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An accurate method for building energy consumption prediction is important for building energy man-
agement systems. However, building energy consumption data often exhibits nonlinear and nonstation-
ary patterns, which makes prediction more difficult. This study proposes a hybrid method of Random
Forest (RF) and Long Short-Term Memory (LSTM) based on Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) to predict building energy consumption. In the first
stage of our proposed method, the original energy consumption data is transformed into several compo-
nents using CEEMDAN. Then, RF is used to predict the component with the highest frequency, and the
remaining components are predicted using LSTM. In the last stage, the prediction results of all compo-
nents are combined to obtain the final prediction results. The proposed method has been tested using
real-world building energy consumption data. The experimental results demonstrate that the proposed
method achieves better performance than the benchmark methods used for comparison.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

The building sector is one of the main energy consumers [1]. It
accounts for 35% of global energy consumption and contributes
38% of total CO2 emissions [2]. Since 2000, energy consumption
in the building sector has gradually increased with an annual
growth rate of 1.1% [3], and it is predicted to continue rising over
the next few decades [4,5]. The rise of building energy consump-
tion has been driven by population growth and increased demands
to build comfortable environments [6,7]. This increased use of
energy consumption in the building sector raises concerns about
supply issues and global environmental impacts [8]. Therefore,
energy efficiency is needed in this sector to reduce carbon emis-
sions and lessen the problems related to supply. Predicting energy
consumption plays a prominent role in improving building energy
efficiency. It serves as a basis for many advanced building energy
management techniques, such as safety monitoring [9], demand
response [10], and optimization control [11].

Based on the time scale of the prediction, energy prediction can
be divided into four categories: long-term (a year or more),
medium-term (between one week and one year), short-term (from
one hour to one week), and very short-term prediction (from a few
minutes to less than one hour) [12–14]. Long-term and medium-
term predictions are critical for long-term and strategic planning
[12]. They are often used as a reference to determine system capac-
ity and system maintenance [15]. Short-term and very short-term
predictions are beneficial for energy management. Many decisions
related to energy management can be made based on short-term
and very short-term predictions, such as peak load shaving, opti-
mal energy scheduling, and demand-side management [16]. This
study focuses on improving one-hour-ahead building energy pre-
diction. The one-hour-ahead building energy prediction will pro-
vide an accurate baseline to estimate the impact of demand
response measures on the buildings and for optimizing the local
generator’s schedule [12].

Over the years, various techniques have been developed to pre-
dict energy consumption, including statistical methods and
machine learning methods. The statistical-based methods such as
multiple linear regression [17], exponential smoothing [18], and
Auto-Regressive Integrated Moving Average (ARIMA) [19] are able
to fit the linear relationship in the data. However, these statistical
methods are inadequate when dealing with nonlinear time series
data. Machine learning-based techniques such as Random Forest
(RF) [20,21]. Neural Network [22], Support Vector Regression
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(SVR) [23–25], and Deep Learning with Long Short-Term Memory
(LSTM) [26–28] have also been widely used in the field of building
energy prediction due to their capability to model nonlinear series
in the data.

Predicting energy consumption at an individual building level is
quite challenging. It often exhibits nonstationary and high volatil-
ity patterns [28]. Thus, the single prediction methods mentioned
earlier may be insufficient to capture all the patterns, limiting their
effectiveness in achieving precise prediction. For this reason, sev-
eral researchers have proposed hybrid methods that combine the
decomposition technique with prediction methods to improve pre-
diction accuracy. Their results have shown the effectiveness of the
decomposition technique in improving prediction results [29–31].
For instance, Liu et al. [29] proposed a hybrid method based on
EMD and SVR to predict energy consumption in an office building.
Zheng et al. [30] combined the EMD and LSTM for short-term load
prediction. Empirical mode decomposition (EMD) is a decomposi-
tion method that is effective in dealing with nonlinear and nonsta-
tionary time series data [32]. By adopting EMD to preprocess the
original data, the performance of the prediction method can be
effectively enhanced [29–31]. Despite its effectiveness, EMD suf-
fers from mode mixing problems caused by intermittency signals
[33]. To solve this issue, Wu and Huang introduced an enhance-
ment version of EMD named Ensemble Empirical Mode Decompo-
sition (EEMD) [34]. In EEMD, additional noise is added to solve the
mode mixing problem. However, the decomposition results pro-
duced by EEMD would be contaminated by some residual noises,
particularly when the number of ensemble trials is relatively low
[35]. The noise can be eliminated by increasing the number of
ensemble trials, but the calculation time will also increase [36].
Torres et al. [37] proposed the Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) algorithm to
improve the performance of EEMD. CEEMDAN adds adaptive noise
in every stage of EMD, which can effectively improve decomposi-
tion results and reduce the computational time [37].

Although several studies have employed hybrid methods
based on the decomposition method, these hybrid methods do
not consider the unique characteristics of each component. They
use identical prediction methods to predict all components.
Hence, this study fills the gap by considering the characteristics
of each component and combining different prediction methods
to predict different components. In this study, a hybrid method
of Random Forest (RF), Long Short-Term Memory (LSTM) based
on Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) is proposed to improve the accuracy
of building energy prediction. The idea of the proposed method
is to decompose the original data into several components. Then,
we take into account the characteristics of each component and
utilize different prediction methods to predict different
components. By considering the different characteristics of each
component, the corresponding prediction result can be further
enhanced.

In the first stage of our approach, CEEMDAN is utilized to
decompose the original data into several components. Compared
with other decomposition methods, such as EMD and EEMD,
CEEMDAN has shown better performance on the decomposition
of the nonstationary series [38]. So, CEEMDAN is chosen as the
decomposition approach in this study. After CEEMDAN decom-
poses original data into several components, different prediction
methods are used to predict different components that correspond
to their characteristics. The highest frequency component, which is
the first component, is modeled and predicted using RF. The other
components are predicted using LSTM. In the final stage, the pre-
diction results of each component are integrated using summation
to achieve the final prediction result. To the best of our knowledge,
the application of hybrid RF-LSTM based on CEEMDAN for
2

predicting building energy consumption has never been investi-
gated before.
2. Theoretical background

2.1. Complete Ensemble Empirical Mode decomposition with Adaptive
Noise (CEEMDAN)

CEEMDAN decomposes nonlinear and nonstationary series into
several relatively stationary components. The components will be

named as Intrinsic Mode Functions IMFk. We defineEj �ð Þ as the
function to produce the j - th mode obtained by EMD procedure
and ei is the amplitude coefficients of the white noise series. The
decomposition process of CEEMDAN algorithm can be seen in
Table 1.

2.2. Random Forest (RF)

Random Forest (RF) is a combination of many decision trees
that can be used to solve classification and regression problems
[39]. RF as an ensemble learning method works differently com-
pared with other machine learning methods, such as ANN or
SVR. ANN or SVR builds a global model from the original data,
while RF builds several models and combines their results. This
may achieve better accuracy, especially when handling complex
systems [40]. The structure of RF for regression can be seen in
Fig. 1.

The detailed process of the RF algorithm is as follows [41]:

Step 1: Create n bootstrap sample sets from the original dataset
Step 2: In every bootstrap sample set, generate an unpruned
regression tree with the following modification: For each node,
randomly sample p features from all the input features. After
that, select the best split from p features, where p is less than
the number of all input features (m).
Step 3: Obtain the random forest new output prediction by
averaging the outputs of n regression trees when new input is
fed into the model.

In the RF algorithm, there are two predetermined parameters:
the number of trees n and the number of features for each node
p. Generally, RF is not sensitive to the selection of these two
parameters [40,42].

Recently, a new model based on RF called Deep Forest was pro-
posed by Zhou and Feng [43] to solve the classification problem.
Deep forest is a multilayer structure with each layer consisting of
many random forests. The deep forest model has been shown to
outperform deep neural networks to some extent [44]. However,
the current deep forest is inefficient, lacks scalability[45], and the
model may encounter an overfitting issue [44]. Therefore, in this
research, we decided not to adopt deep forest and use random for-
est instead, as it has been proven to be a robust and efficient algo-
rithm for regression tasks [46].

2.3. Long Short-Term Memory (LSTM)

The energy consumption data can be regarded as time-series
data, consisting of a series of observations recorded sequentially
over time [47]. Recurrent Neural Network (RNN) is an enhanced
version of a traditional neural network, and it is primarily designed
to predict sequential data [48]. RNN uses a recurrent cell whose
activation at each time is dependent on the activation at the earlier
time to handle sequential data [49]. However, RNN has limitations
in capturing long-term dependencies in the sequential data. To
mitigate the problems of learning long-term dependencies, Long



Fig. 1. Structure of Random Forest for a regression problem.

Table 1
CEEMDAN algorithm [37].

Algorithm 1 CEEMDAN Algorithm

Step 1. White noise series wiwith N 0;1ð Þ is added to the original datax n½ �:
x n½ � þ e0wi n½ � (1)
Step 2. Decompose by EMD I realizations x n½ � þ e0wi n½ � using EMD shifting procedures [32] to obtain their first modes and compute:gIMF1 n½ � ¼ 1

I

PI
i¼1IMFi1 n½ � ¼ IMF1 n½ � (2)

Step 3. Calculate the first stage residual:

r1 n½ � ¼ x n½ � � gIMF1 n½ � (3)

Step 4. Decompose r1 n½ � þ e1E1 wi n½ �� �
; i ¼ 1; � � � ; I until their first EMD mode is obtained. Then the second mode gIMF2 n½ � would be computed asgIMF2 n½ � ¼ 1

I

PI
i¼1E1 r1 n½ � þ e1E1 wi n½ �� �� �

(4)
Step 5. For k ¼ 2; :::K , calculate the k - th residue:

rk n½ � ¼ r k�1ð Þ n½ � � gIMFk n½ � (5)

Step 6. Decompose rk n½ � þ ekEk wi n½ �� �
; i ¼ 1; � � � ; I until their first EMD mode is obtained and the (k + 1)-th mode can be computed asgIMF kþ1ð Þ n½ � ¼ 1

I

PI
i¼1E1 rk n½ � þ ekEk wi n½ �� �� �

(6)
Step 7. For the next k perform step 5.
Step 5 to Step 7 will be repeated to obtain the IMF components until the residual is a monotony function and cannot be decomposed by EMD. The final decomposition

results of original data can be expressed as

x n½ � ¼ PK
k¼1

gIMFk þ R n½ � (7)
with K as the total number of modes.
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Short-Term Memory (LSTM), an improved version of RNN, was
introduced by Hochreiter & Schmidhuber in 1997 [50]. LSTM
improves the standard recurrent cell memory capability by intro-
ducing the ‘‘gates” mechanism into the cell [51]. These gates in
the LSTM cell cooperate with each other to regulate how much
information should be kept and how much should be forgotten.
These structures allow the network to neglect less useful historical
information and retain important information over longer periods.
Hence, LSTM is capable of capturing long-term dependency in
sequential data [52], and it has been widely used to deal with clas-
sification and regression problems of time series data. The struc-
ture of LSTM can be visualized as shown in Fig. 2 [53].

Specifically, the LSTM cell structure consists of three gates: the
forget gate, the input gate, and the output gate [52]. These three
gates control the information flow. The computational process in
LSTM starts with the decision on what information should be pre-
served or removed in the forget gate, which can be expressed as

f t ¼ r Wf : ht�1; xt½ � þ bf
� � ð8Þ
3

The value comes out between 0 and 1, where a value closer to 1
means keeping the information and a value closer to 0 means for-
getting the information. The input layer will decide which new
information will be added to the cell state. It consists of two proce-
dures. First, the previous hidden state and current input are passed
into a sigmoid function:

it ¼ r Wi: ht�1; xt½ � þ bið Þ ð9Þ

Then, the hidden state and current input are also passed into
the tanh function to control how much information is added:

Ct ¼ tanh WC : ht�1; xt½ � þ bCð Þ ð10Þ

The next step is updating the cell state of the memory cells. This

can be done by multiplying the old state Ct�1 by f t and add it �cCt

which can be expressed as

Ct ¼ f t � Ct�1 þ it � Ct ð11Þ



Fig. 2. LSTM structure.
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Then the output is obtained by multiplying the output and the
new cell state as defined in Eq. (12), and the new hidden state is
computed as

ot ¼ r Wo: ht�1; xt½ � þ boð Þ ð12Þ

ht ¼ ot � tanh Ctð Þ ð13Þ
wherer is the sigmoid functionr ¼ 1

1þe�z, tanh is the tanh function
ex�e�x

exþe�x. Wf ,Wt , Wc ,Wr are the weight metrics, and bf ; bi,bc , bo are
the bias vectors.

Besides LSTM, RNN also has another variant named Gated
Recurrent Unit (GRU) [54]. GRU is less complex than LSTM because
the GRU cell integrates the forget gate and input gate as an update
gate [51]. Thus, the GRU cell has only two gates: an update gate
and a reset gate. However, GRU has a slow convergence rate [55],
and it is less powerful than the original LSTM [51]. For this reason,
this study will further focus on the recurrent network architectures
based on LSTM cells.

3. Framework of the proposed method

In this study, a hybrid method that consists of Random Forest
(RF), Long Short-Term Memory (LSTM), and Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
for building energy consumption prediction is introduced. In the
first stage, the original data is decomposed using CEEMDAN into
several Intrinsic Mode Function (IMF) components. Each IMF com-
ponent generated from CEEMDAN has different characteristics and
is arranged from the highest to the lowest frequency. The first
component (IMF1) represents the highest frequency component.
The remaining frequency IMFs reflect the periodic patterns or sea-
sonality of the data. The last IMF component, also known as the
residual, is the lowest frequency component. It also represents
the overall trend of the data.

The next stage is data prediction, where different prediction
methods are used to predict different components corresponding
to their characteristics. In order to predict the first IMF component,
which is the most complex and highly fluctuating series, the RF
prediction method is selected due to its ability to predict complex
time series [40,56] and its robustness to outliers and noise [57]. To
predict the remaining IMFs, which can be seen as the periodic com-
ponent of the original data, LSTM is adopted. LSTM is chosen
because LSTM has performed well in predicting periodic patterns
in time series data [58,59]. Therefore, it is a good choice for pre-
dicting the remaining IMFs. For the residual component, which
4

represents the long-term trend of the data, LSTM is adopted to pre-
dict the residual as LSTM is able to learn the trend of the time ser-
ies [60]. In the last stage, the prediction outputs of all components
are aggregated using summation to obtain final prediction results.
The block diagram of the proposed method is shown in Fig. 3.

4. Experimental results

4.1. Data

In this study, we used a public dataset from the Building Data
Genome project [61]. The Building Data Genome project has col-
lected data from whole-building electrical meters, which includes
the heating system in the building [61]. Hourly energy consump-
tion data from March to May 2015 of five different buildings were
analyzed in this study. The statistical information of these five
buildings is presented in Table 2. Fig. 4 represents energy con-
sumption profiles for each building at an hourly resolution. From
Fig. 4, it can be observed that each building has different energy
consumption patterns, which exhibit random and nonlinear
patterns.

4.2. Evaluation metrics

Mean Absolute Percentage Error (MAPE), Root Means Square
Error (RMSE), and Mean Absolute Error (MAE) are used as our eval-
uation metrics. The formula for MAPE, RMSE, and MAE are

MAPE% ¼ 100
n

Xn

t¼1

yt
0 � yt
yt

���� ���� ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

y0t � ytð Þ2
s

ð15Þ

MAE ¼ 1
n

Xn
t¼1

y0t � yt
�� �� ð16Þ
4.3. Experimental settings

In this study, a hybrid RF-LSTM method based on CEEMDAN is
proposed to predict energy consumption in the building. CEEM-
DAN is used in this study to decompose original data into a number
of Intrinsic Mode Functions (IMF) and a residual. This study used
the pyEMD package [62] for implementing the CEEMDAN. We used



Fig. 3. Block Diagram of the Proposed Method.

Table 2
Statistical information.

Building
Name

Building type Gross Floor Area
(ft2)

Minimum value
(kW)

Maximum value
(kW)

Mean value
(kW)

Standard deviation
(kW)

Prince University Dormitory 87,661 19.68 58.90 39.26 6.71
Christy University Laboratory 28,084 23.78 64.38 41.36 7.71
Abby University Classroom 9309 15.53 49.41 34.11 7.57
Abigail Office 9309 3.39 19.11 6.89 3.13
Jaden Primary/Secondary School

Classroom
9703 5.87 24.03 5.87 5.46

Fig. 4. Hourly energy consumption data of five different buildings.
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scikit-learn to build RF prediction method [63] and Keras [64] in
Python to implement the LSTM. We set the number of trees in RF
to 100, which is the default value in the scikit-learn package
[64], and the feature number of each node is set to 8, as it is sug-
gested to be one-third of the feature’s number [65].

For LSTM, this study used Adam optimizer with its recom-
mended learning rate value of 0.001 [66]. Adam was chosen to
optimize the model as it is computationally efficient and has
prominent performance compared with other stochastic optimiza-
tion methods [67,68]. Based on the literature, we trained our
5

method for 100 epochs [69] and chose 64 as the batch size because
the common value is the power of 2 [70]. Different combinations of
LSTM hidden neurons with candidate values of 16,32 and 64 were
tested. We found that the LSTM network model with 64 hidden
neurons outperforms other configurations. Therefore, the architec-
ture used in this study is a one-layer LSTMwith 64 hidden neurons.
This study conducts a one-hour ahead prediction Xtð Þ, whose input
includes the previous 24-hour energy consumption (Xt�1 to Xt�24Þ.
We divided the data into training and test data sets, where 80% of
data was used as training data sets, and 20% of the data was used as
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test data sets. The experiments were performed on Intel Core i3-
8130U CPU, 2.20 GHz, with a memory size of 4.00 GB.

5. Results

In the first stage of our proposed method, the original hourly
energy consumption data was first decomposed using CEEMDAN.
Fig. 5 shows the decomposition results for one of the buildings.
As seen in Fig. 5, the frequency of each IMF obtained from the
CEEMDAN process is arranged from the highest frequency to the
lowest frequency. The first IMF component shows a highly irregu-
lar pattern; IMF 2 to IMF 7 show a periodic and more regular pat-
tern. The last IMF component (IMF 8) shows the general trend of
the data.

After CEEMDAN decomposes original data, the first IMF is pre-
dicted using RF, and the other IMFs are predicted using LSTM. In
the final stage, the prediction results of each component are aggre-
gated using summation to obtain the final prediction result. Fig. 6
visualizes the result obtained from the proposed method. As can be
observed from Fig. 6, the predicted lines of the proposed method
are close to the actual values line with small deviations, which
means the proposed method can predict accurately.
Fig. 5. Decomposition results for U
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The performance of the proposed hybrid RF-LSTM based on
CEEMDAN for building energy prediction was compared with other
prediction methods, including Linear Regression (LR), Random For-
est (RF), Support Vector Regression (SVR), Artificial Neural Net-
work, Long Short-Term Memory (LSTM), Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise-Random For-
est (CEEMDAN-RF), and Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise - Long Short-Term Memory
(CEEMDAN-LSTM). According to the results in Table 3, the pro-
posed method has the lowest error and has the best prediction
accuracy among the benchmark methods.

To further measure the improvement of the proposed method
in comparison to other benchmarking methods, three improve-
ment percentage metrics are used in this study [71]. Percentage
improvement of MAPE, RMSE, and MAE between two methods
can be respectively calculated by:

PMAPE ¼ MAPE1 �MAPE2

MAPE1

���� ���� ð17Þ

PRMSE ¼ RMSE1 � RMSE2

RMSE1

���� ���� ð18Þ
niversity Laboratory building.



Fig. 6. Prediction results using proposed hybrid RF-LSTM based CEEMDAN method.
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PMAE ¼ MAE1 �MAE2

MAE1

���� ���� ð19Þ

The percentages of error improvement compared with other
benchmarking methods are summarized in Table 4.

Based on performance results listed in Table 3 and Table 4, we
can observe that:

1. Hybrid-based CEEMDAN methods (CEEMDAN-RF, CEEMDAN-
LSTM, and the proposed CEEMDAN-RF-LSTM method) perform
better than other single prediction methods (such as LR, SVR,
ANN, RF, and LSTM). This indicates that by implementing CEEM-
DAN to decompose original data, the prediction accuracy can be
significantly enhanced. CEEMDAN is suitable for processing and
7

reducing the nonstationary pattern that existed in the original
building energy consumption data. By decomposing nonsta-
tionary original energy consumption data into several relatively
stationary components, the prediction accuracy can be
improved.

2. Compared with the other two hybrid CEEMDAN methods
(CEEMDAN-RF and CEEMDAN-LSTM), which use identical pre-
diction methods to predict all components, the proposed
method performs better. This shows the effectiveness of com-
bining different prediction methods in predicting IMF compo-
nents. By considering the different characteristics of each
component and using different methods to predict each compo-
nent, the corresponding prediction result can be further
enhanced.



Table 3
Performance results of different prediction methods.

Building Evaluation
Metrics

Prediction Methods

LR SVR ANN RF LSTM CEEMDAN
RF

CEEMDAN
LSTM

Proposed Method (CEEMDAN-RF-
LSTM)

University Dormitory MAPE (%) 6.097 6.487 6.719 6.145 6.829 3.955 4.081 3.511
RMSE 3.091 3.386 3.389 3.172 3.468 2.008 2.070 1.761
MAE 2.401 2.590 2.641 2.436 2.678 1.551 1.587 1.369
Running Time (s) 0.336 0.380 1.944 1.118 11.987 37.393 105.333 103.585

University Laboratory MAPE (%) 5.859 6.419 6.135 6.273 6.385 3.566 3.509 3.191
RMSE 2.580 2.707 2.659 2.715 2.627 1.466 1.429 1.293
MAE 1.865 2.093 2.005 2.046 2.063 1.132 1.116 1.014
Running Time (s) 0.236 0.376 1.534 1.120 6.681 31.269 86.682 75.807

University Classroom MAPE (%) 3.656 5.807 5.983 6.873 5.169 3.084 2.123 1.965
RMSE 1.629 2.529 2.402 2.675 2.169 1.332 0.866 0.815
MAE 1.062 1.780 1.748 2.045 1.530 0.920 0.613 0.570
Running Time (s) 0.536 0.352 1.943 1.160 9.038 32.142 85.869 81.056

Office MAPE (%) 11.169 9.307 11.291 10.251 9.792 6.165 6.354 5.331
RMSE 1.218 1.106 1.148 1.084 1.124 0.650 0.669 0.570
MAE 0.902 0.770 0.876 0.805 0.806 0.491 0.499 0.430
Running Time (s) 0.277 0.290 1.638 1.162 6.344 32.364 83.035 81.803

Primary/ Secondary
Classroom

MAPE (%) 15.508 14.671 14.464 18.396 16.652 10.944 8.550 7.164

RMSE 1.040 1.150 0.902 1.342 0.957 0.750 0.524 0.467
MAE 0.651 0.647 0.578 0.785 0.622 0.455 0.342 0.299
Running Time (s) 0.319 0.174 0.829 1.215 7.894 42.319 98.648 95.249

*bold values represent the best result for each metric on each building.

Table 4
Improvement percentage of Hybrid RF-LSTM based on CEEMDAN compared with other benchmarking methods.

Building Improvement
Percentage
Metrics

Proposed
Method vs.
LR

Proposed
Method vs.
SVR

Proposed
Method vs.
ANN

Proposed
Method vs.
RF

Proposed
Method vs.
LSTM

Proposed Method
vs. CEEMDAN RF

Proposed Method vs.
CEEMDAN LSTM

University
Dormitory

PMAPE %ð Þ 42.4% 45.87% 47.24% 42.86% 48.58% 11.22% 13.95%
PRMSE %ð Þ 43.03% 47.99% 48.04% 44.48% 49.22% 12.28% 14.91%
PMAE %ð Þ 42.97% 47.13% 48.14% 43.79% 48.86% 11.7% 13.%

University
Laboratory

PMAPE %ð Þ 45.54% 50.3% 47.99% 49.14% 50.03% 10.54% 9.08%
PRMSE %ð Þ 49.86% 52.22% 51.35% 52.37% 50.77% 11.78% 9.49%
PMAE %ð Þ 45.6% 51.54% 49.4% 50.41% 50.84% 10.37% 9.09%

University
Classroom

PMAPE %ð Þ 46.25% 66.17% 67.16% 71.01% 61.99% 36.29% 7.46%
PRMSE %ð Þ 49.93% 67.76% 66.05% 69.22% 62.41% 38.79% 5.84%
PMAE %ð Þ 46.32% 67.98% 67.40% 71.75% 62.76% 38.03% 7.06%

Office PMAPE %ð Þ 52.27% 42.72% 52.79% 48.00% 45.56% 13.53% 16.10%
PRMSE %ð Þ 53.17% 48.44% 50.34% 47.38% 49.24% 12.21% 14.70%
PMAE %ð Þ 52.27% 44.08% 50.89% 46.64% 46.58% 12.40% 13.79%

Primary/
Secondary
Classroom

PMAPE %ð Þ 53.81% 51.17% 50.47% 61.06% 56.98% 34.54% 16.21%
PRMSE %ð Þ 55.14% 59.43% 48.26% 65.23% 51.24% 37.75% 10.89%
PMAE %ð Þ 54.07% 53.81% 48.26% 61.96% 52.01% 34.40% 12.62%
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3. The running time of the hybrid-based CEEMDAN methods is
longer than the single method. The main reason is that the orig-
inal data has to be decomposed into several components, and
multiple predictors have to be built for each component. There-
fore, the running time of hybrid-based CEEMDAN methods is
generally longer.

4. Compared with CEEMDAN-LSTM, our proposed method per-
formed faster and achieved higher prediction accuracy. There-
fore, our proposed method is a suitable tool for predicting
building energy consumption. Besides, the environment used
in this study was CPU-based. With the development of a GPU-
computing environment, the running time of deep learning
methods such as LSTM could be enhanced up to 45 times faster
than a single-threaded CPU implementation [72]. Thus, with the
use of GPU, which can accelerate the computation, the running
time of the proposed method can be further reduced.

6. Conclusion

Building energy consumption prediction is important for
improving decision-making to achieve greater energy efficiency
in the building. In this study, a hybrid Random Forest (RF) – Long
8

Short-Term Memory (LSTM) based on Complete Ensemble Empiri-
cal Mode Decomposition with Adaptive Noise (CEEMDAN) is intro-
duced to predict the hourly energy consumption in the building. In
the first stage, the original energy consumption data were decom-
posed using CEEMDAN into several components. Then, the highest
frequency component, which is the first component, was modeled
using RF. The other components were predicted using LSTM. In the
final stage, the prediction results of each component were inte-
grated to obtain the final prediction result. By taking into account
the characteristics of each component and utilizing different pre-
diction methods to predict different components, the correspond-
ing prediction result could be further enhanced. Hourly energy
consumption data from five different buildings were used to eval-
uate the effectiveness of the proposed method. All experimental
results indicated that the proposed method produced better results
compared with other benchmarking methods. In this study, the
prediction of energy consumption data was predicted based on
its previous energy values (univariate prediction method). For
future work, we will consider some exogenous variables in the pre-
diction, such as weather conditions, building operational schedule,
and time index (such as day of the week and hour of the day). We
will also investigate the impact of different data set sizes with
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different levels of granularity (such as daily and minutely data) on
prediction performance.
7. Code availability

The source codes are made publicly available on Zenodo [73].
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