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Jatropha curcas L. seed is widely studied for the production of biodiesel. A major drawback is the presence
of excess free fatty acid in its seeds. The fatty acids make it unsuitable as feedstock oil in the conventional
base-catalyzed process for biodiesel production. In this study, in situ transesterification of seed oil was
studied with the aim to reduce production steps. A mixture of methanol, acetic acid and water under
subcritical conditions was employed for the in situ transesterification of J. curcas L. seed kernel to
produce biodiesel under less severe operating conditions as compared to supercritical methanol
technologies. A yield of 94-98% was obtained, based on extractable lipids (54-56% based on dry kernel).
The process investigated is capable of tolerating the presence of moisture (up to 10%) and free fatty acid
(up to 5%), eliminating the need for pre-treatment steps.

© 2014 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Producing biodiesel by supercritical and subcritical solvent
technologies has gained interest in the past decade. Most related
research was aimed at avoiding the use of a catalyst. The absence of
a catalyst lessened downstream processing steps and reduced the
amount of wastewater generated.

Among the early works in supercritical alcohol transesterifica-
tion, Saka and Kusdiana [1] used refined rapeseed oil with oil to
methanol molar ratio of 1:42 at 350 °C and 43 MPa and achieved a
conversion of over 95% in 4 min. Warabi et al. [2] investigated
whether FFAs can be esterified with supercritical alcohols and
found that high yield (95%) in less than 15 min at 300 °C was
obtained for methanol at 20 MPa and for ethanol at 15 MPa. Their
results showed that the presence of FFA in supercritical alcohol
(trans)esterification will not be a problem if the reaction is carried

Abbreviations: AG, acylglyceride; AOCS, American Oil Chemist Society; FA, fatty
acid; FAME, fatty acid methyl ester; FFA, free fatty acid; HTGC, high temperature gas
chromatography; JCL, Jatropha curcas L.; SSR, solvent to solid ratio.
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at 300 °C for 15 min for methanol or 45 min for other alcohols.
Kusdiana and Saka [3] investigated the effects of water on biodiesel
production under supercritical methanol condition and found that
water up to 50% by weight could be tolerated during esterification.
They demonstrated that when waste palm oil containing more
than 20% FFA and more than 61% moisture was used as raw
material, high yield (95.8%) can be achieved.

Although the supercritical methanol process can tolerate the
presence of FFA and water, it requires high methanol loading, high
temperature and high pressure. These severe conditions may lead
to thermal degradation. To minimize thermal degradation of
biodiesel, Imahara et al. [4] suggested that the supercritical
methanol method should be carried out at temperature below
300 °C, preferably at 270 °C, with a pressure higher than 8.09 MPa.
Shin et al. [5] reported that degradation of unsaturated fatty acids,
found in vegetable oils in the presence of water, was observed at
temperatures above 250 °C with an operating pressure of 20 MPa.
Different co-solvents, propane [6], heptane [7] and carbon dioxide
[8] have been used to lower temperature to 280°C in the
supercritical methanol method. In the work by Tan et al. [7],
methanol loading was lowered to 30 moles per mole of palm oil by
using heptane as co-solvent. However, Imahara et al. [9] concluded
that the addition of hexane, CO, and N, as the third component
barely contributed to the improvement in the reaction rate. They
found that the addition of N, decreased the total glycerol in the
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biodiesel produced and improved its oxidation stability. Most
studies using a co-solvent successfully lowered down process
severity, but did not take into consideration the presence of water.

The use of the supercritical alcohol method has an advantage
over the conventional method in biodiesel production. Low quality
oil such as non-edible and waste oils can be used directly as
feedstock without the need of pretreatment. This has the potential of
greatly lowering biodiesel production cost. In order to eliminate the
step of oil extraction from seeds or microbial cells, in situ
transesterification of oil seeds or microbial biomass under sub-
and super-critical methanol conditions has been extensively studied
[10-16]. Due to the high oil content of Jatropha curcas L. (JCL) seeds,
the high yield of oil seeds and its easy of cultivation, non-edible oil
from JCL seeds has recently been suggested as the next generation
feedstock oil for biodiesel production. Lim et al. [10] studied the
supercritical fluid reactive extraction of JCL seeds with methanol.
They investigated a pretreatment of drying and grinding of JCL seed
kernels and found that moisture content of kernel should be reduced
to 0.59% at temperature no higher than 75 °C for no more than 12 h
prior to in situ (trans)esterification reaction [11,13]. The optimum
particle size used in their study was between 1 mmand 0.5 mm [10].
They investigated the effects of co-solvents and found that pentane
and CO, played important roles in reducing methanol loading [12].
Finally an optimized process was developed employing a solvent to
solid ratio of 5.9 mL/g at 300 °C and an initial pressure of 2.0 MPa
using CO, for a reaction time of 12.3 min (a heating up time of 80-
90 min was required)[14]. In most of their studies high temperature
(300 °C) was used and drying of kernel was required. Moreover high
space loadings (30-54 mL/g) were employed [13,14].

In this study the production of biodiesel by in situ transester-
ification of JCL seed kernels using mixtures of methanol and acetic
acid under subcritical condition was investigated with the objective
to decrease process severity. The effects of pressurizing gas (CO, or
N,) and moisture on the overall biodiesel yield were studied. In
addition, space loading and effective utilization of reactor volume to
improve the overall biodiesel productivity were also investigated.

2. Materials and methods
2.1. Materials

JCL seeds were obtained from Muhammadiyah University
(Malang, Indonesia). Seeds obtained were sun dried and kept at
—20 °C prior to use. Standards of fatty acid (FA), acylglyderides
(AG) such as monoolein, diolein and triolein and fatty acid methyl
esters (FAMEs) were obtained from Supelco (Bellfonte, PA). All
solvents and reagents used were either high performance liquid
chromatography (HPLC) or analytical reagent grade, obtained from
commercial sources.

2.2. Sample preparation and characterization

Sun-dried JCL seeds were de-hulled manually. Kernels were
ground to particle size of about 1.0 mm. Ground kernels were
divided into 2 portions, the first were kept below —20 °C for later
use in transesterification reactions. The second portion was kept at
ambient room temperature to study the effect of storage on FFA
content in kernel.

Ground kernel (5 g) was loaded in a pre-dried glass tube. The
kernel loaded tube was put into a freeze drier (Labconco FreeZone
2.5 L Model: 7670520, Kansas City, MO) operated at —44 °C and
11.0Pa for 48 h. Water content of the ground kernels was
calculated based on difference in weight of kernel sample before
and after freeze-drying.

To determine the amount of extractable crude lipid, a seed
sample (5 g) was placed into a thimble. The thimble was then

loaded into a Soxhlet extractor and extracted for 8 h using 150 mL
of n-hexane as the solvent.

The FFA content in the crude lipid was determined by the
titrimetric method following AOCS official methods (Method Ca
5a-40) and by high temperature gas chromatography (HTGC).
Analyzing known samples of FA with varied concentrations
showed that the results of two methods differ from each other
by less than 0.5%. Amount of unsaponifiable matter in the lipid
sample was analyzed using AOCS official methods (Method 6b-53).

Saponified lipids obtained after determination of unsaponifi-
able matter were collected and acidified to a pH of 2 with
concentrated sulfuric acid and continually stirred at 60 °C until the
solution was clear. The solution was then allowed to settle until
two phases formed. The upper layer consisting of FAs was
extracted with hexane and then reacted with BFs;-methanol for
later analysis of FA profile using HTGC.

Dewaxing and degumming of the extracted lipids was carried
out before its AG composition was analyzed using HTGC. In brief,
1 g crude lipid was dissolved in 6 mL acetone and heated in a 60 °C
water bath until the solution was clear. The solution was allowed
to cool to room temperature and then stored at 4 °C for 3 h. The
solution was then filtered (0.22 wm pore size) to remove the
precipitated wax and gum. The procedure was repeated twice.

2.3. In situ transesterification

Ground seed kernel (3.2 g) containing ~5% moisture was loaded
into a glass chamber (190 mL) and placed in a high-pressure
reactor (290 mL). The ground kernel was mixed and suspended in a
mixture of methanol and acetic acid. A detailed reactor description
and configuration is described elsewhere [17]. The reactor is
equipped with an external electric heater and a magnetic stirrer.
Temperature in the reactor was controlled to within +2 °C. After
the sample was put in the reaction chamber, the reactor was sealed
and the chamber was purged with N,. Prior to heating, the chamber
was pressurized using N, or CO, to ensure that the solvent was under
subcritical state at the temperature carried out in this study.

The reaction was carried out at 250 °C for a predetermined time.
Heating rate of the reactor was kept at 5 °C/min with a heating
period of 40-45 min. Reaction time was started as the desired
reaction temperature was reached. After the reaction, the reactor
was rapidly cooled, pressure inside the reactor was released and
the product in the reactor was collected at room temperature.

The reaction product was vacuum filtered using a Buchner funnel
with Advantec No. 2 filter paper (8 wm pore size) to separate the
spent solid from the reaction product. The retained solid was washed
three times (each with 30 mL methanol) to recover the FAME
produced. Methanol and acetic acid in the filtrate were removed and
recovered using a rotary evaporator (BUCHI Labortechnik AG in
Flawil, Switzerland). The evaporator was operated at 40 °C and
13.3 kPa. The residual acetic acid and water were further removed by
heating the mixture to 80 °C and 13.3 kPa. The concentrated organic
extract was then extracted three times (each with 30 mL hexane) to
recover the FAME produced and washed three times (each using
20 mL, 5% NaCl solution) in a separation funnel to remove non-lipid
products co-extracted by methanol. The solution was allowed to
clarify in between washings. The upper hexane phase, which
contained FAME, was withdrawn. Hexane from the combined
extract was evaporated under a vacuum using a rotary evaporator.
The recovered product was weighed and analyzed for its FAME, FA
and AG contents.

2.4. Gas chromatography analysis

A 20 mg aliquot of the lipid sample was dissolved in ethyl
acetate and filtered through 0.2 pm PTFE hydrophobic membrane
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to remove moisture. From this prepared solution, a 1.0 pL sample
was injected into HTGC for analysis. External calibration curve was
generated using 0.2-20 mg of a pure standard dissolved in ethyl
acetate. The calibration curve was generated by fitting a straight
line with the y-intercept passing through zero (R* < 0.99).
Qualitative and quantitative analyses of FAME and un-reacted
FFA in each sample were performed using a Shimadzu GC2010
(Kyoto, Japan) equipped with a split-injector and a FID. Separation
was carried out on a ZB-5HT (5% phenyl)-methylpolysiloxane
nonpolar column (15m x 0.32 mm i.d., 0.1 mm film thickness)
(Zebron, Phenomenex, Torrence, CA, USA). Both injector and
detector temperatures were set at 370 °C. The column temperature
was programmed to increase at a rate of 15.0 °C/min from 80 °C to
365 °C and held at 365 °C for 48 s. N, was used as the carrier gas
with a linear velocity of 30 cm/s at 80 °C. Data analyses were
carried out by the software “GC Solution version 2.3”, Shimadzu.

3. Results and discussion

The moisture content of the ground JCL seed kernels was
4.63 4 0.36%. The crude extractable lipid mass fraction was found to
be 58.1 + 0.98%. Most of the extracted lipids were saponifiable with
only 0.84 + 0.1% being unsaponifiable. Further analysis showed that
88.22 + 0.61% of the extracted lipid could be converted to FFA. The
theoretical maximum overall FAME yield is 92.63% if based on
extractable lipid and 53.69% if based on dry kernel. Unlike refined oils,
which are primarily triglycerides. The crude lipid extracted from JCL
seed kernels contained 12.98 + 0.84% wax and gums, 2.53 + 0.25%
FFA and 85.83 + 1.31% AG. The apparent loss in the yield is due to the
mass of the glycerol backbone of the AG, phosphate group in
phospholipids (gums) and long chain fatty alcohols of wax esters,
which do not contribute to formation of FAME and FAME yield.

The presence of moisture and FFA in feedstock oil is a nuisance
in biodiesel production. Moisture and FFA contents in feedstock oil
are usually kept below 1% to avoid side reactions in conventional
processes. Seeds should be kept dry to avoid germination, in which
hydrolysis of storage lipids and consumption of lipids in post
germination occur causing a decrease in extractable lipids [18]. To
avoid this, seeds were dehulled, ground and kept dry in this study.
Even with such precaution, the increase of FFA in the ground kernel
is unavoidable (Fig. 1). However the amount of extractable crude
lipid remained relatively unchanged.

The development of a (trans)esterification method capable of
tolerating high moisture and FFA contents in feedstock oil is
important. Extra energy is required for removing moisture and
long storage of oil seeds promotes formation of FFA through
hydrolysis of AGs in seeds.
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Fig. 1. FFA content in extracted lipids from stored ground JCL seed kernels over a
period of 3 months.

Table 1

Effects of methanol to solid ratio on FAME yield. Reactions were carried out at 250 °C

for 1h and initially pressurized to 4 MPa using N.

Methanol to kernel ratio (mL/g)

Yield (%)*

5.0 31.51+£1.29
6.0 36.48 +£1.65
7.0 42.65+1.72
8.0 47.13+1.64
10.0 47.86+1.91
12.0 45.60+3.27
15.0 37.07 £2.07

# Mass fraction (%) of FAME based on the dry kernel (theoretical max-
imum ~ 53.69%).

3.1. Effects of methanol loading on FAME yield

A control experiment using only methanol as the solvent and
the reactant was carried out at 250 °C. As shown in Table 1, FAME
yield increased with increasing methanol loading up to 10 mL per
gram of dry kernel. Further increase in methanol loading resulted
in lower FAME yields. Similar result was observed at 290 °C by Lim
and Lee [12,13]. The decrease in yield was attributed to the
improvement in solubility at higher solvent to solid ratio (SSR)
resulting in a reverse reaction (glycerolysis of FAME). Glycerolysis
was less likely to occur as methanol was present in a large excess
and methanol was not continuously removed during reaction,
which is often employed during glycerolysis. A possible reason is
that dilution of the reaction system by the improved solubility at
higher SSR resulted in slower rate of reaction, hence lower FAME
yield.

3.2. Effects of acetic acid to methanol ratio on FAME yield

At 250 °C and a SSR of 10 mL/g, a maximum yield of 47.86% was
obtained which is only 89.14% of the theoretical yield (53.69%).
Mixtures of acetic acid and methanol were tested at different SSRs
to achieve higher yields. Table 2 shows that at an acetic acid
volume fraction of 0.25 in the solvent and a SSR of 10 mL/g, the
highest FAME yield (52.93%) was obtained which is 98.58% of the
theoretical yield. Acetic acid fractions higher than 25% were found

Table 2

Effects of SSR and volume fraction of acetic acid in solvent mixture (methanol +a-
cetic acid) on FAME yield. Reactions were carried out at 250 °C for 1h and initially
pressurized to 4 MPa using N».

Solvent to kernel
ratio (mL/g)

Volume fraction
of acetic acid (% AA)

Yield (%)*

5.0 0 31.51+£1.29
20 40.78 +£0.49

25 41.99+0.85

33 40.21+1.67

6.0 0 36.48 £1.65
20 43.37+0.81

25 44.45+0.51

33 43.01+£0.53

7.0 0 42.65+1.72
20 46.09 +£1.01

25 47.39+0.95

33 46.29+1.20

8.0 0 47.13+1.64
20 49.12+1.27

25 50.76 +0.51

33 46.74 +0.66

10.0 0 47.86+1.91
20 51.03+0.50

25 52.93+0.03

33 46.98 +1.16

# Mass fraction (%) of FAME based on the dry kernel (theoretical max-

imum ~ 53.69%).
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to be detrimental to FAME yield. At fixed SSR, the use of mixture of
acetic acid and methanol enabled the reaction to be carried out at a
less severe temperature of 250 °C and resulted in high FAME yield.

Pure methanol was capable of achieving similarly high FAME
yields, but required longer reaction time (120 min). The addition of
a 25% acetic acid—-methanol mixture cut the reaction time in half to
reach maximum yield (Fig. 2). At 25% acetic acid, prolonging
reaction time to more than 60 min resulted in lower yields due to
degradation in acidic environment.

In this study, a SSR of 10 mL/g was required at 250 °C compared
to reactions carried out at 300 °C which only required a SSR of
5.9 mL/g [14]. This is probably due to better solubility of oil in
methanol at higher temperature. Nevertheless an overall reaction
time of 105 min including heating up of the reactor is comparable
to those reported in the literature.

The role of acetic acid in the reaction is not clear. This weak acid
could act as an acid catalyst at high temperatures. Experiments were
also carried out at 65°C using conventional methods of acid
transesterification utilizing crude Jatropha oil and acetic acid as the
catalyst. This did not result in any detectable FAME even at a reaction
time of 24 h (data not shown). In view of its chemical structure,
acetic acid is a short chain FFA. It was previously found that the
presence of FFA could act as an acid catalyst in the hydrolysis of oils
and supercritical esterification [19,20]. This catalytic effect could
have been more pronounced at elevated temperatures and due to
the presence of water in the reaction system. Apart from the possible
catalytic activity provided by acetic acid, its presence has enhanced
and accelerated the extraction of oil from JCL seed kernels. It was
reported that lipids or oils have better solubility in an acidic
environment [21]. From Fig. 3 it can be seen that upon reaching
250 °C, the presence of acetic acid allowed nearly complete
extraction of lipids from the solid matrix of kernels. Another
possibility is that the esterification of acetic acid to methyl acetate,
which could act as a good extracting solvent.

3.3. Effects of pressurizing gas and stirring on FAME yield

Both liquid and gas co-solvents have been employed by various
researchers to improve the solubility and extraction efficiency. The
main disadvantage of using liquid co-solvents is the increase in SSR
and may result in decreasing the overall volumetric productivity.
The use of gas co-solvents like CO, would be favorable as it will not
decrease the overall volumetric productivity and is easily
separated after reaction. Table 3 shows that upon the addition
of CO,, yields were improved significantly at lower SSR (5 mL/g).
The theoretical maximum yield was achieved at a SSR of 10 mL/g.
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Fig. 2. Effects of volume fraction of acetic acid in solvent on time course of FAME
yield. Reactions were carried out at 250°C, a SSR of 10mL/g and initially
pressurized to 4 MPa using Nj.
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Fig. 3. Extraction efficiency versus reaction time at various acetic acid
concentrations. Reactions were carried out at 250°C, a SSR of 10 mL/g and
initially pressurized to 4 MPa using N,.

Another important parameter affecting FAME yield is stirring.
Stirring would promote better contact between solid and solvent.
Fig. 4 shows mixing improved the FAME yield. A FAME yield higher
than the theoretical yield was achieved and is probably due to the
release of FFA from the hydrolysis of structural lipids in the seed’s
kernel. The same phenomena were observed in previous inves-
tigations [10-14].

Even at a reduced SSR of 7 mL/g, the combined addition of CO,
and stirring resulted in a FAME of 56.80 4 1.3% based on dry kernel
(98.01 + 2.3% on hexane extractable lipid). Prolonged reaction time
resulted in decreased FAME yield as previously observed except for a
SSR of 5 mL/g which achieved a FAME yield of 55.69 + 0.6% at a
reaction time of 90 min. At a SSR of 5 mL/g, prolonged reaction did not
result in apparent degradation as the amount of acetic acid present
was lesser.

Consider a reactor filled with the reaction mixtures to the same
final volume, a lower SSR is preferable as it gives higher overall
productivity. In this study, by referring to the results shown in Fig. 5,
an overall productivity of 39.9 kg/(m> h) and 40.6 kg/(m> h) was
obtained at a SSR of 5 and 7 mL/g, respectively. The similar
productivity obtained is due to the extended time required at lower
SSR. In a batch process a shorter batch cycle time is preferable thus a
SSR of 7 mL/g was used in the subsequent experiments.

3.4. Effects of space loading and pressure on FAME yield

A smaller space loading implies a higher amount of solid is
loaded into the reactor [13]. Although the highest loading
investigated in this study resulted in a reaction mixture occupying
only 68.8% of the effective reactor volume, it occupied ~87% of the

Table 3

Effects of pressurizing gas and SSR (25% acetic acid and 75% methanol) on FAME
yield. Reactions were carried out at 250 °C for 1 h and initially pressurized to 4 MPa
using N, or CO,.

Solvent to kernel ratio (mL/g) Pressurizing gas Yield (%)*

5.0 Nitrogen 41.99+0.85
Carbon dioxide 49.62 +1.41

7.0 Nitrogen 47.39+0.95
Carbon dioxide 51.37+0.61

10.0 Nitrogen 52.93+0.03
Carbon dioxide 53.54+£0.40

2 Mass fraction (%) of FAME based on the dry kernel (theoretical max-
imum ~ 53.69%).
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Table 4

Reaction Time (min)

Fig. 5. FAME yield versus time at various SSR. Reactions were carried out with

stirring at 250 °C and initially pressurized to 4 MPa using CO,.

Effect of space loading on FAME yield in in situ transesterification of JCL seed kernel. Reactions were carried out at 250 °C for 60 min with stirring and initially pressurized to

4 MPa using CO,.

Space loading (mL/g)* Utilized reactor volume (mL)

Initial pressure (MPa)

Final pressure (MPa) Extraction efficiency (%)° Yield (%)* (Kernel)®

80.0 ~25 (10.4%)° 4.0
48.0 ~41 (17.1%) 4.0
24.0 ~82 (34.2%) 40
12.0 ~165 (68.8%) 40
12.0 ~165 (68.8%) 1.0
12.0 ~165 (68.8%) ~0.1

12.0 103.72 98.01 (56.80)
13.0 102.26 92.57 (53.65)
14.0 104.69 90.70 (52.56)
21.0 104.26 94.43 (54.72)
14.0 102.98 88.81 (51.47)
10.0 99.29 88.24 (51.14)

2 Space loading =reactors effective volume (240 mL)/g of dry solid.
b Fraction of the reactor volume utilized.

€ Mass fraction (%) of hexane soluble product based on the hexane extractable lipid.

d Mass fraction (%) of FAME based on the hexane extractable lipid.
€ Mass fraction (%) of FAME based on the dry kernel.

glass chamber and for safety reasons this was taken as the upper
limit. Table 4 is a summary of the experimental results with
various space loadings and initial pressures. At a fixed initial
pressure, final pressure in the reactor increased with decreased
space loading due to the smaller effective volume available for
solvent and co-solvent expansion. Although a higher final pressure
was achieved, FAME yield slightly decreased which is probably due
to the lesser amount of CO, in the system. A decreased available
space also required less CO, to be added at a fixed initial pressure.
Another possibility is the improved solubility due to higher
pressure achieved, which could have resulted in a similar dilution
effect observed previously.

Varying the initial pressure of CO, added at a fixed space
loading resulted in lower final pressure. This further confirms that
addition of CO, is required to improve the yield of FAME. Higher
final pressure did not significantly change FAME yield; the amount
of CO, added played a more important role. Further investigations
is required to better understand the synergic effects on the FAME
yield induced by the available space for loading, expansion of
solvents, amount of CO, and final pressure. This study is the first to
obtained high FAME yield with low space loading and high solid
loading.

3.5. Effects of moisture content and added water on FAME yield
All oil seeds contain a certain amount of moisture. Methanol

and acetic acid are both hygroscopic solvents and thus the
presence of water in the reaction system is inevitable. It is

important to develop a process operates at lower temperature
(250°C) that can tolerate moisture so that hydrothermal
degradation of products can be avoided.

The presence of water had a positive effect on FAME formation
in the process developed in this study (Fig. 6). A water content of 2%
in the seed kernel resulted in a slight increase in FAME yield.

59.0%
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g 4 ! .
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X 47.0%
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mass fraction (%) of water in the kernel
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Fig. 6. Effects of moisture content in JCL seed kernel on FAME yield. Reactions were
carried out at 250 °C for 60 min with stirring and initially pressurized to 4 MPa
using CO,.
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Table 5
Comparison of conventional and non-conventional catalyzed in situ transesterification methods.
In situ (trans)esterification method Oil content SSR Temp Pressure Time (h) Space % yield® Ref.
(%) (mL/g) &) (MPa) loading® (Kernel)?
(mL/g)
Acid catalyzed (H,SO4 21.8 wt.%) 54.6 10.5 60 ~0.1 10 25 98.1 (53.53)° [23]
Microwave (110 W) assisted 42.5 Step 1 10.5 n.s. n.s. 0.5 (0.8)" 25 90.0 (38.3) [24]
2-step (ethanolysis) Step 2
(HpS04 7.5 Wt.%) 8.15
(KOH 5 mol/L)
Alkaline catalyzed (NaOH 3.94 wt.%) 53.7 9.8 65 ~0.1 1 n.s.® 98.0 (52.62) [25]
Self-catalyzed methanolysis (germinated seeds) 51.5 2.61 35 ~0.1 8 n.s. 87.6 (45.1) [18]
Co-solvent (hexane 2.5 mL/g)
Alkaline catalyzed methanolysis n.s. 7.5 38 ~0.1 1.72 n.s. 89.0 [26]
(NaOH 1.52wt.%)
PTC (BTMAOH:NaOH 1.42)
Alkaline catalyzed ethanolysis n.s. 7.5 35 ~0.1 1.54 n.s. 994 [26]
(NaOH 1.38 wt.%)
PTC (BTMAOH:NaOH 1.62)
Sub-critical 57.9 7 250 12.0 1.0 (1.75) 80.0 98.01 (56.8) This study

Methanol-acetic acid (7.5:2.5)
Co-solvent (CO, 4 MPa)

2 Space loading =reactor effective volume in mL/g of dry solid.

b Total reaction time including reactor heat up time.

¢ Mass fraction (%) of FAME based on the hexane extractable lipid.
d Mass fraction (%) of FAME based on the dry kernel.

€ n.s.: not specified.

Further increase in water content did not have significant effect on
FAME yield. The results show that this process can use wet kernel
with a moisture content up to 10% without any negative effect on
FAME yield.

The presence of water may have aided the hydrolysis of lipids
thus indirectly lowering the activation energy in FAME production
since FFAs can be esterified at lower activation energies [19].
Another possibility was the catalytic activity of water was present
at the reaction conditions of this study. Water at 250 °C under a
subcritical state releases maximum amounts of hydronium and
hydroxide ions, contributing to its catalytic activity [22].

3.6. Comparison with other in situ technologies

The result of the in situ transesterification of JCL seed kernels
obtained in this study was compared with those of various
biodiesel production methods including conventional base-cata-
lyzed methanolysis and supercritical technologies. From Table 5 it
can be seen that SSR used in this study is lower than most non-
supercritical processes reported in literature utilizing acid and
base catalyst, requiring an SSR of between 7.5 ml/g and 10.5 ml/g

[23-26], except for the self-catalyzed methanolysis utilizing
indigenous lipase to self-catalyze the reaction. Although the
self-catalyzed reaction used a lower SSR, it required a 4-day
germination period [18]. The germination period varies depending
on seed strain and activity of the indigenous lipase. The method
used in this study required much higher temperatures than the
conventional acid/base catalyzed reaction. Nevertheless this
method needed much shorter time than acid or enzyme catalyzed
reactions to achieve comparable FAME yields. The process
developed in this study does not require neutralization of the
catalyst. Less post treatment is needed and recovery of the acetic
acid used can be incorporated into the conventional methanol
recovery system.

Table 6 gives comparison of FAME yield obtained by using super
and sub critical methanol technologies on in situ transesterifica-
tion of the JCL seed kernel. When supercritical methanol was
employed, high temperature (~300 °C) and high pressure (9.5-
20 MPA) were employed. The use of CO, as co-solvent was able to
lower space loading required from 54 to 30 mL/g. The use of lower
initial CO, pressure (from 2 to 5 MPa) is offset by the need to use
higher SSR (from 5 to 5.9 mL/g). The total time was slightly

Table 6
Comparison of supercritical and subcritical in situ transesterification of JCL seed kernel.
In situ (trans)esterification method 0il content SSR Temp Pressure Time (h) Space % yield® Ref.
(%) (mL/g) (°C) (MPa) loading® (Kernel)*
(mL/g)
Supercritical methanol 66.8 5 300 9.5 0.5 (2.0)° 54 99.67 (66.6) [13]
(Process intensification)
Supercritical methanol 64.6 5 300 20.0 0.5 (2.0) 30 102.3 (66.1) [12]
Co-solvent (CO, 5MPa)
Supercritical methanol 66.8 5.8 295 n.s.¢ 0.125 (1.63) 30 87.1(58.2) [14]
Co-solvent (CO, 4 MPa)
Supercritical Methanol 66.8 5.9 300 n.s. 0.21 (1.71) 30 92.0 (61.5) [14]
Co-solvent (CO, 2 MPa)
Sub-critical 57.9 7 250 21.0 1.0 (1.75) 12.0 94.43 (54.72) This Study

Methanol-acetic acid (7.5:2.5)
Co-solvent (CO, 4 MPa)

2 Space loading =reactor effective volume in mL/g of dry solid.
Total reaction time including reactor heat up time.

Mass fraction (%) of FAME based on the hexane extractable lipid.
Mass fraction (%) of FAME based on the dry kernel.

n.s.: not specified.
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decreased from 2h to 1.71h [12-14]. The subcritical solvent
(methanol + acetic acid + water) transesterification approach used
in this study was able to obtain high FAME yield that is comparable
to that obtained by supercritical methanol methods but at a lower
temperature (250 °C) and a much lower space loading (12.0 mL/g).
The method used in this study can tolerate the presence of FFA and
relatively high moistures content (10%) in the kernel.

Similar to other in situ processes a separate extraction step is
not required. Typical extraction method utilizing mechanical
expeller requires preheating at 80 °C for 20 min and can only
recover ~50 to ~80% of the extractable lipids [27-29]. An
optimized screw press design was capable of recovering up to
89.3% of the lipid content but required high pressure (9 MPa) and
temperature (140 °C) [28]. Solvent extractions are typically
employed as a second step to recover lipids from extruded pressed
cakes, but still resulted in a lipid loss of ~10% [27,28]. With a better
recovery than mechanical expellers and much shorter time than
solvent extraction, supercritical carbon dioxide extraction re-
quired very high operating pressure (up to 35.0 MPa) and a long
extraction time (5 h) [30]. A three phase partitioning method was
used by Vyas et al. [31] which required an overall extraction and
separation time of 2 h, but involved several intermediate steps and
could only achieve a recovery of 85%. This method on the other
hand is tolerant to moisture, eliminating the need to dry the
kernels. With this method extraction and reaction can be carried
out simultaneously with a total time less than that of any
extraction methods reported in literature.

4. Conclusion

In this study an in situ (trans)esterification process was
developed to produce biodiesel from JCL seed kernel with high
FAME yield (94-98% based on extractable lipids). By using a
mixture of methanol, acetic acid and water under subcritical
condition, the process can be operated under less severe
conditions (~250 °C) than that of supercritical methanol methods
(above 300 °C). It was shown in this study that the presence of
acetic acid has greatly improved the extracting power of methanol
and increased the rate of reaction to form FAME. This study
successfully employed a high reactor loading utilizing up to 70% of
the reactors volume without compromising the yield in FAME.
Considerations to the overall reactor loading or volume utilization
and the corresponding effects of carbon dioxide need to be
investigated in future works, as they would have a big impact on
the productivity of the process. Lastly, this newly developed
process provides an alternative route in in situ biodiesel
production that can use feedstock with high moisture (up to
10%) content and FFA (up to 5%).
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