018). Dietary patterns during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China. *Nutrition Journal*, 17, 107. https://doi.org/10.1186/s12937-018-0413-3

- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and chemical properties of starch and flour from different common bean (Phaseolus vulgaris L.) cultivars.

 Brazilian Journal andFood Technology, 19, e2016005. http://dx.doi.org/10.1590/1981-6723.0516
- Menon, R., Padmaja, G., Jyothi, A.N., Asha, V. and Sajeev, M.S. (2016). Gluten-free starch noodles from sweet potato with reduced starch digestibility and enhanced protein content. *Journal of Food Science and Technology*, 53, 3532-3542. DOI 10.1007/s13197-016-2330-9.
- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional process. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G. and Raichurkar, S. (2021). Effect of soaking, germination and drying on antinutrients, minerals and functional properties of horse gram along with its commercial application. *International Journal of Food Science and Nutrition*, 6(2), 50-54. www.foodsciencejournal.com
- 274 Rebello, C.J., Greenway, F.L. and Finley, J.W. (2014). A review of the nutritional value of legumes and their 275 effects on obesity and its related co-morbidities. *Obesity Reviews*, 15, 392–407. DOI 276 10.1111/obr.12144

281

288

289

- Singh, N., Sing, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*, 81(2), 219-231. http://dx.doi.org/10.1016/S0308-8146(02)00416-8.
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research*, 3(6), 828-832 https://doi.org/10.26656/fr.2017.3(6).209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different
 soaking times as protein source for breastfeeding women in Indonesia. *Food Research*, 3(5), 501-505.
 https://doi.org/10.26656/fr.2017.3(5).105.

Table 1. Effects of soaking time on total starch, undigested starch and starch digestibility

Soaking time (hr)	Total starch (% dry basis ±	Undigested starch (% dry	Starch digestibility** (% ± SD)*
	SD)*	basis ± SD)*	
P0	41.13 ± 0.19°	19.16 ± 0.45 b	53.42± 1.31 ^b
P1	39.14 ± 0.72 b	16.65 ± 0.13 ^a	57.46± 1.12°
P2	38.85 ± 0.18 b	18.70 ± 0.56 b	51.87± 1.67 ab
P3	38.18 ± 0.44 b	18.53± 0.34 ^b	51.47± 0.31°
P4	33.52 ± 1.29 a	16.82± 0.21 a	49.82 ± 1.30 a

Values are means \pm standard deviations (n=3).

P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hrs, P3= soaked 6 hrs, P4= soaked 8 hrs.

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05).

^{**} Starch Digestibility (%) = (Total Starch – Undigested Starch)/(Total Starch) x 100%

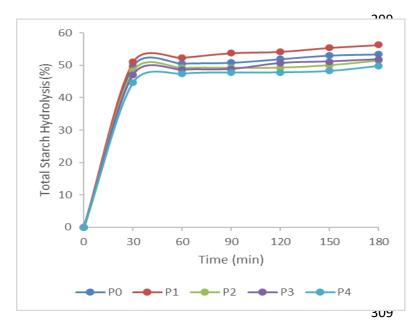


Figure 1. Mung bean starch hydrolysis rate. P0 = control (without soaking), P1 = soaked 2 hrs, P2 = soaked 4 hrs, P3= soaked 6 hrs, P4= soaked 8 hrs.

Table 2. Effects of soaking time on protein content and protein digestibility

	-6 time on protein con	terre aria proterri argesti
Soaking time	Protein content	Protein digestibility*
(hr)	(% dry basis ± SD)	(% ± SD)
P0	26.29 ± 0.27	46.93 ± 1.53°
P1	25.88 ± 0.40	48.41 ± 0.38 ab
P2	25.90 ± 0.25	48.56 ± 0.54 ab
P3	25.68 ± 0.33	51.29 ± 1.20 °
P4	26.10 ± 0.82	49.83 ± 3.00 bc

Values are means ± standard deviations (n=3)

315

316

317

318

319

320

P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hr, P3= soaked 6 hr, P4= soaked 8 hr.

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05)

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Manuscript ID: FR-2023-081

Food Research <foodresearch.my@outlook.com>

Thu, Feb 23, 2023 at 12:26 AM

To: "Ir. Theresia Endang Widoeri Widyastuti, MP." <widoeri@ukwms.ac.id>

Dear Ir. Theresia Endang Widoeri Widyastuti, MP,

This message is to acknowledge receipt of the above manuscript that you submitted via email to Food Research. Your manuscript has been successfully checked-in. Please refer to the assigned manuscript ID number in any correspondence with the Food Research Editorial Office or with the editor.

Your paper will be reviewed by three or more reviewers assigned by the Food Research editorial board and final decision made by the editor will be informed by email in due course. Reviewers' suggestions and editor's comments will be then made available via email attached file. You can monitor the review process for your paper by emailing us on the "Status of my manuscript".

If your manuscript is accepted for publication, Food Research editorial office will contact you for the production of your manuscript.

Thank you very much for submitting your manuscript to Food Research.

Sincerely,

Son Radu, Ph.D. Chief Editor

Email: foodresearch.my@outlook.com

From: Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Sent: Monday, 20 February, 2023 8:54 AM

To: Food Research < foodresearch.my@outlook.com>

Subject: Re: Manuscript Submission

Dear Prof.Dr. Son Radu,

Thank you very much for the opportunity. We just already revised the manuscript according to all of the comments. Please kindly receive the attached file of the revised manuscript.

Thank you very much for your attention.

My best regards,

Theresia Endang Widoeri Widyastuti

On Fri, Feb 17, 2023 at 10:17 PM Food Research <foodresearch.my@outlook.com> wrote:

Dear Ir. Theresia Endang Widoeri Widyastuti,

Thank you for your submission to Food Research.

To proceed kindly revise the manuscript according to the comments attached and revert to us at your earliest convenience.

Adhering strictly to Food Research format is greatly appreciated.

Best regards, Son Radu, PhD Chief Editor

From: Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Sent: Wednesday, 15 February, 2023 8:01 AM

To: foodresearch.my@outlook.com <foodresearch.my@outlook.com>

Subject: Manuscript Submission

Dear Prof. Dr. Son Radu,

Please kindly find the attached files of the cover letter, manuscript submission form, and manuscript with entitle: "Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus" for publication in the Food Research journal (type: original article).

I'm waiting for your response and consideration.

Thank you very much for your attention.

Sincerely yours, Theresia Endang Widoeri Widyastuti

Letter to Author FR-2023-081.pdf 26K

23rd February 2023

Authors: Widyastuti, T.E.W. and Widjajaseputra, A.I.

Manuscript title: Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus

Manuscript ID: FR-2023-081

Dear Ir. Theresia Endang Widoeri Widyastuti, MP,

This message is to acknowledge receipt of the above manuscript that you submitted via email to Food Research. Your manuscript has been successfully checked-in. Please refer to the assigned manuscript ID number in any correspondence with the Food Research Editorial Office or with the editor.

Your paper will be reviewed by three or more reviewers assigned by the Food Research editorial board and final decision made by the editor will be informed by email in due course. Reviewers' suggestions and editor's comments will be then made available via email attached file. You can monitor the review process for your paper by emailing us on the "Status of my manuscript".

If your manuscript is accepted for publication, Food Research editorial office will contact you for the production of your manuscript.

Thank you very much for submitting your manuscript to Food Research.

Sincerely,

Son Radu, Ph.D. Chief Editor

Email: foodresearch.my@outlook.com

Bukti konfirmasi review oleh *reviewer* I dan II (*Evaluation form* + hasil *review* masing-masing *Reviewer*) dari Editor (5 April 2023)

Manuscript ID: FR-2023-081

Food Research <foodresearch.my@outlook.com>
To: "Ir. Theresia Endang Widoeri Widyastuti, MP." <widoeri@ukwms.ac.id>

Wed, Apr 5, 2023 at 10:48 PM

Dear Ir. Theresia Endang Widoeri Widyastuti,

Manuscript FR-2023-081 entitled "Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for people with diabetes mellitus "which you submitted to Food Research, has been reviewed. The comments of the reviewer(s) are included in the attached file.

The reviewer(s) have recommended publication, but also suggest some revisions to your manuscript. Therefore, I invite you to respond to the reviewer(s)' comments and revise your manuscript. Once the revised manuscript is prepared, please send it back to me for further processing.

Because we are trying to facilitate timely publication of manuscripts submitted to Food Research, your revised manuscript should be submitted before or by 1st June 2023. If it is not possible for you to submit your revision by this date, please let us know.

Once again, thank you for submitting your manuscript to Food Research and I look forward to receiving your revised manuscript.

Sincerely,

Son Radu, PhD Chief Editor, Food Research

From: Food Research < foodresearch.my@outlook.com>

Sent: Thursday, 23 February, 2023 1:26 AM

To: Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Subject: Manuscript ID: FR-2023-081

[Quoted text hidden]

8 attachments

Evaluation Form FR-2023-081.doc 265K

Evaluation Form FR-2023-081 (3).pdf

Evaluation Form FR-2023-081 (2).doc

Evaluation Form FR-2023-081 (1).doc 264K

- FR-2023-081.docx 90K
- FR-2023-081 (3).docx 93K
- FR-2023-081 (2).docx 90K
- FR-2023-081 (1).docx 93K

MANUSCRIPT EVALUATION FORM

Date : 23rd February 2023

Manuscript ID : FR-2023-081

Please return by : 23rd March 2023

Title of Manuscript : Controlling mung bean soaking time as a simple way to obtain

alternative sources of healthy food for people with diabetes

mellitus

1. IF YOU CANNOT REVIEW THIS MANUSCRIPT OR MEET THE DEADLINE, PLEASE INFORM US WITHOUT DELAY.

2. Your review should consider the article's scholarly merit including originality of the research issue and/or methodology, adequacy and rigor of the research methodology and techniques used, quality and rigor of data analysis, comprehensiveness of literature review, and the readability and presentation of the article. Please provide detailed and specific comments to all items. Also, where appropriate please provide suggestions for revision.

COMMENT SHEET

Using item 2 in page 1 as a guideline, please indicate the reasons for your recommendations. Most author(s) will appreciate frankness, combined with a modicum of tact. Even if you recommend that the manuscript be accepted for publication, please provide some general comments to the author(s).

			Grade		
Evaluation Criteria	A (Excellent)	В	С	D	E (Worst)
1. Appropriateness of Contents		X			
2. Originality of Topic		X			
3. Manuscript Format	X				
4. Research Methodology		X			
5. Data Analysis		Χ			
6. Relevance to the Journal	Х				

(AUTHOR'S SECTION) (REVIEWER'S SECTION) **AUTHOR'S ACTION/RESPONSE REVIEWER'S COMMENTS/SUGGESTIONS** *NOTE FOR AUTHOR: Please state your response to the reviewer's comments/suggestion below Title It should reflect the article 2. **Abstract** Background, Aim, Methodology and Conclusion 3. Keywords Min. 3 and Max. 6 4. Introduction Concise with sufficient background 5. Research design/Methodology Clearly described and reproducible Line 71: The grains were ground with what? Please add more details for the analysis methods **Data Analysis** Results well presented and discussed Please be consistent in using 'dry basis' or 'db', if the abbreviation is used, then mention the term first with the abbreviation following in brackets Conclusion A clear summary of the study 8. References References should follow the journal's format **English Proficiency**

10.	Additional comments/suggestions reviewer about the article	by	the	

Overall Evaluation

Please choose one.

Accept		Major Revision	
Minor Revision	Х	Reject	

Please return Manuscript and/or Review Comments to:

Professor Dr. Son Radu

Food Research

Email: foodresearch.my@outlook.com

Abstract

Mung bean is one of the commodities with potency sources of starch and protein that is available and inexpensive. However, healthy foods ingredients for people with diabetes mellitus are high in protein but contain starch which is slow to digest. This research examines the effect of soaking time on the *in vitro* digestibility of starch and protein of mung bean, in order to obtain an alternative source of healthy food in a simple way. A single factor of randomized block design used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6 and 8 hrs. Total starch, *in vitro* starch digestibility, protein content and *in vitro* protein digestibility of freeze dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during longer soaking time, in a range of 39.14-33.52 % dry basis and 57.46-49.82% respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93%-51.29%). Based on these results, the suggested soaking time was 6 hrs that gave optimum digestibility of starch and protein for human consumption. The recommendation in order to obtain the benefits as a healthy food source for people with diabetes mellitus.

Keywords: In vitro digestibility, Starch, Protein, Mung beans, Soaking time

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is being an important part of the dietaries of Indonesian people and contribute substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most component of carbohydrates in mung beans, about $30.74 \pm 3.39\%$ (Widjajaseputra et~al., 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean which its high amylose content can improve the swelling power and gel texture of a starch noodle product. This is as reported by Li et~al. (2008), that the high-quality starch noodle made from mung bean starch results from its high amylose content. Menon et~al. (2016) studied gluten-free starch noodles from sweet potatoes and got that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in~vitro condition. The high amylose content showed higher viscosities which could be used in food products that require this property, such as thickeners for creams, sauces, soups and puddings. However, Li et~al. (2011) declared that starches from different mung

bean varieties showed significant differences in the physicochemical, thermal, and pasting properties. So that they may suit diverse applications such as porridge, cakes, snacks, beverages etc.

Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its usage to supplement cereals and rice in particular. The mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi *et al.*, 2016). However, the original properties of the components in the mung bean will change depending on the processing applied.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water entered the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment result in alteration of their nutritional quality which could either be reduction in nutrients and antinutrients or improvement in digestibility or availability of nutrients (Kaur et al., 2015). Pagar et al. (2021) who studied the horse gram, found that treatment having 6 hrs soaking, 72 hrs germination, and drying at 70°C was the best where a maximum decrease in the anti-nutritional factors at the same time flour functional properties got enhanced due to the soaking and germination. It is essential to understand these changes to select appropriate techniques to obtain maximum nutritional and health benefits. In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) increased during four hours of soaking (Widjajaseputra et al., 2019a). Widjajaseputra et al. (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia.

All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6 and 8 hrs,

afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2% - 3% moisture content. The dried grains were ground (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5°C ± 1 until analyzed.

2.3 The experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hrs (P4). Each treatment level was conducted in triplicates. Total starch, *in vitro* starch digestibility, protein content and *in vitro* protein digestibility of freeze dried and grounded whole mung beans were analyzed. Water content analysis was used to dry basis calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n=3). The data were subjected to one-way ANOVA (p < 0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis Methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured as glucose by incubating the sample suspension in the optimum condition of amyloglucosidase for 45 mins measuring activity. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch *in vitro* (Goni *et al.*, 1996 and Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch during 180 mins within a 30 min interval, then calculated the percentage of hydrolyzed starch (digestible starch) in equations (a) and (b) as follows:

- (a) Digestible starch = (total starch undigested Starch)
- (b) Starch digestibility (%) = (total starch undigested starch)/total starch x 100%

2.4.3 Protein content analysis

The principle of determining protein content using the macro Kjeldahl method (AOAC, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N). The

 $\textbf{Dikomentari [A1]:} \ \mathsf{Add} \ \mathsf{more} \ \mathsf{details} \ \mathsf{on} \ \mathsf{each} \ \mathsf{analysis} \ \mathsf{method}$

Dikomentari [A2]: Then how to measure the glucose content?

Dikomentari [A3]: ..through 3 steps...

measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample. Nitrogen content was measured using the Kjeldahl micro method. Calculation of protein digestibility as stated in equation (c).

(c) Protein digestibility = $\frac{N \text{ total filtrate}}{N \text{ total ingredients}} \times \text{ diluting factor x } 100\%$

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch and starch digestibility

The total starch of mung bean seeds decreased from 41.13% dry to 33.52% dry basis during 8 hrs of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease of total starch was due to the leaching out of the soluble part of starch in soaking water and hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra $et\ al.\ (2019a)$ stated about amylose level of mung beans (32.56 \pm 0.31%) is higher than cereal (around 25%) and tuber starch (around 17%-19%). Singh $et\ al.\ (2003)$ state that the factors which could influence starch retrogradation were the amylopectin content, intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrogradation would affect the level of digestibility.

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time, along with the decreasing of total starch during the soaking treatment up to 8 hrs of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hrs resulted in a significant increase in starch digestibility. This is because there were starch granules that were more readily hydrolyzed by enzymes that become active due to the imbibition of water in the soaked mung bean seeds. After 4 hrs of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch.

The increasing of undigested starch up to 3 hrs of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist to digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) stated that RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hrs, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hrs. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hrs after consumption has not been completely digested. It was due to the high level of amylose of mung bean starch (around 32 %-34%). The difference in RS can be caused by differences in starch structure in various amylose-amylopectin ratio among of different starch granules which affects the RS level in processed food, included during seeds soaking and freeze-drying treatment in samples preparation. Retrogradation of amylose can be occurred during soaking and freeze drying treatment in sample preparation, and part of starch was being to exist as RS3. RS3 is starch that has been retrograded into more highly stabile crystalline structures. In addition, Fabbri et al. (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. This phenomena caused a decrease in the level of starch digestibility. The different process following the soaking would give the different effect on starch digestibility. As an example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2 Effects of soaking time on protein content and protein digestibility

131

132

133

134135

136

137

138

139 140

141142

143

144145

146

147

148 149

150

151

152

153

154

155

156157

158

159160

161

The values of protein digestibility were significantly different on 6 hrs (P3) and 8 hrs (P4) of treated soaking time compared to P0, P1, and P2 as shown on Table 2. Protein digestibility increased during soaking treatment, up to 6 hrs of soaking time, and then the protein digestibility slightly decreased on 8 hrs of seed soaking.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hrs of soaking time (Widjajaseputra *et al.*, 2019b). The higher of soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hrs, because a germination process has taken place longer than 6 hrs of soaking. During germination periods there were hydrolyzing processes that would effect on protein and starch degradation to produce energy for the new plant. This phenomena was revealed by Grewal and Jood (2009) that germination process decreased starch content, thereby increasing soluble sugars and

improved starch digestibility to be 49% and 48% in two different of green gram (*Vigna radiata L.*) cultivars respectively.

3.3 Perspective of mung bean as healthy food source for people with diabetes mellitus

The high protein digestibility of mung beans as a result of soaking for 6 hrs can support its usage as a good food source of protein. Combination of mung bean protein and rice protein in 3:4 ratio respectively can increase the chemical amino acid score to be 72 (Dahiya *et al.*, 2015). Based on this recommendation, an increase in the protein bioavailability can be obtained. Consumption of legumes provides quality protein along with other micronutrients without adding extra energy or fat. According to Mak *et al.* (2018), in fact a diet high in protein-low starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also the starch, which has an advantage of consisting higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello *et al.* (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is positive attributes that could promote the product as better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity and other malnutrition symptoms. In particular for the nutrition management of gestational diabetes mellitus, it is important to focus on quality of carbohydrates and encourage consumption of vegetables, fruits, complex carbohydrates, and high-fibre foods (Kapur *et al.*, 2020). A balanced diet consisting healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will results in weight control as well as diabetes management (Devi *et al.*, 2021).

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, the mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs

of soaking time (in a range of 46.93%-51.29%). Based on the obtained data, the recommended soaking time was 6 hrs which revealed the optimum digestibility of starch and protein for people with diabetes mellitus. The further investigation will be needed to provide to get better food choice not only for diabetes mellitus patients, but also for those suffering from celiac disease, obesity and other malnutrition symptoms.

197 198 199

193

194

195

196

Conflict of interest

The authors declare no conflict of interest.

200 201 202

203

204

205 206

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 1150/WM01.5/N/2018 and 200U/WM01.5/N/2019 respectively).

207 208 209

References

- 210 AOAC. (2010). Official Methods of Analysis. 18th ed. Washington, D.C.: Association of Official Analytical 211 Chemists.
- 212 Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B. and Nout, M.J. (2015). Mung 213 bean: technological and nutritional potential. Critical Reviews in Food Science and Nutrition, 55(5), 670-88. doi: 10.1080/10408398.2012.671202 214
- 215 Devi, M.P., Mudraganam, S. and Saraf, V. (2021). A Review on the role of carbohydrates in the management of diabetes and obesity. International Journal of Food Science and Nutrition 6(6), 33-216 217 38. www.foodsciencejournal.com
- Dipnaiki, K. and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase 218 219 activity in pulses. International Journal of Research in Medical Sciences, 5(10), 4271-4276. DOI: 220 http://dx.doi.org/10.18203/2320-6012.ijrms20174158

221 222

Fabbri, A.D.T., Schacht, R. W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black 223 beans, pinto beans, and chickpeas. NFS Journal, 3, 8-2. Journal homepage: http://dx.doi.

224 org/10.1016/j.nfs.2016.02.002

- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604. http://doi.org/10.19193/0393-6384_2018_2s_94
- Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. *Food Chemistry*, 56(4), 445-449
- Goni, I., Garcia-Alonso, A., Saura-Calixto, F. (1997). A Starch hydrolysis procedure to estimate glycemic
 index. *Nutrition Research*, 17 (3), 427-437.
- Grewal, A. and Jood, S. (2009). Chemical Composition and digestibility (*in vitro*) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88(3), S293-S306. http://doi.org/10.1079/BJN2002720
- Kapur, K., Kapur, A., and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. Ann Nutr Metab, 76(suppl 3), 17–29. DOI: 10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and
 textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J. and Pacher, N. (1999). Euglycemic hyperinsulinemic
 clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn
 and mung bean starches in healthy men1–3. *The American Journal of Clinical Nutrition*, 69, 1183–
 1188.
- Li, W., Shu, C., Zhang, P. and Shen, Q.. (2011). Properties of starch separated from ten mung bean varieties
 and seeds processing characteristics. Food and Bioprocess Technology 4, 814-821. DOI
 10.1007/s11947-010-0421-6
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W. and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86, 162-166.
- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W. and Sun, X. (2018). Dietary patterns
 during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China.
 Nutrition Journal, 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and chemical properties of starch and flour from different common bean (Phaseolus vulgaris L.) cultivars.
 Brazilian Journal andFood Technology, 19, e2016005. http://dx.doi.org/10.1590/1981-6723.0516
- Menon, R., Padmaja, G., Jyothi, A.N., Asha, V. and Sajeev, M.S. (2016). Gluten-free starch noodles from
 sweet potato with reduced starch digestibility and enhanced protein content. *Journal of Food Science* and Technology, 53, 3532-3542. DOI 10.1007/s13197-016-2330-9.

- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional process. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G. and Raichurkar, S. (2021). Effect of soaking, germination and drying on anti nutrients, minerals and functional properties of horse gram along with its commercial application.
 International Journal of Food Science and Nutrition, 6(2), 50-54. www.foodsciencejournal.com

- Rebello, C.J., Greenway, F.L. and Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obesity Reviews*, 15, 392–407. DOI 10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*, 81(2), 219-231. http://dx.doi.org/10.1016/S0308-8146(02)00416-8.
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research*, 3(6), 828-832 https://doi.org/10.26656/fr.2017.3(6), 209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different soaking times as protein source for breastfeeding women in Indonesia. *Food Research*, 3(5), 501-505. https://doi.org/10.26656/fr.2017.3(5).105.

Table 1. Effects of soaking time on total starch, undigested starch and starch digestibility

Soaking time (hr)	Total starch (% dry basis ± SD)*	Undigested starch (% dry basis ± SD)*	Starch digestibility** (% ± SD)*
P0	41.13 ± 0.19 °	19.16 ± 0.45 ^b	53.42± 1.31 ^b
P1	39.14 ± 0.72 b	16.65 ± 0.13 a	57.46± 1.12°
P2	38.85 ± 0.18 b	18.70 ± 0.56 b	51.87± 1.67 ab
P3	38.18 ± 0.44 b	18.53± 0.34 b	51.47± 0.31°
P4	33.52 ± 1.29 a	16.82± 0.21 a	49.82 ± 1.30 a

Values are means ± standard deviations (n=3).

P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hrs, P3= soaked 6 hrs, P4= soaked 8 hrs.

 $^{^{*}}$ Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05).

 $^{^{**}}$ Starch Digestibility (%) = (Total Starch – Undigested Starch)/(Total Starch) x 100%

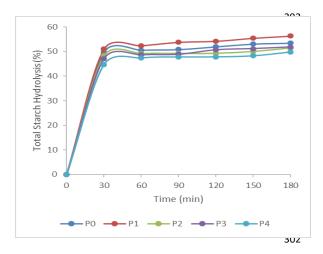


Figure 1. Mung bean starch hydrolysis rate. P0 = control (without soaking), P1 = soaked 2 hrs, P2 = soaked 4 hrs, P3= soaked 6 hrs, P4= soaked 8 hrs.

Table 2. Effects of soaking time on protein content and protein digestibility

Soaking time	Protein content	Protein digestibility*
(hr)	(% dry basis ± SD)	(% ± SD)
P0	26.29 ± 0.27	46.93 ± 1.53 ^a
P1	25.88 ± 0.40	48.41 ± 0.38 ab
P2	25.90 ± 0.25	48.56 ± 0.54 ab
P3	25.68 ± 0.33	51.29 ± 1.20 °
P4	26.10 ± 0.82	49.83 ± 3.00 bc

Values are means ± standard deviations (n=3) P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hr, P3= soaked 6 hr, P4= soaked 8 hr.

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05)

MANUSCRIPT EVALUATION FORM

Date : 23rd February 2023

Manuscript ID : FR-2023-081

Please return by : 23rd March 2023

Title of Manuscript : Controlling mung bean soaking time as a simple way to obtain

alternative sources of healthy food for people with diabetes

mellitus

1. IF YOU CANNOT REVIEW THIS MANUSCRIPT OR MEET THE DEADLINE, PLEASE INFORM US WITHOUT DELAY.

2. Your review should consider the article's scholarly merit including originality of the research issue and/or methodology, adequacy and rigor of the research methodology and techniques used, quality and rigor of data analysis, comprehensiveness of literature review, and the readability and presentation of the article. Please provide detailed and specific comments to all items. Also, where appropriate please provide suggestions for revision.

COMMENT SHEET

Using item 2 in page 1 as a guideline, please indicate the reasons for your recommendations. Most author(s) will appreciate frankness, combined with a modicum of tact. Even if you recommend that the manuscript be accepted for publication, please provide some general comments to the author(s).

	Grade				
Evaluation Criteria	A (Excellent)	В	С	D	E (Worst)
1. Appropriateness of Contents	√				
2. Originality of Topic		√			
3. Manuscript Format		√			
4. Research Methodology		√			
5. Data Analysis	√				
6. Relevance to the Journal	√				

	(REVIEWER'S SECTION)	(AUTHOR'S SECTION) AUTHOR'S ACTION/RESPONSE
	REVIEWER'S COMMENTS/SUGGESTIONS	*NOTE FOR AUTHOR: Please state your response to the reviewer's comments/suggestion below
1.	Title It should reflect the article Title is clearly stated and reflect the article.	
2.	Abstract Background, Aim, Methodology and Conclusion Abstract effectively summarize the manuscript.	
3.	Keywords Min. 3 and Max. 6 Ok. Key words help readers to find the article, specific and represent the manuscript content.	
4.	Introduction Concise with sufficient background The state of the art of the topic and the gaps are not clearly stated. Please revise accordingly to emphasize the originality and urgency of the research.	
5.	Research design/Methodology Clearly described and reproducible The explanation of some methods are not clearly. Please check comment in the manuscript file.	
6.	Data Analysis Results well presented and discussed Ok. Result well presented and discussed.	
7.	Conclusion A clear summary of the study Conclusion is fine.	
8.	References References should follow the journal's format The writing of references should be appropriate to the rules in author's guidelines. Please check comment in the	

	manuscript file.	
9.	English Proficiency There are minor inconsistencies and grammatical errors even though the whole substances are understandable.	
10.	Additional comments/suggestions by the reviewer about the article The paper contribution is significant and the study was well designed and executed.	

Overall Evaluation

Please choose one.

Accept		Major Revision	
Minor Revision	√	Reject	

Please return Manuscript and/or Review Comments to:

Professor Dr. Son Radu

Food Research

Email: foodresearch.my@outlook.com

Abstract

Mung bean is one of the commodities with potency sources of starch and protein that is available and inexpensive. However, healthy foods ingredients for people with diabetes mellitus are high in protein but contain starch which is slow to digest. This research examines the effect of soaking time on the *in vitro* digestibility of starch and protein of mung bean, in order to obtain an alternative source of healthy food in a simple way. A single factor of randomized block design used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6 and 8 hrs. Total starch, *in vitro* starch digestibility, protein content and *in vitro* protein digestibility of freeze dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during longer soaking time, in a range of 39.14-33.52 % dry basis and 57.46-49.82% respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93%-51.29%). Based on these results, the suggested soaking time was 6 hrs that gave optimum digestibility of starch and protein for human consumption. The recommendation in order to obtain the benefits as a healthy food source for people with diabetes mellitus.

Keywords: In vitro digestibility, Starch, Protein, Mung beans, Soaking time

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is being an important part of the dietaries of Indonesian people and contribute substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most component of carbohydrates in mung beans, about $30.74 \pm 3.39\%$ (Widjajaseputra et~al., 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean which its high amylose content can improve the swelling power and gel texture of a starch noodle product. This is as reported by Li et~al. (2008), that the high-quality starch noodle made from mung bean starch results from its high amylose content. Menon et~al. (2016) studied gluten-free starch noodles from sweet potatoes and got that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in~vitro condition. The high amylose content showed higher viscosities which could be used in food products that require this property, such as thickeners for creams, sauces, soups and puddings. However, Li et~al. (2011) declared that starches from different mung

bean varieties showed significant differences in the physicochemical, thermal, and pasting properties. So that they may suit diverse applications such as porridge, cakes, snacks, beverages etc.

Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its usage to supplement cereals and rice in particular. The mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi *et al.*, 2016). However, the original properties of the components in the mung bean will change depending on the processing applied.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water entered the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment result in alteration of their nutritional quality which could either be reduction in nutrients and antinutrients or improvement in digestibility or availability of nutrients (Kaur et al., 2015). Pagar et al. (2021) who studied the horse gram, found that treatment having 6 hrs soaking, 72 hrs germination, and drying at 70°C was the best where a maximum decrease in the anti-nutritional factors at the same time flour functional properties got enhanced due to the soaking and germination. It is essential to understand these changes to select appropriate techniques to obtain maximum nutritional and health benefits. In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) increased during four hours of soaking (Widjajaseputra et al., 2019a). Widjajaseputra et al. (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia.

All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6 and 8 hrs,

afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2% - 3% moisture content. The dried grains were ground (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5° C \pm 1 until analyzed.

2.3 The experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hrs (P4). Each treatment level was conducted in triplicates. Total starch, *in vitro* starch digestibility, protein content and *in vitro* protein digestibility of freeze dried and grounded whole mung beans were analyzed. Water content analysis was used to dry basis calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n=3). The data were subjected to one-way ANOVA (p < 0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis Methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured as glucose by incubating the sample suspension in the optimum condition of amyloglucosidase for 45 mins measuring activity. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch *in vitro* (Goni *et al.*, 1996 and Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch during 180 mins within a 30 min interval then calculated the percentage of hydrolyzed starch (digestible starch) in equations (a) and (b) as follows:

- (a) Digestible starch = (total starch undigested Starch)
- (b) Starch digestibility (%) = (total starch undigested starch)/total starch x 100%

2.4.3 Protein content analysis

The principle of determining protein content using the macro Kjeldahl method (AOAC, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N). The

Dikomentari [A1]: Please check the suitability of experimental design with ANOVA method.

Dikomentari [A2]: How to measure it?

measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample. Nitrogen content was measured using the Kjeldahl micro method. Calculation of protein digestibility as stated in equation (c).

(c) Protein digestibility = $\frac{N \text{ total filtrate}}{N \text{ total ingredients}} \times \text{ diluting factor x } 100\%$

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch and starch digestibility

The total starch of mung bean seeds decreased from 41.13% dry to 33.52% dry basis during 8 hrs of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease of total starch was due to the leaching out of the soluble part of starch in soaking water and hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra $et\ al.\ (2019a)$ stated about amylose level of mung beans $(32.56\pm0.31\%)$ is higher than cereal (around 25%) and tuber starch (around 17%-19%). Singh $et\ al.\ (2003)$ state that the factors which could influence starch retrogradation were the amylopectin content, intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrogradation would affect the level of digestibility.

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time, along with the decreasing of total starch during the soaking treatment up to 8 hrs of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hrs resulted in a significant increase in starch digestibility. This is because there were starch granules that were more readily hydrolyzed by enzymes that become active due to the imbibition of water in the soaked mung bean seeds. After 4 hrs of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow digesting starch.

Dikomentari [A3]: Please state the reference used.

The increasing of undigested starch up to 3 hrs of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist to digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) stated that RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hrs, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hrs. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hrs after consumption has not been completely digested. It was due to the high level of amylose of mung bean starch (around 32 %-34%). The difference in RS can be caused by differences in starch structure in various amylose-amylopectin ratio among of different starch granules which affects the RS level in processed food, included during seeds soaking and freeze-drying treatment in samples preparation. Retrogradation of amylose can be occurred during soaking and freeze drying treatment in sample preparation, and part of starch was being to exist as RS3. RS3 is starch that has been retrograded into more highly stabile crystalline structures. In addition, Fabbri et al. (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. This phenomena caused a decrease in the level of starch digestibility. The different process following the soaking would give the different effect on starch digestibility. As an example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2 Effects of soaking time on protein content and protein digestibility

131

132

133

134135

136

137

138

139 140

141142

143

144145

146

147

148 149

150

151

152

153

154

155

156157

158

159160

161

The values of protein digestibility were significantly different on 6 hrs (P3) and 8 hrs (P4) of treated soaking time compared to P0, P1, and P2 as shown on Table 2. Protein digestibility increased during soaking treatment, up to 6 hrs of soaking time, and then the protein digestibility slightly decreased on 8 hrs of seed soaking.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hrs of soaking time (Widjajaseputra *et al.*, 2019b). The higher of soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hrs, because a germination process has taken place longer than 6 hrs of soaking. During germination periods there were hydrolyzing processes that would effect on protein and starch degradation to produce energy for the new plant. This phenomena was revealed by Grewal and Jood (2009) that germination process decreased starch content, thereby increasing soluble sugars and

improved starch digestibility to be 49% and 48% in two different of green gram (*Vigna radiata L.*) cultivars respectively.

3.3 Perspective of mung bean as healthy food source for people with diabetes mellitus

The high protein digestibility of mung beans as a result of soaking for 6 hrs can support its usage as a good food source of protein. Combination of mung bean protein and rice protein in 3:4 ratio respectively can increase the chemical amino acid score to be 72 (Dahiya *et al.*, 2015). Based on this recommendation, an increase in the protein bioavailability can be obtained. Consumption of legumes provides quality protein along with other micronutrients without adding extra energy or fat. According to Mak *et al.* (2018), in fact a diet high in protein-low starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also the starch, which has an advantage of consisting higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello *et al.* (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is positive attributes that could promote the product as better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity and other malnutrition symptoms. In particular for the nutrition management of gestational diabetes mellitus, it is important to focus on quality of carbohydrates and encourage consumption of vegetables, fruits, complex carbohydrates, and high-fibre foods (Kapur *et al.*, 2020). A balanced diet consisting healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will results in weight control as well as diabetes management (Devi *et al.*, 2021).

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, the mung bean starch is a slow digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs

of soaking time (in a range of 46.93%-51.29%). Based on the obtained data, the recommended soaking time was 6 hrs which revealed the optimum digestibility of starch and protein for people with diabetes mellitus. The further investigation will be needed to provide to get better food choice not only for diabetes mellitus patients, but also for those suffering from celiac disease, obesity and other malnutrition symptoms.

197198199

193

194

195

196

Conflict of interest

The authors declare no conflict of interest.

200201202

203

204

205206

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 1150/WM01.5/N/2018 and 200U/WM01.5/N/2019 respectively).

207208

209

References

- AOAC. (2010). Official Methods of Analysis. 18th ed. Washington, D.C.: Association of Official Analytical Chemists.
- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B. and Nout, M.J. (2015). Mung
 bean: technological and nutritional potential. *Critical Reviews in Food Science and Nutrition*, 55(5),
 670–88. doi: 10.1080/10408398.2012.671202
 - Devi, M.P., Mudraganam, S. and Saraf, V. (2021). A Review on the role of carbohydrates in the management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6(6), 33-38. www.foodsciencejournal.com
- Dipnaiki, K. and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase
 activity in pulses. *International Journal of Research in Medical Sciences*, 5(10), 4271-4276. DOI:
 http://dx.doi.org/10.18203/2320-6012.ijrms20174158

221222223

224

215

216217

Fabbri, A.D.T., Schacht, R. W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. WFS Journal, 3, 8–2. Journal homepage: http://dx.doi.org/10.1016/j.nfs.2016.02.002

Dikomentari [A4]: NFS?

- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604. http://doi.org/10.19193/0393-6384 2018 2s 94
- Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for
 foods and food products. Food Chemistry, 56(4), 445-449
- Goni, I., Garcia-Alonso, A., Saura-Calixto, F. (1997). A Starch hydrolysis procedure to estimate glycemic
 index. *Nutrition Research*, 17 (3), 427-437.
- Grewal, A. and Jood, S. (2009). Chemical Composition and digestibility (*in vitro*) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88(3), S293-S306. http://doi.org/10.1079/BJN2002720
- Kapur, K., Kapur, A., and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. Ann Nutr Metab, 76(suppl 3), 17–29. DOI: 10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and
 textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J. and Pacher, N. (1999). Euglycemic hyperinsulinemic
 clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn
 and mung bean starches in healthy men1–3. The American Journal of Clinical Nutrition, 69, 1183–
 1188.
- Li, W., Shu, C., Zhang, P. and Shen, Q.. (2011). Properties of starch separated from ten mung bean varieties
 and seeds processing characteristics. Food and Bioprocess Technology 4, 814-821. DOI
 10.1007/s11947-010-0421-6
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W. and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86, 162-166.
- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W. and Sun, X. (2018). Dietary patterns
 during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China.
 Nutrition Journal, 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and chemical properties of starch and flour from different common bean (Phaseolus vulgaris L.) cultivars.

 Brazilian Journal andFood Technology, 19, e2016005. http://dx.doi.org/10.1590/1981-6723.0516
- Menon, R., Padmaja, G., Jyothi, A.N., Asha, V. and Sajeev, M.S. (2016). Gluten-free starch noodles from
 sweet potato with reduced starch digestibility and enhanced protein content. *Journal of Food Science* and Technology, 53, 3532-3542. DOI 10.1007/s13197-016-2330-9.

Dikomentari [A5]: Ann? Nutr? Metab?

Dikomentari [A6]: Write in italic

- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional process. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G. and Raichurkar, S. (2021). Effect of soaking, germination and drying on anti nutrients, minerals and functional properties of horse gram along with its commercial application.
 International Journal of Food Science and Nutrition, 6(2), 50-54. www.foodsciencejournal.com

- Rebello, C.J., Greenway, F.L. and Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obesity Reviews*, 15, 392–407. DOI 10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*, 81(2), 219-231. http://dx.doi.org/10.1016/S0308-8146(02)00416-8.
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research*, 3(6), 828-832 https://doi.org/10.26656/fr.2017.3(6), 209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different
 soaking times as protein source for breastfeeding women in Indonesia. *Food Research*, 3(5), 501-505.
 https://doi.org/10.26656/fr.2017.3(5).105.

Table 1. Effects of soaking time on total starch, undigested starch and starch digestibility

Soaking time (hr)	Total starch (% dry basis ± SD)*	Undigested starch (% dry basis ± SD)*	Starch digestibility** (% ± SD)*
P0	41.13 ± 0.19 °	19.16 ± 0.45 ^b	53.42± 1.31 ^b
P1	39.14 ± 0.72 b	16.65 ± 0.13 a	57.46± 1.12°
P2	38.85 ± 0.18 b	18.70 ± 0.56 b	51.87± 1.67 ab
P3	38.18 ± 0.44 b	18.53± 0.34 b	51.47± 0.31°
P4	33.52 ± 1.29 a	16.82± 0.21 a	49.82 ± 1.30 a

Values are means ± standard deviations (n=3).

P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hrs, P3= soaked 6 hrs, P4= soaked 8 hrs.

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05).

 $^{^{**}}$ Starch Digestibility (%) = (Total Starch – Undigested Starch)/(Total Starch) x 100%

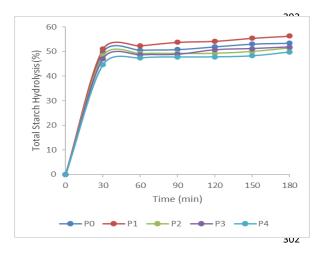


Figure 1. Mung bean starch hydrolysis rate. P0 = control (without soaking), P1 = soaked 2 hrs, P2 = soaked 4 hrs, P3= soaked 6 hrs, P4= soaked 8 hrs.

Table 2. Effects of soaking time on protein content and protein digestibility

Soaking time (hr)	Protein content (% dry basis ± SD)	Protein digestibility* (% ± SD)
PO	26.29 ± 0.27	46.93 ± 1.53 ^a
P1	25.88 ± 0.40	48.41 ± 0.38 ab
P2	25.90 ± 0.25	48.56 ± 0.54 ab
P3	25.68 ± 0.33	51.29 ± 1.20 °
P4	26.10 ± 0.82	49.83 ± 3.00 bc

Values are means ± standard deviations (n=3) P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hr, P3= soaked 6 hr, P4= soaked 8 hr.

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05)

Bukti pengiriman Revisi *Manuscript* berdasar *review* (terlampir Revisi *manuscript* dan Respon *Evaluation Form* untuk R*eviewer*) (18 April 2023)

dan

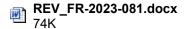
Balasan Editor (26 April 2023)

Manuscript ID: FR-2023-081

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id> To: Food Research <foodresearch.my@outlook.com>

Fri, Apr 14, 2023 at 5:23 AM

Dear Prof. Son Radu, PhD Chief Editor, Food Research


Please kindly find the attached files of the revised manuscript FR-2023-081 and the response to the Reviewer's suggestion for further processing.

Thank you very much for your attention.

Sincerely, Theresia Endang Widoeri Widyastuti

[Quoted text hidden]

4 attachments

Respon_Evaluation Form FR-2023-081 (1).doc 119K

Respon_Evaluation Form FR-2023-081 (3).doc

Respon_Evaluation Form FR-2023-081 (2).docx 51K

Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for the-diabetics.

*Widyastuti, T.E.W. and Widjajaseputra, A.I.,

Food Technology Department, Widya Mandala Catholic ,University Surabaya, Jl. Dinoyo 42-44 Surabaya 60265, East Java, Indonesia

> *Corresponding author: widoeri@ukwms.ac.id Author No.1:https://orcid.org/0000-0002-5772-1138 Author No.2: https://orcid.org/0000-0003-0186-708X

Abstract

Mung bean is one of the commodities with potency sources of starch and protein that is available and inexpensive. However, healthy food ingredients which are needed by diabetics must be high in slow-digest starch and protein. This research examines the effect of soaking time on the *in vitro* digestibility of starch and protein of mung bean, to obtain an alternative source of healthy food simply. A single factor of randomized block design was used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6, and 8 hrs. Total starch, *in vitro* starch digestibility, protein content, and *in vitro* protein digestibility of freeze_dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during the longer soaking time, in a range of 39.14-33.52% and 57.46-49.82% respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slowly digestible starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93%-51.29%). Based on these results, the suggested soaking time was 6 hrs which gave optimum digestibility of starch and protein for human consumption. The recommendation is to obtain the benefits of a healthy food source for people with diabetes mellitus.

Keywords: In vitro digestibility, starch, protein, mung beans, soaking time

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies, and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is an important part of the dietaries of Indonesian people and contributes substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most component of carbohydrates in mung beans, about $30.74 \pm 3.39\%$ (Widjajaseputra *et al.*, 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean which its high amylose content can improve the swelling power and

Menghapus: people with

Menghapus: es mellitus

Menghapus:

Menghapus:

Menghapus: ng

gel texture of a starch noodle product. This is as reported by Li et al. (2008), that the high-quality starch noodle made from mung bean starch result from its high amylose content. Menon et al. (2016) studied gluten-free starch noodles from sweet potatoes and got that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in vitro condition. The high amylose content showed higher viscosities which could be used in certain food products such as thickeners for creams, sauces, soups, and puddings. Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with an ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its use to supplement cereals and rice in particular. Mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi et al., 2016). However, the original properties of the components in the mung bean will change depending on the applied processing.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water entered the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment result in an alteration of their nutritional quality which could either be a reduction in nutrients and antinutrients or an improvement in the digestibility or availability of nutrients (Kaur *et al.*, 2015). Pagar *et al.* (2021) who studied the horse gram, found that 6 hrs soaking, 72 hrs germination, and drying at 70°C treatment was the best <u>for a maximum decrease in the anti-nutritional factors and at the same time enhanced functional properties due to the soaking and germination.</u>

In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) of the mung bean increased during four hours of soaking (Widjajaseputra et al., 2019a). There are five types of resistant starches (RS1 – RS5) and type RS2 is predominant in legumes as legume starches are physically enclosed within intact cell (protein) structures (Kaur et al., 2015). Such starches are indigestible by human digestive enzymes in the small intestine and pass to the large intestine or colon, thereby modifying postprandial glycemic responses. (Widjajaseputra et al. (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

Menghapus: ¶

Menghapus: where

Memformat: Font: Miring

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia.

All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6, and 8 hrs, afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2% - 3% moisture content. The dried grains were ground with a blender (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5°C ± 1 until analyzed.

2.3 The experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hrs (P4). Each treatment level was conducted in triplicates. Total starch, *in vitro* starch digestibility, protein content, and *in vitro* protein digestibility of freeze-dried and grounded whole mung beans were analyzed. Water content analysis was used to dry basis (db) calculation. Data were expressed as mean ± standard deviation (SD) for the three in each group (n=3). The data were subjected to ANOVA (p < 0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis Methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured by incubating the sample suspension in the optimum condition of amyloglucosidase, at 60°C in a controlled shaking water bath, for 45 mins measuring activity. Starch was measured as glucose with Peridochrom Glucose GOD-PAP (Ref 676 543, Boehringer). The glucose content was measured by the enzymatic photometric test. A red quinone imine as the reaction product was measured at a wavelength of 500 nm. The absorbance of the colored complex was proportional to the concentration of glucose. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Menghapus:

Menghapus: one-way

Menghapus: as glucose

Starch digestibility was determined by measuring digestible starch in vitro (Goni et al., 1996)
and Goni et al., 1997). The principle of digestible starch determination was to analyze total
starch with enzymes and measured undigested starch for 180 mins within a 30 min interval
Then calculated the percentage of hydrolyzed starch (digestible starch) in equations (a) and (b) $\frac{1}{2}$
as follows:

- (a) Digestible starch = (total starch undigested Starch)
- (b) Starch digestibility (%) = (total starch undigested starch)/total starch x 100%

2.4.3 Protein content analysis

The protein content analysis used the macro Kjeldahl method (AOAC, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N) through three-step, namely digestion, distillation, and titration. The measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample (Mertz et al., 1984). Nitrogen content was measured using the micro Kjeldahl method. Calculation of protein digestibility as stated in equation (c).

(c) Protein digestibility = $\frac{N \text{ total filtrate}}{N \text{ total ingredients}} \times \text{ diluting factor x } 100\%$

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch, and starch digestibility

The total starch of mung bean seeds decreased <u>significantly</u> from 41.13% db to 33.52% db during 8 hrs of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease <u>in</u> total starch was due to the leaching out of the soluble part of starch in soaking water and the hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002).

Menghapus: micro

Menghapus: of

Widjajaseputra *et al.* (2019a) stated about the amylose level of mung beans $(32.56 \pm 0.31\%)$ is higher than cereal (around 25%) and tuber starch (around 17%-19%). Singh *et al.* (2003) state that the factors which could influence starch retrogradation were the amylopectin content, intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrograde would affect the level of digestibility.

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164 165

166

167

168

169

170

171

172

173

174

175

176

177

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time and the decrease of total starch during the soaking treatment up to 8 hrs of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hrs resulted in a significant increase in starch digestibility. This is due to part of the starch granules that were more readily hydrolyzed by enzymes that were affected by the imbibition of water in the soaked mung bean seeds. After 4 hrs of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow-digesting starch.

The increasing of undigested starch up to 3 hrs of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) found that the RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hrs, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hrs. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hrs after consumption has not been completely digested. It was due to the high level of amylose in mung bean starch (around 32 %- 34%). The difference in RS can be influenced by differences in starch structure in various amylose-amylopectin ratios among different starch granules which affect the RS level in processed food, including during seeds soaking and freeze-drying treatment in sample preparation. Retrogradation of amylose can occur during soaking and freeze-drying treatment in sample preparation, and part of starch was being to exist as RS3. RS3 is starch that has been retrograded into more highly stabile crystalline structures. In addition, Fabbri et al. (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. These phenomena caused a decrease in the level of starch digestibility. RS is one kind of dietary fiber. Dietary fiber is bound together in such a way that it can not be ready in the small intestine. Besides it, dietary fiber may make humans feel full longer. This causes mung bean to help keep blood sugar levels low. Nevertheless, the different processes following the soaking would give different effects on starch digestibility, as example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

4	Menghapus: ation
-1	Menghapus: ing
1	Menghapus:
\dashv	Menghapus: to
_	Menghapus: stated
7	Menghapus: of
-	Menghapus: of
-	Menghapus:
-1	Menghapus:
-	Menghapus: is
_	Menghanus: the

3.2 Effects of soaking time on protein content and protein digestibility

The values of protein digestibility were significantly different on 6 hrs (P3) and 8 hrs (P4) of treated soaking time compared to P0, P1, and P2 as shown in Table 2. Protein digestibility increased during soaking treatment, up to 6 hrs of soaking time, and then the protein digestibility slightly decreased on 8 hrs of seed soaking.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hrs of soaking time (Widjajaseputra *et al.*, 2019b). The higher soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hrs, because a germination process has taken place longer than 6 hrs of soaking. During germination periods there were hydrolyzing processes that would affect protein and starch degradation to produce energy for the new plant. These phenomena were revealed by Grewal and Jood (2009) that the germination process decreased starch content, thereby increasing soluble sugars and improved starch digestibility to 49% and 48% in two different green gram (*Vigna radiata L.*) cultivars respectively.

3.3 Perspective of mung bean as a healthy food source for the diabetics

The high protein digestibility of mung beans as a result of soaking for 6 hrs can support its usage as a good food source of protein. A combination of mung bean protein and rice protein in a 3:4 ratio respectively can increase the chemical amino acid score to 72 (Dahiya *et al.*, 2015). Based on this recommendation, an increase in protein bioavailability can be obtained. Consumption of legumes provides qualified protein along with other micronutrients without adding extra energy or fat. According to Mak *et al.* (2018), a diet high in protein-low starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also starch, which has the advantage of consisting of higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello *et al.*

Menghapus: o

Menghapus: e

Menghapus: is

Menghapus: of

(2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is a positive attribute that could promote the product as a better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity, and other malnutrition symptoms (Rebello *et al.*, 2014). In particular, for the nutrition management of gestational diabetes mellitus, it is important to focus on the quality of carbohydrates and encourage the consumption of vegetables, fruits, complex carbohydrates, and high-fiber foods (Kapur *et al.*, 2020). A balanced diet consisting of healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will result in weight control as well as diabetes management (Devi *et al.*, 2021).

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, mung bean starch is a slow_digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93%-51.29%). Based on the obtained data, the recommended soaking time was 6 hrs which revealed the optimum digestibility of starch and protein for diabetics. Further investigation in the processing field will be needed to get better food choices for diabetics.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 115O/WM01.5/N/2018 and 200U/WM01.5/N/2019 respectively).

References

AOAC. (2010). Official Methods of Analysis. 18th ed. Washington, D.C.: Association of Official Analytical Chemists.

Menghapus:

Menghapus: ¶

- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B. and Nout, M.J. (2015). Mung
 bean: technological and nutritional potential. *Critical Reviews in Food Science and Nutrition*, 55(5),
 670–88. doi: 10.1080/10408398.2012.671202
- Devi, M.P., Mudraganam, S. and Saraf, V. (2021). A Review on the role of carbohydrates in the
 management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6(6), 33 38. www.foodsciencejournal.com
- Dipnaiki, K. and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase
 activity in pulses. *International Journal of Research in Medical Sciences*, 5(10), 4271-4276. DOI:
 http://dx.doi.org/10.18203/2320-6012.ijrms20174158

- Fabbri, A.D.T., Schacht, R. W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black
 beans, pinto beans, and chickpeas. NFS Journal, 3, 8–2. Journal homepage: http://dx.doi.org/10.1016/j.nfs.2016.02.002
- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604. http://doi.org/10.19193/0393-6384_2018_2s_94
- Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for
 foods and food products. Food Chemistry, 56(4), 445-449
- Goni, I., Garcia-Alonso, A., Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic
 index. *Nutrition Research*, 17 (3), 427-437.
- Grewal, A. and Jood, S. (2009). Chemical composition and digestibility (*in vitro*) of green grain as affected
 by processing and cooking methods. *British Food Journal*, 111(3), 235-242.
 https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88(3), S293-S306. http://doi.org/10.1079/BJN2002720
- 283 Kapur, K., Kapur, A., and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. *Annals*284 of Nutrition and Metabolism, 76(suppl 3), 17–29. DOI: 10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J. and Pacher, N. (1999). Euglycemic hyperinsulinemic
 clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn
 and mung bean starches in healthy men1–3. The American Journal of Clinical Nutrition, 69, 1183–
 1188.
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W. and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86, 162-166.

- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W. and Sun, X. (2018). Dietary patterns
 during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China.
 Nutrition Journal, 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- 297 Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and chemical properties of starch and flour from different common bean (*Phaseolus vulgaris* L.) cultivars.
 299 *Brazilian Journal and Food Technol*ogy, 19, e2016005. http://dx.doi.org/10.1590/1981-6723.0516

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319 320

321

322

326 327

- Menon, R., Padmaja, G., Jyothi, A.N., Asha, V. and Sajeev, M.S. (2016). Gluten-free starch noodles from sweet potato with reduced starch digestibility and enhanced protein content. *Journal of Food Science* and Technology, 53, 3532-3542. DOI 10.1007/s13197-016-2330-9.
- Mertz, E.T., Hassen, M.M., Cairns-Whittern, C, Kirleis, A.W., Tut, L., and Axtell, J.D. (1984). Pepsin digestibility of proteins in sorghum and other major cereals. *Proceedings of the National Academy, of Sciences, of the United States, of America*, 81, 1-2.
- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional processes. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G. and Raichurkar, S. (2021). Effect of soaking, germination, and drying on antinutrients, minerals, and functional properties of horse gram along with its commercial application. *International Journal of Food Science and Nutrition*, 6(2), 50-54. www.foodsciencejournal.com
- Rebello, C.J., Greenway, F.L. and Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obesity Reviews*, 15, 392–407. DOI 10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*, 81(2), 219-231. http://dx.doi.org/10.1016/S0308-8146(02)00416-8.
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as a food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research*, 3(6), 828-832 https://doi.org/10.26656/fr.2017.3(6).209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different
 soaking times as protein source for breastfeeding women in Indonesia. *Food Research*, 3(5), 501-505.
 https://doi.org/10.26656/fr.2017.3(5).105.

Memformat: Font: Miring

Menghapus:

Memformat: Font: Miring

Memformat: Font: Tidak Tebal, Miring

Memformat: Font: Miring

Menghapus: ¶

332

333

334

335

336337

Soaking time (hr)			Starch digestibility** (% ± SD)*	
		SD)*		
P0	41.13 ± 0.19 °	19.16 ± 0.45 b	53.42± 1.31 ^b	
P1	39.14 ± 0.72 b	16.65 ± 0.13 a	57.46± 1.12 °	
P2	38.85 ± 0.18 b	18.70 ± 0.56 b	51.87± 1.67 ab	
P3	38.18 ± 0.44 b	18.53± 0.34 b	51.47± 0.31°	
P4	33.52 ± 1.29 a	16.82± 0.21 a	49.82 ± 1.30 a	

Values are means ± standard deviations (n=3).

P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hrs, P3 = soaked 6 hrs, P4 = soaked 8 hrs.

 $^{^{*}}$ Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05).

 $^{^{**}}$ Starch Digestibility (%) = (Total Starch – Undigested Starch)/(Total Starch) x 100%

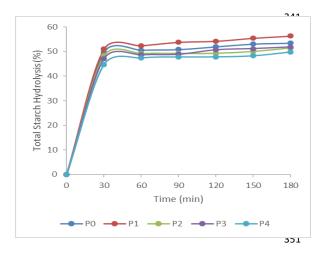


Figure 1. Mung bean starch hydrolysis rate. P0 = control (without soaking), P1 = soaked 2 hrs, P2 = soaked 4 hrs, P3= soaked 6 hrs, P4= soaked 8 hrs.

361 362

Table 2. Effects of soaking time on protein content and protein digestibility

•	E. Effects of soaking time on protein content and protein digesti						
	Soaking time	Protein content	Protein digestibility*				
	(hr)	(% d <u>b</u> _± SD)	(% ± SD)				
	P0	26.29 ± 0.27	46.93 ± 1.53°				
	P1	25.88 ± 0.40	48.41 ± 0.38 ab				
	P2	25.90 ± 0.25	48.56 ± 0.54 ab				
	P3	25.68 ± 0.33	51.29 ± 1.20 °				
	P4	26.10 ± 0.82	49.83 ± 3.00 bc				

Values are means ± standard deviations (n=3)
P0 = control (without soaking), P1 = soaked 2 hrs , P2 = soaked 4 hr, P3= soaked 6 hr, P4= soaked 8 hr.

Menghapus: ry basis

^{*} Different superscripts in the same column showed a significant difference based on the LSD Test (p < 0.05)

MANUSCRIPT EVALUATION FORM

Date : 23rd February 2023

Manuscript ID : FR-2023-081

Please return by : 23rd March 2023

Title of Manuscript : Controlling mung bean soaking time as a simple way to obtain

alternative sources of healthy food for people with diabetes

mellitus

1. IF YOU CANNOT REVIEW THIS MANUSCRIPT OR MEET THE DEADLINE, PLEASE INFORM US WITHOUT DELAY.

2. Your review should consider the article's scholarly merit including originality of the research issue and/or methodology, adequacy and rigor of the research methodology and techniques used, quality and rigor of data analysis, comprehensiveness of literature review, and the readability and presentation of the article. Please provide detailed and specific comments to all items. Also, where appropriate please provide suggestions for revision.

COMMENT SHEET

Using item 2 in page 1 as a guideline, please indicate the reasons for your recommendations. Most author(s) will appreciate frankness, combined with a modicum of tact. Even if you recommend that the manuscript be accepted for publication, please provide some general comments to the author(s).

	Grade				
Evaluation Criteria	A (Excellent)	В	С	D	E (Worst)
1. Appropriateness of Contents		X			
2. Originality of Topic		X			
3. Manuscript Format	X				
4. Research Methodology		X			
5. Data Analysis		Х			
6. Relevance to the Journal	Х				

(REVIEWER'S SECTION)		(AUTHOR'S SECTION)		
	REVIEWER'S COMMENTS/SUGGESTIONS	AUTHOR'S ACTION/RESPONSE		
	REVIEWER 3 COMMENTS/3000ESTIONS	*NOTE FOR AUTHOR: Please state your response to the reviewer's comments/suggestion below		
1.	Title It should reflect the article -			
2.	Abstract Background, Aim, Methodology and Conclusion -			
3.	Keywords Min. 3 and Max. 6			
4.	Introduction Concise with sufficient background			
5.	Research design/Methodology Clearly described and reproducible - Line 71: The grains were ground with what? - Please add more details for the analysis methods	It has been equippedIt has been equipped and revised		
6.	Data Analysis Results well presented and discussed - Please be consistent in using 'dry basis' or 'db', if the abbreviation is used, then mention the term first with the abbreviation following in brackets	- It has been done		
7.	Conclusion A clear summary of the study -			
8.	References References should follow the journal's format			
9.	English Proficiency			

10.	Additional comments/suggestions reviewer about the article	by	the	

Overall Evaluation

Please choose one.

Accept		Major Revision	
Minor Revision	Х	Reject	

Please return Manuscript and/or Review Comments to:

Professor Dr. Son Radu

Food Research

Email: foodresearch.my@outlook.com

MANUSCRIPT EVALUATION FORM

Date : 23rd February 2023

Manuscript ID : FR-2023-081

Please return by : 23rd March 2023

Title of Manuscript : Controlling mung bean soaking time as a simple way to obtain

alternative sources of healthy food for people with diabetes

mellitus

1. IF YOU CANNOT REVIEW THIS MANUSCRIPT OR MEET THE DEADLINE, PLEASE INFORM US WITHOUT DELAY.

2. Your review should consider the article's scholarly merit including originality of the research issue and/or methodology, adequacy and rigor of the research methodology and techniques used, quality and rigor of data analysis, comprehensiveness of literature review, and the readability and presentation of the article. Please provide detailed and specific comments to all items. Also, where appropriate please provide suggestions for revision.

COMMENT SHEET

Using item 2 in page 1 as a guideline, please indicate the reasons for your recommendations. Most author(s) will appreciate frankness, combined with a modicum of tact. Even if you recommend that the manuscript be accepted for publication, please provide some general comments to the author(s).

	Grade					
Evaluation Criteria	A (Excellent)	В	С	D	E (Worst)	
1. Appropriateness of Contents		٧				
2. Originality of Topic	٧					
3. Manuscript Format		٧				
4. Research Methodology		٧				
5. Data Analysis		٧				
6. Relevance to the Journal	٧					

(REVIEWER'S SECTION)		(AUTHOR'S SECTION)		
	REVIEWER'S COMMENTS/SUGGESTIONS	AUTHOR'S ACTION/RESPONSE		
	REVIEWER 3 COMMENTS/3000E3110N3	*NOTE FOR AUTHOR: Please state your response to the reviewer's comments/suggestion below		
1.	Title It should reflect the article It's clear			
2.	Abstract Background, Aim, Methodology and Conclusion It's clear			
3.	Keywords Min. 3 and Max. 6 done			
5.	Introduction Concise with sufficient background It's better if the author adds research articles that support the sentence that "protein quality source and quality of carbohydrate digestibility" relate to diabetes mellitus people's needs; and or standard of food nutritional quality for diabetes mellitus people It's slightly in the abstract but unfortunately not in the introduction Research design/Methodology Clearly described and reproducible It's clear Data Analysis Results well presented and discussed It's well presented and discussed. It was also supported by other research	An additional explanation has been given in the introduction section		
7.	Conclusion A clear summary of the study It's clear			
8.	References References should follow the journal's format It's complete and in accordance with the format			

9.	English Proficiency There are some minor corrections (We give the corrections in the article through review comment)	It has been revised
10.	Additional comments/suggestions by the reviewer about the article	-

Overall Evaluation

Please choose one.

Accept	٧	Major Revision	
Minor Revision	٧	Reject	

Please return Manuscript and/or Review Comments to:

Professor Dr. Son Radu

Food Research

Email: foodresearch.my@outlook.com

Manuscript ID: FR-2023-081

Food Research <foodresearch.my@outlook.com>
To: "Ir. Theresia Endang Widoeri Widyastuti, MP." <widoeri@ukwms.ac.id>

Wed, Apr 26, 2023 at 3:18 PM

Dear Ir. Theresia Endang Widoeri Widyastuti,

Thank you for the revised copy of your manuscript. We will contact you again for further processing.

Best regards, Son Radu, PhD Chief Editor

From: Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Sent: Tuesday, 18 April, 2023 8:21 PM

[Quoted text hidden]

[Quoted text hidden]

Pemberitahuan antrian publikasi dari Editor (24 Agustus 2023)

Manuscript ID: FR-2023-081

Food Research <foodresearch.my@outlook.com>
To: "Ir. Theresia Endang Widoeri Widyastuti, MP." <widoeri@ukwms.ac.id>

Thu, Aug 24, 2023 at 11:20 AM

Dear Ir. Theresia Endang Widoeri Widyastuti,

There is a long queue at the current moment, please expect some delay due to the high volume of publication.

Thank you for your understanding

Best regards, Son Radu, PhD Chief Editor

From: Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Sent: Wednesday, 23 August, 2023 12:38 PM

[Quoted text hidden]

[Quoted text hidden]

Bukti konfirmasi artikel diterima (*Acceptance letter* dan *APC form*), (22 April 2024)

dan

Respon kepada Editor (24 April 2024)

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

FR-2023-081

Food Research <foodresearch.my@outlook.com>
To: "widoeri@ukwms.ac.id" <widoeri@ukwms.ac.id>

Mon, Apr 22, 2024 at 8:13 PM

Dear Widyastuti,

Please see attached files.

- 1. The Letter of Acceptance for your manuscript.
- 2. The Article Processing Charges (APC) Form. Please fill the APC Form at the INVOICE RECIPIENT section and return it immediately to us to enable us to process your manuscript.

Best Regards,

Son Radu

Chief Editor

2 attachments

FR Article Processing Fee Form FR-2023-081.doc

FR-2023-081 Acceptance Letter.pdf 103K

22nd April 2024

Dear Widyastuti,

ACCEPTANCE LETTER

Food Research is pleased to inform you that the following manuscript has been accepted for publication in Food Research journal.

Manuscript Title : Controlling mung bean soaking time as a simple way to obtain

alternative sources of healthy food for the diabetics

Authors : Widyastuti, T.E.W. and Widjajaseputra, A.I.

We thank you for your fine contribution to the Food Research journal and encourage you to submit other articles to the Journal.

Yours sincerely,

Chief Editor Food Research

FR/APC/22/4/2024

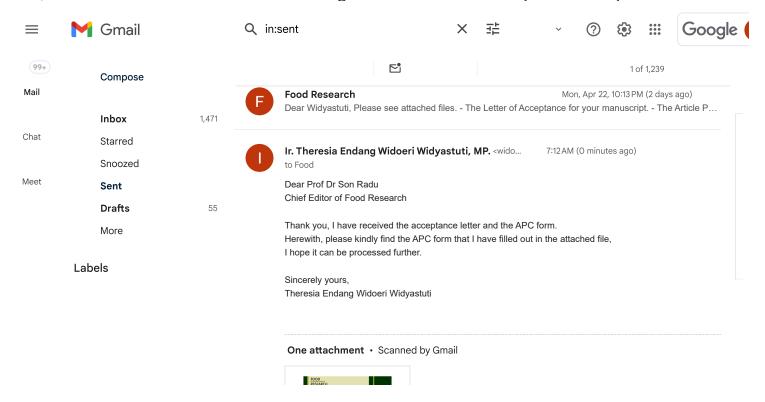
ARTICLE PROCESSING FEE FORM

Please note that all the manuscripts are subject to Article Processing Charges (APC)

For us to proceed with the publication of your paper in our Journal, please complete the form by filling in the confirmed invoice recipient details and revert to the Editorial Office within five (5) working days from the date of the email.

If the form is not received after five (5) working days without written notice, we will assume you have withdrawn your manuscript of your own accord.

No. of Journal Pages	Page Charge
5 pages or under	USD 250
6 th to 8 th page	USD 60/page
9 th page and above	USD 70/page


^{*}The final number of pages of your paper in the journal will be determined by the Journal.

Once we have received the form, we will process your manuscript accordingly. We will send the galley proof for checking and approval when it is ready along with an invoice of the total APC. Authors are given the flexibility of editing and correcting the proof once (1). Changes/addition of data/results during this time are strictly prohibited. Subsequent editing and correcting of the proof will be charged USD 10/change.

CORRESPONDING AUTHOR INFORMATION					
Name	Widyastuti, T.E.W.	Manuscript ID	FR-2023-081		
Manuscript Title	Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for the diabetics				
Authors	Widyastuti, T.E.W. and Widjajaseputra, A.I.				

INVOICE R	INVOICE RECIPIENT						
Name	Theresia Endang Widoeri Widyastuti	Salutation					
Address	FTP Universitas Katolik Widya Mandala Surabaya, Jl. Dinoyo 42-44, Surabaya 60265 Jawa Timur, Indonesia						
Email	widoeri@ukwms.ac.id						

Note: Any changes to the invoice recipient details are highly not encouraged.

Bukti konfirmasi *galley proof* artikel + *invoice* (10 Maret 2025) dan

Balasan ke editor (koreksi artikel terlampir) (15 Maret 2025)

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

FR-2023-081 - Article Production

1 message

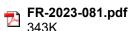
Food Research Production fr:production@outlook.com To: "widoeri@ukwms.ac.id" <widoeri@ukwms.ac.id>

Mon, Mar 10, 2025 at 3:51 PM

Dear Author,

Please refer to the attachment for the galley proof of your manuscript FR-2023-081 entitled 'Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for the diabetics'. Please check the content of the galley proof. If there are any mistakes on the typesetting, please comment and highlight them in the PDF itself and revert to us within five (5) days of receipt. Change or addition of data/results is strictly prohibited. Please note that you are allowed one (1) revision of the galley proof. If the galley proof is fine, please approve the galley proof.

Please see the attachment for invoice INV25067. We hope that you can make the payment before 31 March 2025 for us to complete the publication of your manuscript. The manuscript information e.g., volume, issue, page numbers, and DOI, will be provided once we have received the payment.


Thanks & Regards,

Dr Vivian New, PhD

Editor | Food Research

Email: fr.production@outlook.com Website: www.myfoodresearch.com

2 attachments

INV25067.pdf 129K

Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for the diabetics

*Widyastuti, T.E.W. and Widjajaseputra, A.I.

Food Technology Department, Widya Mandala Catholic, University Surabaya, Jl. Dinoyo 42-44 Surabaya 60265. East Java. Indonesia

Article history:

Received: 23 February 2023 Received in revised form: 26 April 2023 Accepted: 30 May 2024 Available Online:

Keywords:

In vitro digestibility, Starch, Protein, Mung beans, Soaking time

DOI:

Abstract

Mung bean is one of the commodities with potency sources of starch and protein that is available and inexpensive. However, healthy food ingredients which are needed by diabetics must be high in slow-digest starch and protein. This research examined the effect of soaking time on the *in vitro* digestibility of starch and protein of mung bean, to obtain an alternative source of healthy food simply. A single factor of randomized block design was used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6, and 8 hrs. Total starch, in vitro starch digestibility, protein content, and in vitro protein digestibility of freeze-dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during the longer soaking time, in a range of 39.14-33.52% and 57.46-49.82%, respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch classified as slowly digestible starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93-51.29%). Based on these results, the suggested soaking time was 6 hrs which gave optimum digestibility of starch and protein for human consumption. The recommendation is to obtain the benefits of a healthy food source for people with diabetes

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies, and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is an important part of the dietaries of Indonesian people and contributes substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most important component of carbohydrates in mung beans, about 30.74±3.39% (Widjajaseputra *et al.*, 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean with its high amylose content can improve the swelling power and gel texture of a starch noodle product. This is as reported by Li *et al.* (2008), that the high-quality starch noodle made from mung bean starch result from its high amylose content. Menon *et al.* (2016) studied gluten-free starch noodles

from sweet potatoes and found that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in vitro conditions. The high amylose content showed higher viscosities which could be used in certain food products such as thickeners for creams, sauces, soups, and puddings. Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with an ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its use to supplement cereals and rice in particular. Mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi et al., 2016). However, the original properties of the components in the mung bean will change depending on the applied processing.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water enters the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment results in an alteration of their

nutritional quality which could either be a reduction in nutrients and antinutrients or an improvement in the digestibility or availability of nutrients (Kaur *et al.*, 2015). Pagar *et al.* (2021) who studied the horse gram, found that 6 hrs soaking, 72 hrs germination, and drying at 70°C treatment was the best for a maximum decrease in the anti-nutritional factors and at the same time enhanced functional properties due to the soaking and germination.

In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) of the mung bean increased during four hours of soaking (Widjajaseputra et al., 2019a). There are five types of resistant starches (RS1-RS5) and type RS2 is predominant in legumes as legume starches are physically enclosed within intact cell (protein) structures (Kaur et al., 2015). Such starches are indigestible by human digestive enzymes in the small intestine and pass to the large intestine or colon, thereby modifying postprandial glycemic responses. Widjajaseputra et al. (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia. All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6, and 8 hrs, afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2-3% moisture content. The dried grains were ground with a blender (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5±1°C until analyzed.

2.3 Experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole

mung bean seeds were subjected to five different times of soaking, control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hrs (P4). Each treatment level was conducted in triplicates. Total starch, *in vitro* starch digestibility, protein content, and *in vitro* protein digestibility of freeze-dried and grounded whole mung beans were analyzed. Water content analysis was used for dry basis (db) calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n = 3). The data were subjected to ANOVA (p<0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured by incubating the sample suspension in the optimum condition of amyloglucosidase, at 60°C in a controlled shaking water bath, for 45 mins measuring activity. Starch was measured as glucose with Peridochrom Glucose GOD-PAP (Ref 676 543, Boehringer). The glucose content was measured by the enzymatic photometric test. A red quinone imine as the reaction product was measured at a wavelength of 500 nm. The absorbance of the colored complex was proportional to the concentration of glucose. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch *in vitro* (Goni *et al.*, 1996; Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch for 180 mins within a 30 mins interval. Then calculated the percentage of hydrolyzed starch (digestible starch) in equations (1) and (2) as follows:

Starch digestibility (%) = (total starch – undigested starch)/total starch
$$\times$$
 100% (2)

2.4.3 Protein content analysis

The protein content analysis used the macro Kjeldahl method (Association of the Official Analytical Collaboration (AOAC) International, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N) through three steps, namely digestion, distillation, and titration. The measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample (Mertz *et al.*, 1984). Nitrogen content was measured using the micro Kjeldahl method.

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch, and starch digestibility

The total starch of mung bean seeds decreased significantly from 41.13% db to 33.52% db during 8 hrs of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease in total starch was due to the leaching out of the soluble part of starch in soaking water and the hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Table 1. Effects of soaking time on total starch, undigested starch and starch digestibility.

Soaking time (hr)	Total starch (% db)	Undigested starch (% db)	Starch digestibility (%)
P0	41.13±0.19°	19.16±0.45 ^b	53.42±1.31 ^b
P1	$39.14 \pm 0.72^{\mathbf{b}}$	16.65 ± 0.13^a	57.46±1.12°
P2	38.85 ± 0.18^{b}	18.70 ± 0.56^{b}	$51.87{\pm}1.67^{ab}$
P3	38.18 ± 0.44^{b}	18.53 ± 0.34^{b}	51.47 ± 0.31^a
P4	33.52±1.29 ^a	16.82±0.21 ^a	49.82±1.30 ^a

Values are presented as mean \pm SD, n = 3. Values with different superscripts within the same column are statistically significantly different based on the LSD Test (p<0.05). P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra et al. (2019a) stated that the amylose level of mung beans (32.56±0.31%) is higher than cereal (around 25%) and tuber starch (around 17-19%). Singh et al. (2003) state that the factors which could influence starch amylopectin retrogradation were the content. intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrograde would affect the level of digestibility.

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time and the decrease of total starch during the soaking treatment up to 8 hrs of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hrs resulted in a significant increase in starch digestibility. This is due to part of the starch granules that were more readily hydrolyzed by enzymes that were affected by the imbibition of water in the soaked mung bean seeds. After 4 hrs of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow-digesting starch.

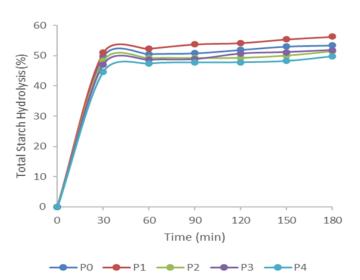


Figure 1. Mung bean starch hydrolysis rate. P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

The increasing of undigested starch up to 3 hrs of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) found that the RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hrs, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hrs. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hrs after consumption has not been completely digested. It was due to the high level of amylose in mung bean starch (around 32%-34%). The difference in RS can be influenced by differences in starch structure in various amylose-amylopectin ratios among different starch granules which affect the RS level in processed food, including during seeds soaking and freeze-drying treatment in sample preparation. Retrogradation of amylose can occur during soaking and freeze-drying treatment in sample preparation, and part of starch was to exist as RS3. RS3 is starch that has been retrograded into

more highly stabile crystalline structures. In addition, Fabbri *et al.* (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. These phenomena caused a decrease in the level of starch digestibility. RS is one kind of dietary fiber. Dietary fiber is bound together in such a way that it can not be ready in the small intestine. Besides it, dietary fiber may make humans feel full longer. This causes mung bean to help keep blood sugar levels low. Nevertheless, the different processes following the soaking would give different effects on starch digestibility, as example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2 Effects of soaking time on protein content and protein digestibility

The values of protein digestibility were significantly different on 6 hrs (P3) and 8 hrs (P4) of treated soaking time compared to P0, P1, and P2 as shown in Table 2. Protein digestibility increased during soaking treatment, up to 6 hrs of soaking time, and then the protein digestibility slightly decreased on 8 hrs of seed soaking.

Table 2. Effects of soaking time on protein content and protein digestibility.

•	-	•	
	Soaking	Protein content	Protein digestibility
	time (hr)	(% db)	(%)
	P0	26.29 ± 0.27	46.93 ± 1.53^{a}
	P1	25.88 ± 0.40	48.41 ± 0.38^{ab}
	P2	25.90 ± 0.25	48.56 ± 0.54^{ab}
	P3	25.68 ± 0.33	51.29±1.20°
	P4	26.10 ± 0.82	49.83 ± 3.00^{bc}

Values are presented as mean \pm SD, n = 3. Values with different superscripts within the same column are statistically significantly different based on the LSD Test (p<0.05). P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hrs of soaking time (Widjajaseputra et al., 2019b). The higher soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hrs, because a germination process has taken place longer than 6 hrs of soaking. During germination periods there were hydrolyzing processes that would affect protein and starch degradation to produce energy for the new plant. These phenomena were revealed by Grewal and Jood (2009) that the germination process decreased starch content, thereby increasing soluble sugars and improved starch digestibility to 49% and 48% in two different green gram (Vigna radiata L.) cultivars

respectively.

3.3 Perspective of mung bean as a healthy food source for the diabetics

The high protein digestibility of mung beans as a result of soaking for 6 hrs can support its usage as a good food source of protein. A combination of mung bean protein and rice protein in a 3:4 ratio respectively can increase the chemical amino acid score to 72 (Dahiya et al., 2015). Based on this recommendation, an increase in protein bioavailability can be obtained. Consumption of legumes provides qualified protein along with other micronutrients without adding extra energy or fat. According to Mak et al. (2018), a diet high in proteinlow starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also starch, which has the advantage of consisting of higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello et al. (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is a positive attribute that could promote the product as a better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity, and other malnutrition symptoms (Rebello et al., 2014). In particular, for the nutrition management of gestational diabetes mellitus, it is important to focus on the quality of carbohydrates and encourage the consumption of vegetables, fruits, complex carbohydrates, and high-fiber foods (Kapur et al., 2020). A balanced diet consisting of healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will result in weight control as well as diabetes management (Devi et al., 2021).

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, mung bean starch is a slow-digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93-51.29%). Based on the obtained data, the recommended soaking time was 6 hrs which revealed the optimum digestibility of starch and protein for diabetics. Further investigation in the processing field will be needed to get better food choices for diabetics.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 115O/WM01.5/N/2018 and 200U/WM01.5/N/2019 respectively).

References

- Association of the Official Analytical Collaboration (AOAC) International. (2010). Official Methods of Analysis. 18th ed. Washington, D.C. USA: AOAC International.
- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B. and Nout, M.J. (2015). Mung bean: technological and nutritional potential. *Critical Reviews in Food Science and Nutrition*, 55 (5), 670-688. https://doi.org/10.1080/10408398.2012.671202
- Devi, M.P., Mudraganam, S. and Saraf, V. (2021). A Review on the role of carbohydrates in the management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6(6), 33-38.
- Dipnaiki, K. and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase activity in pulses. *International Journal of Research in Medical Sciences*, 5(10), 4271-4276. https://doi.org/10.18203/2320-6012.ijrms20174158
- Fabbri, A.D.T., Schacht, R.W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. *NFS Journal*, 3, 8-12. https://doi.org/10.1016/j.nfs.2016.02.002
- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604.
- Goni, I., Garcia-Alonso, A. and Saura-Calixto, F. (1997).

- A starch hydrolysis procedure to estimate glycemic index. *Nutrition Research*, 17(3), 427-437. https://doi.org/10.1016/S0271-5317(97)00010-9
- Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. *Food Chemistry*, 56(4), 445 -449. https://doi.org/10.1016/0308-8146(95)00222-7
- Grewal, A. and Jood, S. (2009). Chemical composition and digestibility (*in vitro*) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88 (3), S293-S306. http://doi.org/ 10.1079/BJN2002720
- Kapur, K., Kapur, A. and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. *Annals of Nutrition and Metabolism*, 76(suppl 3), 17-29. https://doi.org/10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J. and Pacher, N. (1999). Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn and mung bean starches in healthy men1-3. *The American Journal of Clinical Nutrition*, 69, 1183-1188. https://doi.org/10.1093/ajcn/69.6.1174
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W. and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86(2), 162-166. https://doi.org/10.1016/j.jfoodeng.2007.09.013
- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W. and Sun, X. (2018). Dietary patterns during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China. *Nutrition Journal*, 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and chemical properties of starch and flour from different common bean (*Phaseolus vulgaris* L.) cultivars. *Brazilian Journal and Food Technology*, 19, e2016005. https://doi.org/10.1590/1981-6723.0516
- Menon, R., Padmaja, G., Jyothi, A.N., Asha, V. and

- Sajeev, M.S. (2016). Gluten-free starch noodles from sweet potato with reduced starch digestibility and enhanced protein content. *Journal of Food Science and Technology*, 53, 3532-3542. https://doi.org/10.1007/s13197-016-2330-9
- Mertz, E.T., Hassen, M.M., Cairns-Whittern, C, Kirleis, A.W., Tut, L. and Axtell, J.D. (1984). Pepsin digestibility of proteins in sorghum and other major cereals. *Proceedings of the National Academy of Sciences of the United States of America*, 81, 1-2. https://doi.org/10.1073/pnas.81.1.1
- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional processes. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G. and Raichurkar, S. (2021). Effect of soaking, germination, and drying on antinutrients, minerals, and functional properties of horse gram along with its commercial application. *International Journal of Food Science and Nutrition*, 6(2), 50-54.
- Rebello, C.J., Greenway, F.L. and Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obesity Reviews*, 15(5), 392-407. https://doi.org/10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*, 81(2), 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as a food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research*, 3(6), 828-832 hrsttps://doi.org/10.26656/fr.2017.3(6).209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different soaking times as protein source for breastfeeding women in Indonesia. *Food Research*, 3(5), 501-505. https://doi.org/10.26656/fr.2017.3(5).105.

RYNNYE LYAN RESOURCES (002617213-V)

No. 7, Jalan BPP 2/5, Pusat Bandar Putra Permai 43300 Seri Kembangan

Selangor Darul Ehsan, Malaysia

Tel: +6016-3701248 Email: rynnyelyan@gmail.com

INVOICE

Theresia Endang Widoeri Widyastuti INVOICE NO.: INV25067

FTP Universitas Katolik Widya Mandala Surabaya, DATE : 10/3/2025

Jl. Dinoyo 42-44, TERMS: NET 21

Surabaya 60265 PAYMENT DUE: 31/3/2025

Jawa Timur REF. DOC: NA

Indonesia

Email: widoeri@ukwms.ac.id

NO.	DESCRIPTION	NO. OF PAGES	PAGE CHARGE	TOTAL
1	Payment For:			
	Article Processing FR-2023-081	5		USD 250.00
	Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for the diabetics	1	USD 60.00	USD 60.00
	Total Journal Pages: 6			
		USD	RATE	MYR
	GRAND TOTAL AMOUNT	USD 310.00	4.5534	MYR 1,411.56

NOTES:

- 1. Payment methods:
 - a) International Money Transfer

RYNNYE LYAN RESOURCES

Malayan Banking Bhd (Maybank) (MBB)

A/C Number: 512802522711

B-1 Blok B, Persiaran Akademi Perdana, Taman Equine, 43300 Seri Kembangan, Selangor, Malaysia

Swift Code: MBBEMYKL

b) PayPal

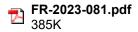
Pay to foodresearch.my@outlook.com or https://www.paypal.me/foodresearch

- 2. Payment can be made **EITHER IN USD OR MYR**. **Full payment as per the amount stated in the invoice** should be made for either currency. **Non-full payment will be denied publication.**
- 3. Please indicate your **MANUSCRIPT ID** and the **INVOICE NO.** in the payment reference and **SEND A COPY OF THE PAYMENT TRANSACTION** to fr.production@outlook.com/foodresearch.my@outlook.com/rynnyelyan@gmail.com
- 4. The total amount is **NOT INCLUSIVE** of any bank service charge impose to the payer. Payer should be responsible for the bank service charge.
- 5. LATE PAYMENTS without prior written notification to the Editorial Office will result in the rejection of the manuscript.

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

FR-2023-081 - Article Production

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>


Sat, Mar 15, 2025 at 7:44 PM

To: Food Research Production <fr.production@outlook.com>

Dear Dr Vivian Editor Food Research

Please kindly find a few comments on the attached pdf file of our manuscript FR-2023-081, and please revise it according to the corrections. Thank you for your help and attention.

Best regards, Theresia Endang Widoeri W. [Quoted text hidden]

Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for the diabetics

*Widyastuti, T.E.W. and Widjajaseputra, A.I.

Food Technology Department, Widya Mandala Catholic, University Surabaya, Jl. Dinoyo 42-44 Surabaya 60265, East Java, Indonesia

Article history:

Received: 23 February 2023 Received in revised form: 26 April 2023 Accepted: 30 May 2024 Available Online:

Keywords:

In vitro digestibility, Starch, Protein, Mung beans, Soaking time

DOI:

Abstract

Mung bean is one of the commodities with potency sources of starch and protein that is available and inexpensive. However, healthy food ingredients which are needed by diabetics must be high in slow-digest starch and protein. This research examined the effect of soaking time on the *in vitro* digestibility of starch and protein of mung bean, to obtain an alternative source of healthy food simply. A single factor of randomized block design was used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6, and 8 hrs. Total starch, in vitro starch digestibility, protein content, and in vitro protein digestibility of freeze-dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during the longer soaking time, in a range of 39.14-33.52% and 57.46-49.82%, respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slowly digestible starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93-51.29%). Based on these results, the suggested soaking time was 6 hrs which gave optimum digestibility of starch and protein for human consumption. The recommendation is to obtain the benefits of a healthy food source for people with diabetes mellitus.

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies, and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is an important part of the dietaries of Indonesian people and contributes substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most important component of carbohydrates in mung beans, about 30.74±3.39% (Widjajaseputra *et al.*, 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean with its high amylose content can improve the swelling power and gel texture of a starch noodle product. This is as reported by Li *et al.* (2008), that the high-quality starch noodle made from mung bean starch result from its high amylose content. Menon *et al.* (2016) studied gluten-free starch noodles

from sweet potatoes and found that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in vitro conditions. The high amylose content showed higher viscosities which could be used in certain food products such as thickeners for creams, sauces, soups, and puddings. Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with an ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its use to supplement cereals and rice in particular. Mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi et al., 2016). However, the original properties of the components in the mung bean will change depending on the applied processing.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water enters the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment results in an alteration of their

nutritional quality which could either be a reduction in nutrients and antinutrients or an improvement in the digestibility or availability of nutrients (Kaur *et al.*, 2015). Pagar *et al.* (2021) who studied the horse gram, found that 6 hrs soaking, 72 hrs germination, and drying at 70°C treatment was the best for a maximum decrease in the anti-nutritional factors and at the same time enhanced functional properties due to the soaking and germination.

In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) of the mung bean increased during four hours of soaking (Widjajaseputra et al., 2019a). There are five types of resistant starches (RS1-RS5) and type RS2 is predominant in legumes as legume starches are physically enclosed within intact cell (protein) structures (Kaur et al., 2015). Such starches are indigestible by human digestive enzymes in the small intestine and pass to the large intestine or colon, thereby modifying postprandial glycemic responses. Widjajaseputra et al. (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia. All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6, and 8 hrs, afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2-3% moisture content. The dried grains were ground with a blender (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5±1°C until analyzed.

2.3 Experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole

mung bean seeds were subjected to five different times of soaking, control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hrs (P4). Each treatment level was conducted in triplicates. Total starch, *in vitro* starch digestibility, protein content, and *in vitro* protein digestibility of freeze-dried and grounded whole mung beans were analyzed. Water content analysis was used for dry basis (db) calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n = 3). The data were subjected to ANOVA (p<0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured by incubating the sample suspension in the optimum condition of amyloglucosidase, at 60°C in a controlled shaking water bath, for 45 mins measuring activity. Starch was measured as glucose with Peridochrom Glucose GOD-PAP (Ref 676 543, Boehringer). The glucose content was measured by the enzymatic photometric test. A red quinone imine as the reaction product was measured at a wavelength of 500 nm. The absorbance of the colored complex was proportional to the concentration of glucose. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch *in vitro* (Goni *et al.*, 1996; Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch for 180 mins within a 30 mins interval. Then calculated the percentage of hydrolyzed starch (digestible starch) in equations (1) and (2) as follows:

Starch digestibility (%) = (total starch – undigested starch)/total starch
$$\times$$
 100% (2)

2.4.3 Protein content analysis

The protein content analysis used the macro Kjeldahl method (Association of the Official Analytical Collaboration (AOAC) International, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N) through three steps, namely digestion, distillation, and titration. The measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample (Mertz *et al.*, 1984). Nitrogen content was measured using the micro Kjeldahl method. Calculation of protein digestibility as stated in equation (3).

Protein digestibility =
$$\frac{N \text{ total filtrate}}{N \text{ total ingredients}} \times \text{ diluting factor} \times 100\%$$
 (3)

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch, and starch digestibility

The total starch of mung bean seeds decreased significantly from 41.13% db to 33.52% db during 8 hrs of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease in total starch was due to the leaching out of the soluble part of starch in soaking water and the hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Table 1. Effects of soaking time on total starch, undigested starch and starch digestibility.

Soaking time (hr)	Total starch (% db)	Undigested starch (% db)	Starch digestibility (%)
P0	41.13±0.19°	19.16 ± 0.45^{b}	53.42±1.31 ^b
P1	39.14±0.72 ^b	16.65 ± 0.13^a	57.46±1.12°
P2	38.85 ± 0.18^{b}	18.70 ± 0.56^{b}	$51.87{\pm}1.67^{ab}$
Р3	38.18 ± 0.44^{b}	18.53 ± 0.34^{b}	$51.47{\pm}0.31^{\rm a}$
P4	33.52 ± 1.29^{a}	16.82 ± 0.21^a	49.82 ± 1.30^{a}

Values are presented as mean \pm SD, n = 3. Values with different superscripts within the same column are statistically significantly different based on the LSD Test (p<0.05). P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra et al. (2019a) stated that the amylose level of mung beans (32.56±0.31%) is higher than cereal (around 25%) and tuber starch (around 17-19%). Singh et al. (2003) state that the factors which could influence starch retrogradation amylopectin were the content, intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrograde would affect the level of digestibility.

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time and the decrease of total starch during the soaking treatment up to 8 hrs of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hrs resulted in a significant increase in starch digestibility. This is due to part of the starch granules that were more readily hydrolyzed by enzymes that were affected by the imbibition of water in the soaked mung bean seeds. After 4 hrs of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow-digesting starch.

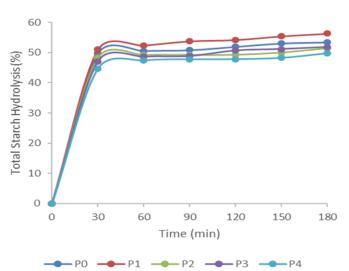


Figure 1. Mung bean starch hydrolysis rate. P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

The increasing of undigested starch up to 3 hrs of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist digestion, passing directly through the small intestine (Fabbri *et al.*, 2016). Widjajaseputra et al. (2019a) found that the RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hrs, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hrs. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hrs after consumption has not been completely digested. It was due to the high level of amylose in mung bean starch (around 32%-34%). The difference in RS can be influenced by differences in starch structure in various amylose-amylopectin ratios among different starch granules which affect the RS level in processed food, including during seeds soaking and freeze-drying treatment in sample preparation. Retrogradation of amylose can occur during soaking and freeze-drying treatment in sample preparation, and part of starch was to exist as RS3. RS3 is starch that has been retrograded into

more highly stabile crystalline structures. In addition, Fabbri *et al.* (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. These phenomena caused a decrease in the level of starch digestibility. RS is one kind of dietary fiber. Dietary fiber is bound together in such a way that it can not be ready in the small intestine. Besides it, dietary fiber may make humans feel full longer. This causes mung bean to help keep blood sugar levels low. Nevertheless, the different processes following the soaking would give different effects on starch digestibility, as example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2 Effects of soaking time on protein content and protein digestibility

The values of protein digestibility were significantly different on 6 hrs (P3) and 8 hrs (P4) of treated soaking time compared to P0, P1, and P2 as shown in Table 2. Protein digestibility increased during soaking treatment, up to 6 hrs of soaking time, and then the protein digestibility slightly decreased on 8 hrs of seed soaking.

Table 2. Effects of soaking time on protein content and protein digestibility.

Soaking	Protein content	Protein digestibility
time (hr)	(% db)	(%)
P0	26.29 ± 0.27	46.93 ± 1.53^{a}
P1	25.88 ± 0.40	$48.41{\pm}0.38^{ab}$
P2	25.90 ± 0.25	48.56 ± 0.54^{ab}
P3	25.68 ± 0.33	51.29 ± 1.20^{c}
P4	26.10 ± 0.82	49.83 ± 3.00^{bc}
	P0 P1 P2 P3	time (hr) (% db) P0 26.29±0.27 P1 25.88±0.40 P2 25.90±0.25 P3 25.68±0.33

Values are presented as mean \pm SD, n = 3. Values with different superscripts within the same column are statistically significantly different based on the LSD Test (p<0.05). P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hrs of soaking time (Widjajaseputra et al., 2019b). The higher soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hrs, because a germination process has taken place longer than 6 hrs of soaking. During germination periods there were hydrolyzing processes that would affect protein and starch degradation to produce energy for the new plant. These phenomena were revealed by Grewal and Jood (2009) that the germination process decreased starch content, thereby increasing soluble sugars and improved starch digestibility to 49% and 48% in two

different green gram (Vigna radiata L.) cultivars respectively.

3.3 Perspective of mung bean as a healthy food source for the diabetics

The high protein digestibility of mung beans as a result of soaking for 6 hrs can support its usage as a good food source of protein. A combination of mung bean protein and rice protein in a 3:4 ratio respectively can increase the chemical amino acid score to 72 (Dahiya et al., 2015). Based on this recommendation, an increase in protein bioavailability can be obtained. Consumption of legumes provides qualified protein along with other micronutrients without adding extra energy or fat. According to Mak et al. (2018), a diet high in proteinlow starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also starch, which has the advantage of consisting of higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello et al. (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is a positive attribute that could promote the product as a better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity, and other malnutrition symptoms (Rebello et al., 2014). In particular, for the nutrition management of gestational diabetes mellitus, it is important to focus on the quality of carbohydrates and encourage the consumption vegetables, complex of fruits, carbohydrates, and high-fiber foods (Kapur et al., 2020). A balanced diet consisting of healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will result in weight control as well as diabetes management (Devi et al., 2021).

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, mung bean starch is a slow-digesting starch.

There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93-51.29%). Based on the obtained data, the recommended soaking time was 6 hrs which revealed the optimum digestibility of starch and protein for diabetics. Further investigation in the processing field will be needed to get better food choices for diabetics.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 115O/WM01.5/N/2018 and 200U/WM01.5/N/2019 respectively).

References

- Association of the Official Analytical Collaboration (AOAC) International. (2010). Official Methods of Analysis. 18th ed. Washington, D.C. USA: AOAC International.
- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B. and Nout, M.J. (2015). Mung bean: technological and nutritional potential. *Critical Reviews in Food Science and Nutrition*, 55 (5), 670-688. https://doi.org/10.1080/10408398.2012.671202
- Devi, M.P., Mudraganam, S. and Saraf, V. (2021). A Review on the role of carbohydrates in the management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6(6), 33-38.
- Dipnaiki, K. and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase activity in pulses. *International Journal of Research in Medical Sciences*, 5(10), 4271-4276. https://doi.org/10.18203/2320-6012.ijrms20174158
- Fabbri, A.D.T., Schacht, R.W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. *NFS Journal*, 3, 8-12. https://doi.org/10.1016/j.nfs.2016.02.002
- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604.

- Goni, I., Garcia-Alonso, A. and Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. *Nutrition Research*, 17(3), 427-437. https://doi.org/10.1016/S0271-5317(97)00010-9
- Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. *Food Chemistry*, 56(4), 445 -449. https://doi.org/10.1016/0308-8146(95)00222-7
- Grewal, A. and Jood, S. (2009). Chemical composition and digestibility (*in vitro*) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88 (3), S293-S306. http://doi.org/ 10.1079/BJN2002720
- Kapur, K., Kapur, A. and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. *Annals of Nutrition and Metabolism*, 76(suppl 3), 17-29. https://doi.org/10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J. and Pacher, N. (1999). Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn and mung bean starches in healthy men1-3. *The American Journal of Clinical Nutrition*, 69, 1183-1188. https://doi.org/10.1093/ajcn/69.6.1174
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W. and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86(2), 162-166. https://doi.org/10.1016/j.jfoodeng.2007.09.013
- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W. and Sun, X. (2018). Dietary patterns during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China. *Nutrition Journal*, 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and chemical properties of starch and flour from different common bean (*Phaseolus vulgaris* L.) cultivars. *Brazilian Journal and Food Technology*, 19, e2016005. https://doi.org/10.1590/1981-6723.0516

- Menon, R., Padmaja, G., Jyothi, A.N., Asha, V. and Sajeev, M.S. (2016). Gluten-free starch noodles from sweet potato with reduced starch digestibility and enhanced protein content. *Journal of Food Science and Technology*, 53, 3532-3542. https://doi.org/10.1007/s13197-016-2330-9
- Mertz, E.T., Hassen, M.M., Cairns-Whittern, C, Kirleis, A.W., Tut, L. and Axtell, J.D. (1984). Pepsin digestibility of proteins in sorghum and other major cereals. *Proceedings of the National Academy of Sciences of the United States of America*, 81, 1-2. https://doi.org/10.1073/pnas.81.1.1
- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional processes. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G. and Raichurkar, S. (2021). Effect of soaking, germination, and drying on antinutrients, minerals, and functional properties of horse gram along with its commercial application. *International Journal of Food Science and Nutrition*, 6(2), 50-54.
- Rebello, C.J., Greenway, F.L. and Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obesity Reviews*, 15(5), 392-407. https://doi.org/10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*, 81(2), 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as a food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research*, 3(6), 828-832 hrsttps://doi.org/10.26656/fr.2017.3(6).209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different soaking times as protein source for breastfeeding women in Indonesia. *Food Research*, 3(5), 501-505. https://doi.org/10.26656/fr.2017.3(5).105.

Bukti konfirmasi revisi artikel galley proof (16 Maret 2025) dan

Persetujuan galley proof (18 Maret 2025)

FR-2023-081 - Article Production

Food Research Production <fr.production@outlook.com>
To: "Ir. Theresia Endang Widoeri Widyastuti, MP." <widoeri@ukwms.ac.id>

Sun, Mar 16, 2025 at 7:33 PM

Dear Dr Theresia,

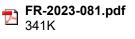
Enclosed, please find the revised galley proof for your checking. If the galley proof is fine, please approve the galley proof.

Thanks & Regards,

Dr Vivian New, PhD

Editor | Food Research

Email: fr.production@outlook.com Website: www.myfoodresearch.com


From: Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

Sent: Saturday, 15 March, 2025 8:44 PM

To: Food Research Production < fr.production@outlook.com>

Subject: Re: FR-2023-081 - Article Production

[Quoted text hidden]

Controlling mung bean soaking time as a simple way to obtain alternative sources of healthy food for the diabetics

*Widyastuti, T.E.W. and Widjajaseputra, A.I.

Food Technology Department, Widya Mandala Catholic, University Surabaya, Jl. Dinoyo 42-44 Surabaya 60265. East Java. Indonesia

Article history:

Received: 23 February 2023 Received in revised form: 26 April 2023 Accepted: 30 May 2024 Available Online:

Keywords:

In vitro digestibility, Starch, Protein, Mung beans, Soaking time

DOI:

Abstract

Mung bean is one of the commodities with potency sources of starch and protein that is available and inexpensive. However, healthy food ingredients which are needed by diabetics must be high in slow-digest starch and protein. This research examined the effect of soaking time on the *in vitro* digestibility of starch and protein of mung bean, to obtain an alternative source of healthy food simply. A single factor of randomized block design was used in this study. Each treatment level was conducted in triplicates. The whole mung bean seeds were subjected to five different times of soaking, namely control (without soaking) and soaking for 2, 4, 6, and 8 hrs. Total starch, in vitro starch digestibility, protein content, and in vitro protein digestibility of freeze-dried and grounded whole mung beans were analyzed. The results showed a trend of the total starch content and starch digestibility decreasing during the longer soaking time, in a range of 39.14-33.52% and 57.46-49.82%, respectively. Based on the rate of starch hydrolysis, the digestibility of mung bean starch classified as slowly digestible starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93-51.29%). Based on these results, the suggested soaking time was 6 hrs which gave optimum digestibility of starch and protein for human consumption. The recommendation is to obtain the benefits of a healthy food source for people with diabetes

1. Introduction

Mung bean (*Vigna radiata*) has been consumed in China for over 2,000 years, in the form of many kinds of food such as sprouts, noodles, cookies, and others (Fayyaz *et al.*, 2018). Mung bean, as one of the legumes, is an important part of the dietaries of Indonesian people and contributes substantially to the nutrient intake of human beings, including children. Mung bean is less flatulent and is well tolerated by children (Dahiya *et al.*, 2015).

Mung bean is one of the commodities with potency sources of starch and protein. Starch is the most important component of carbohydrates in mung beans, about 30.74±3.39% (Widjajaseputra *et al.*, 2019a). Since starch is the most significant component in mung bean, the characteristics of starch will determine its suitability for its end use. Mung bean with its high amylose content can improve the swelling power and gel texture of a starch noodle product. This is as reported by Li *et al.* (2008), that the high-quality starch noodle made from mung bean starch result from its high amylose content. Menon *et al.* (2016) studied gluten-free starch noodles

from sweet potatoes and found that fortification with mung bean starch reduced the rate of release of glucose from cooked noodles in vitro conditions. The high amylose content showed higher viscosities which could be used in certain food products such as thickeners for creams, sauces, soups, and puddings. Besides as a source of starch, mung bean is an excellent source of vitamins, minerals, and protein with an ideal essential amino acid profile (Mubarak, 2005). The specific profile of mung bean amino acid allows its use to supplement cereals and rice in particular. Mung bean flour could be used as a supplement for wheat flour, increasing the nutritional quality of bakery products (Marquezi et al., 2016). However, the original properties of the components in the mung bean will change depending on the applied processing.

Soaking is the beginning of legume processing which is usually done in preparation before use. During soaking, water enters the bean, its tissues hydrated, and some enzymes can be activated to break down complex structures such as starch and protein into simpler compounds. The treatment results in an alteration of their

nutritional quality which could either be a reduction in nutrients and antinutrients or an improvement in the digestibility or availability of nutrients (Kaur *et al.*, 2015). Pagar *et al.* (2021) who studied the horse gram, found that 6 hrs soaking, 72 hrs germination, and drying at 70°C treatment was the best for a maximum decrease in the anti-nutritional factors and at the same time enhanced functional properties due to the soaking and germination.

In a previous study, it was reported that the digestible (total sugar) and indigestible carbohydrates (resistant starch) of the mung bean increased during four hours of soaking (Widjajaseputra et al., 2019a). There are five types of resistant starches (RS1-RS5) and type RS2 is predominant in legumes as legume starches are physically enclosed within intact cell (protein) structures (Kaur et al., 2015). Such starches are indigestible by human digestive enzymes in the small intestine and pass to the large intestine or colon, thereby modifying postprandial glycemic responses. Widjajaseputra et al. (2019b) also reported that the soaking treatment improved the protein quality. In relation to the provision of healthy food for people with diabetes, high-quality protein sources are needed, but the type and quality of carbohydrate digestibility need to be considered. The study of the potency of soaked mung bean as a healthy food source, especially for diabetic people, based on the digestibility perspective is needed.

2. Materials and methods

2.1 Materials

The commercial mung bean was obtained from a local market in Surabaya, East Java, Indonesia. All the chemicals, standards, and reagents were of analytical grade.

2.2 Soaking procedure

According to Widjajaseputra *et al.* (2019b), the mung bean was sorted. Only intact and sound grains were washed and soaked (1:5 w/v) in distilled water at 30°C for 0 (control), 2, 4, 6, and 8 hrs, afterward the grains were drained and freeze-dried (Bluewave B-10B Vacuum Freeze Drier; China) to 2-3% moisture content. The dried grains were ground with a blender (Miyako, Indonesia), wrapped in an airtight plastic container and aluminum foil bag as secondary packaging, and then stored in a refrigerator (LG, Indonesia) at 5±1°C until analyzed.

2.3 Experimental design and statistical analysis

The experimental design used in this study was a single factor with a randomized block design. The whole

mung bean seeds were subjected to five different times of soaking, control (without soaking/P0) and soaking for 2 (P1), 4 (P2), 6 (P3), and 8 hrs (P4). Each treatment level was conducted in triplicates. Total starch, *in vitro* starch digestibility, protein content, and *in vitro* protein digestibility of freeze-dried and grounded whole mung beans were analyzed. Water content analysis was used for dry basis (db) calculation. Data were expressed as mean \pm standard deviation (SD) for the three in each group (n = 3). The data were subjected to ANOVA (p<0.05) with a least significant difference (LSD) test at p < 0.05 using SPSS (version 19) for comparative analysis.

2.4 Analysis methods

2.4.1 Total starch analysis

According to Goni *et al.* (1997), total starch was measured by incubating the sample suspension in the optimum condition of amyloglucosidase, at 60°C in a controlled shaking water bath, for 45 mins measuring activity. Starch was measured as glucose with Peridochrom Glucose GOD-PAP (Ref 676 543, Boehringer). The glucose content was measured by the enzymatic photometric test. A red quinone imine as the reaction product was measured at a wavelength of 500 nm. The absorbance of the colored complex was proportional to the concentration of glucose. The factor conversion of glucose to starch was 0.9.

2.4.2 In vitro starch digestibility analysis

Starch digestibility was determined by measuring digestible starch *in vitro* (Goni *et al.*, 1996; Goni *et al.*, 1997). The principle of digestible starch determination was to analyze total starch with enzymes and measured undigested starch for 180 mins within a 30 mins interval. Then calculated the percentage of hydrolyzed starch (digestible starch) in equations (1) and (2) as follows:

Starch digestibility (%) = (total starch – undigested starch)/total starch
$$\times$$
 100% (2)

2.4.3 Protein content analysis

The protein content analysis used the macro Kjeldahl method (Association of the Official Analytical Collaboration (AOAC) International, 2010). The protein in the sample was determined by measuring the amount of nitrogen (N) through three steps, namely digestion, distillation, and titration. The measured nitrogen content was multiplied by the conversion factor resulting in protein content. The conversion factor used was 6.25.

2.4.4 In vitro protein digestibility

The principle of determining in vitro protein digestibility is to compare the total nitrogen content after the sample is treated with protein digestive enzymes (pepsin) with the total N of the initial sample (Mertz *et al.*, 1984). Nitrogen content was measured using the micro Kjeldahl method.

3. Results and discussion

3.1 Effects of soaking time on total starch, undigested starch, and starch digestibility

The total starch of mung bean seeds decreased significantly from 41.13% db to 33.52% db during 8 hrs of soaking, because more intensive hydrolysis occurred during the longer soaking time (Table 1). The decrease in total starch was due to the leaching out of the soluble part of starch in soaking water and the hydrolysis process to simpler compounds such as sugars and dextrin. The same thing was also found by Grewal and Jood (2009), that a significant decrease in starch content was followed by increased sugar content due to soaking and cooking of green gram.

Table 1. Effects of soaking time on total starch, undigested starch and starch digestibility.

Soaking time (hr)	Total starch (% db)	Undigested starch (% db)	Starch digestibility (%)
P0	41.13±0.19°	19.16±0.45 ^b	53.42±1.31 ^b
P1	$39.14 \pm 0.72^{\mathbf{b}}$	16.65 ± 0.13^a	57.46±1.12°
P2	38.85 ± 0.18^{b}	18.70 ± 0.56^{b}	$51.87{\pm}1.67^{ab}$
P3	38.18 ± 0.44^{b}	18.53 ± 0.34^{b}	51.47 ± 0.31^a
P4	33.52±1.29 ^a	16.82±0.21 ^a	49.82±1.30 ^a

Values are presented as mean \pm SD, n = 3. Values with different superscripts within the same column are statistically significantly different based on the LSD Test (p<0.05). P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

Legume starch contains amylose higher than cereal or tuber starch. This starch has a lower bioavailability than most other starches when it is raw or retrograded (Guillon and Champ, 2002). Widjajaseputra et al. (2019a) stated that the amylose level of mung beans (32.56±0.31%) is higher than cereal (around 25%) and tuber starch (around 17-19%). Singh et al. (2003) state that the factors which could influence starch amylopectin retrogradation were the content. intermediate materials, size and shape of the granules, the botanical source, and the amylose content. A higher proportion of amylose content being linked to a higher tendency to retrograde would affect the level of digestibility.

The starch digestibility decreases (from 57.46% to 49.82%) with the longer soaking time and the decrease of total starch during the soaking treatment up to 8 hrs of soaking from 39.14% to 33.52% (Table 1). If compared with the control, soaking for 2 hrs resulted in a significant increase in starch digestibility. This is due to part of the starch granules that were more readily hydrolyzed by enzymes that were affected by the imbibition of water in the soaked mung bean seeds. After 4 hrs of soaking time, the decrease in starch digestibility was not significantly different. Figure 1 shows that based on the rate of starch hydrolysis, the digestibility of mung bean starch is a slow-digesting starch.

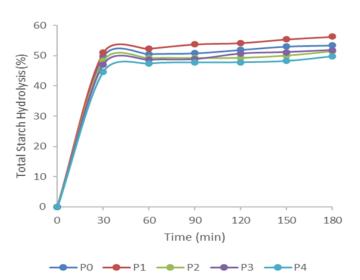


Figure 1. Mung bean starch hydrolysis rate. P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

The increasing of undigested starch up to 3 hrs of digestion (in vitro) can be affected by the number of resistant starch (RS). RS is defined as the portion of starch and starch products that resist digestion, passing directly through the small intestine (Fabbri et al., 2016). Widjajaseputra et al. (2019a) found that the RS of mung bean was increased from 11.12% db to 18.49% db if soaked for 4 hrs, although it was decreased significantly (13.65% db) if soaking was continued for up to 8 hrs. This phenomenon is in line with the statement of Lang et al. (1999) that mung bean starch contains RS 11% db and has a long absorption period, which within 4.5 hrs after consumption has not been completely digested. It was due to the high level of amylose in mung bean starch (around 32%-34%). The difference in RS can be influenced by differences in starch structure in various amylose-amylopectin ratios among different starch granules which affect the RS level in processed food, including during seeds soaking and freeze-drying treatment in sample preparation. Retrogradation of amylose can occur during soaking and freeze-drying treatment in sample preparation, and part of starch was to exist as RS3. RS3 is starch that has been retrograded into

more highly stabile crystalline structures. In addition, Fabbri *et al.* (2016) found that the cooling process of legumes can increase RS as a result of retrogradation. These phenomena caused a decrease in the level of starch digestibility. RS is one kind of dietary fiber. Dietary fiber is bound together in such a way that it can not be ready in the small intestine. Besides it, dietary fiber may make humans feel full longer. This causes mung bean to help keep blood sugar levels low. Nevertheless, the different processes following the soaking would give different effects on starch digestibility, as example, if soaking was followed by dehulling and cooking, the level of starch digestibility would increase as obtained by Grewal and Jood (2009).

3.2 Effects of soaking time on protein content and protein digestibility

The values of protein digestibility were significantly different on 6 hrs (P3) and 8 hrs (P4) of treated soaking time compared to P0, P1, and P2 as shown in Table 2. Protein digestibility increased during soaking treatment, up to 6 hrs of soaking time, and then the protein digestibility slightly decreased on 8 hrs of seed soaking.

Table 2. Effects of soaking time on protein content and protein digestibility.

•	-	•	
	Soaking	Protein content	Protein digestibility
	time (hr)	(% db)	(%)
	P0	26.29 ± 0.27	46.93 ± 1.53^{a}
	P1	25.88 ± 0.40	48.41 ± 0.38^{ab}
	P2	25.90 ± 0.25	48.56 ± 0.54^{ab}
	P3	25.68 ± 0.33	51.29±1.20°
	P4	26.10 ± 0.82	49.83 ± 3.00^{bc}

Values are presented as mean \pm SD, n = 3. Values with different superscripts within the same column are statistically significantly different based on the LSD Test (p<0.05). P0: control (without soaking), P1: soaked for 2 hrs, P2: soaked for 4 hrs, P3: soaked for 6 hrs, P4: soaked for 8 hrs.

This phenomenon was affected by increasing the soluble protein of mung bean seeds from 108.96 mg/g of dry weight in raw seeds without soaking to 159.81 mg/g of dry weight in seeds with 6 hrs of soaking time (Widjajaseputra et al., 2019b). The higher soluble protein indicated the readiness of proteins to be digested. Based on protein digestibility shown in Table 2, the recommended soaking time for mung bean seed was 6 hrs, because a germination process has taken place longer than 6 hrs of soaking. During germination periods there were hydrolyzing processes that would affect protein and starch degradation to produce energy for the new plant. These phenomena were revealed by Grewal and Jood (2009) that the germination process decreased starch content, thereby increasing soluble sugars and improved starch digestibility to 49% and 48% in two different green gram (Vigna radiata L.) cultivars

respectively.

3.3 Perspective of mung bean as a healthy food source for the diabetics

The high protein digestibility of mung beans as a result of soaking for 6 hrs can support its usage as a good food source of protein. A combination of mung bean protein and rice protein in a 3:4 ratio respectively can increase the chemical amino acid score to 72 (Dahiya et al., 2015). Based on this recommendation, an increase in protein bioavailability can be obtained. Consumption of legumes provides qualified protein along with other micronutrients without adding extra energy or fat. According to Mak et al. (2018), a diet high in proteinlow starch was associated with a lower risk for gestational diabetes mellitus among women who were overweight at pre-pregnancy. Mung bean seeds are an affordable source of not only protein but also starch, which has the advantage of consisting of higher resistant starch compared to cereal, root, and tuber starch. Based on these characteristics, mung bean can be used as a good source of resistant starch with a high protein content in various food applications.

Mung beans as one kind of variety of pulses, are high in fiber and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels (Dipnaiki and Bathere, 2017). Previously, the same thing was also reported by Rebello et al. (2014), that mung bean like other legumes had a medium glycemic index (GI) and high content of dietary fibers, which makes benefit to be a healthy food source. High resistant starch content combined with medium GI is a positive attribute that could promote the product as a better food choice not only for diabetes mellitus patients but also for people which is suffered from celiac disease, obesity, and other malnutrition symptoms (Rebello et al., 2014). In particular, for the nutrition management of gestational diabetes mellitus, it is important to focus on the quality of carbohydrates and encourage the consumption of vegetables, fruits, complex carbohydrates, and high-fiber foods (Kapur et al., 2020). A balanced diet consisting of healthy carbohydrate sources with adequate proteins and fats based on individual and cultural food preferences as well as based on physical activity and physiological status will result in weight control as well as diabetes management (Devi et al., 2021).

4. Conclusion

Based on the rate of starch hydrolysis of soaked mung beans, mung bean starch is a slow-digesting starch. There was a trend of increasing protein digestibility of mung bean seeds during soaking up to 6 hrs of soaking time (in a range of 46.93-51.29%). Based on the obtained data, the recommended soaking time was 6 hrs which revealed the optimum digestibility of starch and protein for diabetics. Further investigation in the processing field will be needed to get better food choices for diabetics.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

Authors would thank the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research; Technology and Higher Education, Republic of Indonesia, for research fund through the Decentralization Research Program of 2018 and 2019 (Penelitian Dasar Unggulan Perguruan Tinggi with contract number of 115O/WM01.5/N/2018 and 200U/WM01.5/N/2019 respectively).

References

- Association of the Official Analytical Collaboration (AOAC) International. (2010). Official Methods of Analysis. 18th ed. Washington, D.C. USA: AOAC International.
- Dahiya, P.K., Linnemann, A.R., Van Boekel, M.A., Khetarpaul, N., Grewal, R.B. and Nout, M.J. (2015). Mung bean: technological and nutritional potential. *Critical Reviews in Food Science and Nutrition*, 55 (5), 670-688. https://doi.org/10.1080/10408398.2012.671202
- Devi, M.P., Mudraganam, S. and Saraf, V. (2021). A Review on the role of carbohydrates in the management of diabetes and obesity. *International Journal of Food Science and Nutrition* 6(6), 33-38.
- Dipnaiki, K. and Bathere, D. (2017). Effect of soaking and sprouting on protein content and transaminase activity in pulses. *International Journal of Research in Medical Sciences*, 5(10), 4271-4276. https://doi.org/10.18203/2320-6012.ijrms20174158
- Fabbri, A.D.T., Schacht, R.W. and Crosby, G. (2016). Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. *NFS Journal*, 3, 8-12. https://doi.org/10.1016/j.nfs.2016.02.002
- Fayyaz, N., Mohebbi, M. and Milani, E. (2018). Effect of germination on nutrients, mineral, phytic acid and enzyme activity of mung bean. *Acta Medica Mediterranea*, 34, 597-604.
- Goni, I., Garcia-Alonso, A. and Saura-Calixto, F. (1997).

- A starch hydrolysis procedure to estimate glycemic index. *Nutrition Research*, 17(3), 427-437. https://doi.org/10.1016/S0271-5317(97)00010-9
- Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. *Food Chemistry*, 56(4), 445 -449. https://doi.org/10.1016/0308-8146(95)00222-7
- Grewal, A. and Jood, S. (2009). Chemical composition and digestibility (*in vitro*) of green grain as affected by processing and cooking methods. *British Food Journal*, 111(3), 235-242. https://doi.org/10.1108/0007070091094144
- Guillon, F. and Champ, M.M.J. (2002). Carbohydrate fractions of legumes: uses in human nutrition and potential for health. *British Journal of Nutrition*, 88 (3), S293-S306. http://doi.org/ 10.1079/BJN2002720
- Kapur, K., Kapur, A. and Hod, M. (2020). Nutrition management of gestational diabetes mellitus. *Annals of Nutrition and Metabolism*, 76(suppl 3), 17-29. https://doi.org/10.1159/000509900
- Kaur, M., Sandhu, K.S., Ahlawat, R.P. and Sharma, S. (2015). In vitro starch digestibility, pasting and textural properties of mung bean: effect of different processing methods. *Journal of Food Science and Technology*, 52(3), 1642-1648. http://doi.org/10.1007/s13197-013-1136-2
- Lang, V., Bornet, F.R.J., Vaugelade, Strihou, M., Luo J. and Pacher, N. (1999). Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn and mung bean starches in healthy men1-3. *The American Journal of Clinical Nutrition*, 69, 1183-1188. https://doi.org/10.1093/ajcn/69.6.1174
- Li, Z.G., Liu, W.J., Shen, Q., Zheng, W. and Tan, B. (2008). Properties and qualities of vermicelli made from sour liquid processing and configuration starch. *Journal of Food Engineering*, 86(2), 162-166. https://doi.org/10.1016/j.jfoodeng.2007.09.013
- Mak, J.K.L., Pham, N.M., Lee, A.H., Tang, L., Xiong-Fei Pan, Binns, C.W. and Sun, X. (2018). Dietary patterns during pregnancy and risk of gestational diabetes: a prospective cohort study in Western China. *Nutrition Journal*, 17, 107. https://doi.org/10.1186/s12937-018-0413-3
- Marquezi, M., Gervin, V.M., Watanabe, L.B., Bassinello, P.Z. and Amante, E.R. (2016). Physical and chemical properties of starch and flour from different common bean (*Phaseolus vulgaris* L.) cultivars. *Brazilian Journal and Food Technology*, 19, e2016005. https://doi.org/10.1590/1981-6723.0516
- Menon, R., Padmaja, G., Jyothi, A.N., Asha, V. and

- Sajeev, M.S. (2016). Gluten-free starch noodles from sweet potato with reduced starch digestibility and enhanced protein content. *Journal of Food Science and Technology*, 53, 3532-3542. https://doi.org/10.1007/s13197-016-2330-9
- Mertz, E.T., Hassen, M.M., Cairns-Whittern, C, Kirleis, A.W., Tut, L. and Axtell, J.D. (1984). Pepsin digestibility of proteins in sorghum and other major cereals. *Proceedings of the National Academy of Sciences of the United States of America*, 81, 1-2. https://doi.org/10.1073/pnas.81.1.1
- Mubarak, A.E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (*Phaseolus aureus*) as affected by some home traditional processes. *Food Chemistry*, 89(1), 485-495. http://doi.org10.1016/j.foodchem.2004.01.007
- Pagar, H., Athawale, G. and Raichurkar, S. (2021). Effect of soaking, germination, and drying on antinutrients, minerals, and functional properties of horse gram along with its commercial application. *International Journal of Food Science and Nutrition*, 6(2), 50-54.
- Rebello, C.J., Greenway, F.L. and Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. *Obesity Reviews*, 15(5), 392-407. https://doi.org/10.1111/obr.12144
- Singh, N., Sing, J., Kaur, L., Sodhi, N.S. and Gill, B.S. (2003). Morphological, thermal, and rheological properties of starches from different botanical sources. *Food Chemistry*, 81(2), 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019a). Mung bean as a food source for breastfeeding women with diabetes mellitus in Indonesia: Carbohydrate profiles at different soaking times. *Food Research*, 3(6), 828-832 hrsttps://doi.org/10.26656/fr.2017.3(6).209
- Widjajaseputra, A.I., Widyastuti, T.E.W. and Trisnawati, C.Y. (2019b). Potency of mung bean with different soaking times as protein source for breastfeeding women in Indonesia. *Food Research*, 3(5), 501-505. https://doi.org/10.26656/fr.2017.3(5).105.

FR-2023-081 - Article Production

Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id> To: Food Research Production <fr.production@outlook.com>

Tue, Mar 18, 2025 at 6:10 AM

Dear Dr. Vivian,

I approve of the revised galley proof.
I will follow up with proof of payment transfer after the process is complete.
Thank you so much for your kind help.

My best regards, Theresia Endang Widoeri W. [Quoted text hidden] Bukti konfirmasi artikel *published online* (26 Maret 2025)

FR-2023-081 - Article Production

Food Research Production fr.production@outlook.com
To: "Ir. Theresia Endang Widoeri Widyastuti, MP." widoeri@ukwms.ac.id

Wed, Mar 26, 2025 at 9:28 AM

Dear Dr Theresia

Kindly be informed that your manuscript has been published and assigned to Food Research 2025, Vol. 9, Issue 2 (April). Your manuscript is currently available online and in press on our website https://www.myfoodresearch.com. Alternatively, you can download a copy of the manuscript by clicking on the following link:

https://doi.org/10.26656/fr.2017.9(3).081

We encourage you to share your published work with your colleagues. Thank you for your fine contribution. We hope that you continue to submit other articles to the Journal.

Thanks & Regards,

Dr Vivian New, PhD

Editor | Food Research

Email: fr.production@outlook.com Website: www.myfoodresearch.com

From: Food Research Production <fr.production@outlook.com>

Sent: Monday, 24 March, 2025 1:39 PM

To: Ir. Theresia Endang Widoeri Widyastuti, MP. <widoeri@ukwms.ac.id>

[Quoted text hidden]

[Quoted text hidden]