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Abstract

Nanotechnology is the most important scientific breakthrough in the 21* century which has led
to changes and advances in various fields of application. Generally, nanomaterials (NMs) with
specific shapes, sizes, and compositions are required for nanotechnology. Synthesis of NMs
using conventional chemical and physical methods involves high costs, the use of hazardous
substances, and environmental damage. In contrast, the green synthesis approach provides a
sustainable method for synthesizing NMs such as the utilization of biodegradable waste and
microorganisms. Nowadays, microbially-synthesized NMs have been recognized as an
effective and eco-friendly method suitable for the large-scale fabrication of biocompatible
nanostructures. Various microorganisms such as yeast, fungi, algae, and bacteria can serve as
potential stabilizing and reducing agents for synthesizing NMs. This chapter contributes to
recent developments in the green synthesis of various NMs using microorganisms, focusing on
intracellular or extracellular mechanisms and the purification of NMs. The characterization,

applications, and prospects for NMs biosynthesis are also discussed in this chapter.
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1. Introduction

Nanotechnology, which involves creating functional systems at the molecular level, is one
of the scientific and technology fields that is growing the fastest. The word "nanotechnology"
has gained enormous traction in recent years due to its numerous uses in agriculture, health,
food, textiles, cosmetics, and electronics industries. Nanotechnology is linked to the production
of nanomaterials (NMs) with improved properties that distinguish them from bulk materials.
NMs consist of one or more components having at least one dimension between 1 and 100 nm,
for example, nanoparticles, composite materials, nanofibers, and nano-structured surfaces
(Borm et al., 2006; Verma et al., 2019, 2018). NMs have become more prominent in
technological breakthroughs due to their superior performance compared to their bulk
counterparts in terms of mechanical, electrical, and magnetic behavior, as well as chemical
characteristics (Jeevanandam et al., 2018; Lloyd et al., 2011). These NMs can be classified into
the following types based on their size and characteristics i.e., carbon-based NMs, composite-
based NMs, organic-based NMs, and inorganic-based NMs (Kolahalam et al., 2019; Zhang et
al., 2012). Currently, metal-based NMs such as silver (Ag), zinc (Zn), lead (Pb), gold (Au),
iron (Fe), carbon (C), and copper (Cu) have attracted great interest among researchers (Khan
etal., 2021; Zhang et al., 2023).

The synthesis of NMs can be prepared by various techniques, including a top-down
approach and a bottom-up approach (self-assembly). These techniques are further divided into
subclasses based on the operation and reaction conditions. The bottom-up approach also known
as a building-up process involves constructing a structure atom by atom, molecule by molecule,
or by self-arrangements. Techniques such as sedimentation and reduction through green
synthesis, spinning, and biochemical synthesis serve as examples of this method. In the top-
down approach, physical and chemical techniques are used to reduce the size of the appropriate

starting components. NMs have been synthesized using conventional physical techniques such
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as electrospinning, radiolysis, spray pyrolysis, ultrasonication, and photoirradiation (Bhardwaj
etal.,2019,2018,2017; Khan et al., 2019) However, chemical techniques have attracted more
interest than physical techniques due to their greater ability to control the size and structure
of NMs. Sol-gel, solvothermal, co-precipitation, and template-based approaches are the major
chemical techniques. The accessible and widely used physical and chemical methods for
producing NMs are energy-intensive, contain hazardous chemicals, and require a high
temperature for reaction (Abid et al., 2022; Nasaruddin et al., 2021). Although there are many
physicochemical ways to synthesize NMs, it is still necessary to develop non-toxic, low-cost,
high-yield, low-energy. and eco-friendly methods particularly for applications in the fields of
human health and medicine. Therefore, numerous strategies for the bio-based synthesis of NMs
have been explored to establish sustainable and cost-effective bioproduction alternatives. For
instance, various flavonoids found in biomass waste produced from fruit residues can chelate
metal ions and reduce them into nanoparticles (Aswathi et al., 2022; Putro et al., 2022). Several
researchers have reported the production of graphene utilizing pulp waste and biodegradable
waste from paper cups (Shukla et al., 2020.; Singh et al., 2021).

Other biosynthesis pathways of NMs using microbes involving bacteria, fungi, yeast, and
algae have been widely reported due to their reducing characteristics, which are often
responsible for reducing metal compounds in particular NMs. Microorganisms can be used in
nanotechnology as a green technology for sustainable development strategies due to the use of
cleaner production as well as the preservation of natural resources. For instance, fungus-
mediated methods include simple procedures for the nano-synthesis of inorganic substances
such as CuAlO; which requires low-temperature conditions (Ahmad et al., 2007). Moreover,
fungal biomass was also essential for chemically synthesized BiOCl nanoplates with sizes
between 150 and 200 nm to break down into extremely tiny particles (<10 nm) without

affecting their crystalline structure (Chung et al., 2016). Researchers have recently exploited a
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variety of biological extracts to synthesize metallic NMs by following direct techniques and
employing microbial extracts as a source of reductants. With the use of biological resources, it
is feasible to get the specific size, shape, and monodispersity of NMs either extracellularly or
intracellularly (de Jesus et al., 2021). This chapter reviewed the current works in green
synthesis of NMs by microbes that focused on their intra and extracellular mechanisms,
purification techniques, characterizations, and applications. The difficulties of elaborating this
technology at a large-scale level and the prospects of biological synthesis approaches are also

highlighted in the last section.

2. Microbially-synthesized of NMs
2.1. Intracellular and extracellular mechanisms

Since the formation of the Earth, biological organisms and inorganic materials have been
in continual touch with each other. The interactions between inorganic substances and living
things have drawn more attention from scientists in recent years. Numerous microorganisms
produce various inorganic compounds either extracellularly or intracellularly, and the
mechanisms vary from one organism to another (Fariq et al.,2017; Hulkoti and Taranath, 2014).
By using several synthesis components, including microorganisms, plant extracts, and other
biological components, NMs are synthesized through biological processes (Saravanan et al.,
2021). Due to their ease of cultivation, rapid growth, and potential to thrive under ambient
conditions, microbes such as bacteria, algae, yeast, and fungi are typically selected for synthesis
in NMs. Interestingly, microbes can detoxify and accumulate heavy metals in the presence of
reductase enzymes, which play a crucial role in reducing metal salts into NMs (Ovais et al.,
2018). Different biological agents and various metal solutions have varying effects on the

production of NMs.
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There are two categories for microbial production of NMs. The first category is
biosorption, which does not require energy use and involves the attachment of metal ions found
in aqueous solutions to the cell wall. Stable NMs are formed as a result of interactions with the
cell wall or peptides (Egan-Morriss et al., 2022; Pantidos, 2014). The prospective processes for
the biosorption of the metal on microbes consist of physical processes including ion exchange,
complexation, precipitation, and physisorption. Microbes typically secrete lipopolysaccharide,
glycoprotein, and other exopolysaccharide compounds that have anionic structural groups for
positive metal adhering to negative charges of the cell wall. Chitin was shown to be the primary
component of the fungal cell wall and it is associated with the complex formation of heavy
metals, which leads to the synthesis of NMs (L. Wang et al., 2018). Few researchers have
reported the biosynthesis of copper NMs via the biosorption method from Rhodotorula
mucilaginosa biomass. The spherical form of the produced NMs made them accessible for
simultaneous pollution removal and NMs synthesis. The formation of metallic molybdenum
NMs by Clostridium pasteurianuwm has also been the subject of another investigation
(Nordmeier et al., 2018; Salvadori et al.,2014).

Meanwhile, bioreduction occurs when metal ions are chemically reduced by living
organisms into more stable forms. Numerous species can utilize metabolism metal reduction,
in which the reduction of a metal ion is linked to the oxidation of an enzyme. As aconsequence,
stable and inert metallic NMs are formed which may be removed safely from a polluted
material. The synthesis of NMs may be triggered by several substances found in microbial cells,
notably amides, amines, alkaloids, carbonyl groups, proteins, pigments, and other reducing
agents (Quintero-Quiroz et al., 2019; Sable et al., 2020). Some microbes usually release
chemicals with a high capacity for oxidation or reduction of metal ions to produce zero valent
or magnetic NMs. Additionally, these organisms are easy to handle and susceptible to genetic

manipulation (Puspitasari et al., 2021; Puspitasari and Lee,2021).




125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

It is well known that both intracellular and extracellular proteins, enzymes, lipids, and
chelating activity of DNA subunits are actively involved as reducing agents throughout the
biosynthesis process. These bioactive substances have high reduction potential and can
donate H* ions to reduce metal ions from a higher oxidation form to a lower oxidation form
(Dauthal and Mukhopadhyay, 2016; Srivastava et al., 2021). According to the site where NMs
are generated, extracellular and intracellular synthesis become the most common processes of
biosynthesis (Fig.1). NMs can be accumulated in the periplasm, cytoplasmic membrane, and
cell wall when observed under a microscope.

In the extracellular approach, NMs are produced outside cells by capturing metal ions on
their surfaces and reducing ions in the presence of microbe-secreted enzymes (Li etal., 2011).
Cofactors such as reduced nicotinamide adenine dinucleotidle (NADH) and reduced
nicotinamide adenine dinucleotide phosphate (NADPH) reliant enzymes both have crucial
roles as reductants via electron transfer from NADH through NADH-reliant enzymes. For
example, the release of NADH and NADH-reliant enzymes is an important process in the
extracellular biosynthesis of silver nanomaterials (AgNMs) by microbes. The bioreduction of
silver is initiated by NADH-reliant reductase enzymes found in microbes by
electron transfer from NADH (He et al., 2007). As a result, silver ions (Ag”) receive electrons
and are reduced (Ag"), resulting in the generation of enlarged metal nuclei and the formation
of stable AgNMs within cell-free supernatant. Precursor concentration, pH, temperature, and
reaction time are some limiting factors affecting the size and properties of NMs.

The intracellular approach includes transporting ions into the inner space of microbial cells
to produce NMs when the enzymes are present. Microbial cells and sugar molecules are
primarily involved in the intracellular process of metal bioreduction. The interactions between
intracellular enzymes and positively charged groups are the main mechanism for the trapping

of metal ions from the media and their subsequent reduction within the cell. This resulted from
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NMs being produced as a result of enzymatic reduction and metal ion transport across
membranes (Dauthal and Mukhopadhyay, 2016). In order to release the biosynthesized NMs
from intracellular production, additional processes are needed such as ultrasonic treatment or
interactions with the appropriate detergents. In contrast, extracellular biosynthesis is
inexpensive, requires less complex downstream processing, and supports large-scale
production of NMs to investigate its possible uses. Therefore, the extracellular method for
biosynthesis of NMs has been the main subject of several studies compared to the intracellular
method (Das et al., 2014). An extensive list of the microbes used in synthesizing NMs is

provided in Table 1.
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Fig. 1. Biosynthesis of silver nanomaterials via intra and extracellular mechanisms
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2.2. Synthesis of NMs using bacteria

Bacteria have become one of the most useful research subjects due to their abundance in
the environment and their ability to endure harsh circumstances. Additionally, they can grow
rapidly and their cultivation is easy to control, such as temperature, pH, oxygenation, and
incubation time. Optimizing these conditions is crucial since different sizes of NMs are needed
for various applications including optics, catalysts, and antimicrobials (He et al., 2007).
Bacteria typically produce intracellular or extracellular inorganic substances, which can be
employed for the biosynthesis of NMs. Bacillus marisflavi was shown to produce AuNMs with
a particle size of 14 nm. AuNMs synthesis from bacterial cell-free extract occurred
extracellularly and the color changed from light yellow to bluish-purple. The production of
AuNMs was indicated by the presence of bluish-purple color caused by surface plasmon

resonance (Nadaf and Kanase, 2019).

2.3. Synthesis of NMs using fungi

Researchers across the world frequently utilize fungi for NMs synthesis using both
intracellular and extracellular processes. It is well known that using fungi to produce metal
oxide or NMs is an effective technique with clear morphology (Ijaz et al., 2020). Fungi produce
more NMs than bacteria because their intracellular enzymes function as biological substances
that increase the bioaccumulation capacity and metal resistance (Kalpana and Devi Rajeswari,
2018). Significant advantages include the ease of scaling up and downstream processing,
economic feasibility, and the presence of mycelia which supplies a high surface area
(Mohanpuria et al., 2008). The most well-known fungi for synthesizing silver and gold
nanomaterials are Fusarium sp., Penicillium sp., and Aspergillus sp. (Shah et al., 2015). The

extracellular production of AgNMs was carried out using Penicillium sp. The enzyme
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induction was facilitated by the existence of silver nitrate in the cell culture broth and optimal
synthesis was shown at pH 6 with a substrate concentration of about 1.5 mM (Shareef et al.,

2017; Spagnoletti et al., 2019).

24. Synthesis of NMs using yeast

Due to their improved function and stability, yeasts have been considered a highly efficient
source of NMs synthesis. Additionally, they can capture large amounts of potentially toxic
metals. The present study on yeast focuses mostly on the production of nanocrystalline
quantum semiconductors, notably cadmium sulfide (CdS) and zinc sulfide (ZnS) nanomaterials.
The biosynthesis of silver and gold NMs was mainly carried out by §. cerevisiae and other
silver-resistant yeast strains (Korbekandi et al., 2016). The production of silica NMs is another
use of §. cerevisiae in the nanomaterial generation process. The NMs were produced when
yeast extract and sodium silicate (precursor solution) were added. One potential mechanism
involves the interaction of yeast extract and sodium silicate in an aqueous medium to generate

sodium hydroxide and silica oxide NMs (Zamani et al., 2020).

2.5. Synthesis of NMs using algae

It has been reported that algae play a significant part in the biological synthesis of NMs and
the buildup of certain toxic metals. Large-scale algae production is mostly utilized to
synthesize gold, silver, and possibly zinc oxide NMs. Algae are recognized for their capacity
to transform toxic metals into their harmless equivalents (Ong et al., 2021). For example,
Sargassum muticum was employed in the production of ZnO NMs and was found to have anti-
apoptotic and anti-angiogenesis properties in HepGa cells (Yang and Cui, 2008). Furthermore,
Staphylococcus aureus and Pseudomonas aeruginosa were effectively inhibited by the NMs,

with inhibition zones of 13.33 mm and 15.17 mm, respectively (Bhuyar et al., 2020).
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3. Purification methods of biosynthesized NMs

The biosynthesized NMs can be purified by several methods including chromatography,
magnetic fields, density gradient centrifugation, and electrophoresis (Table 2).
3.1. Chromatography

Chromatography is a method for separating mixtures of substances based on variations in
how fast the different components spread through a given media. These media are the stationary
phase and mobile phase. The stationary phase can be solid or liquid while the mobile phase can
be liquid or gas. This chromatography can be used for purification and separation in the
biosynthesis of NMs. Several uses of chromatographic methods in the purification of NMs
synthesis are described. Current researchers widely use intracellular enzymes in producing
AuNM for various applications (Gholami-Shabani et al., 2015). The enzyme is an agent in
reducing the metal NMs to be stable material. Enzymes produced by microbes (e.g.,
Acinetobacter sp.) extracellularly and intracellularly after purification by anion exchange and
gel filtration chromatography were used to produce Au and Se nanomaterials (Wadhwani et

al., 2018).

3.2. Magnetic fields

Magnetic fields are purification methods that use magnetic properties to separate and
purify NMs, particularly iron (Fe) NMs. One magnetotactic bacteria is Magnetospiritlum
gryphiswaldense, which can move along magnetic field lines due to magnetosomes (MagMn).
Magnetosomes produced by intracellular bacteria are membrane-enclosed single-domain
ferromagnetic NMs (Rosenfeldt et al., 2021). The purification of synthetic materials containing
Fe by bacteria consists of 2 stages: (1) cell wall breakdown and (2) separation-purification. For

the breakdown of cell walls, sonification and ultracentrifugation methods can be used, while
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column-based magnetic (neodymium magnet) can be used for the separation-purification

method (Hamdous et al., 2017; Raschdorf et al., 2018; Rosenfeldt et al., 2021).

3.3. Density gradient centrifugation

Density gradient centrifugation is the simple purification method of NMs extracellular
synthesis. The process of centrifugation is used to separate particles from a solution based on
their size, shape, density, medium viscosity, and rotor speed. The density gradient
centrifugation method may be required more than once in some cases. For example,
Nocardiopsis sp. cultures were centrifuged at 10,000x g, 4°C for 10 min up to three times after
incubation, and 5 ml of each strain's cell-free supernatant was then subjected to 50 ml of an
aqueous solution containing 1x10° M HAuCli.3H20. Subsequently, the samples were
centrifuged again at high speed after the reaction for a certain time to separate the produced
AuNMs (Manivasagan et al., 2015). Extracellular purification of AgNMs synthesized using
Bacillus subtilis can be performed by centrifugation method at 10,000 rpm for 5 minutes twice

(Alsamhary, 2020).

3 4. Electrophoresis

Electrophoresis is the term used to describe the movement and separation of charged
particles (ions) caused by electric fields. Two electrodes (anode, cathode) with opposing
charges are joined by a conducting liquid known as an electrolyte to form an electrophoretic
system. Agarose gel electrophoresis is usually used to purify and separate NMs based on size
and shape. For example, one percent agarose gel electrophoresis (Bio-Rad) was used to purify
AgNMs generated by fungi isolated from mangroves (Rodrigues et al., 2013). Another work
on AgNMs that utilized amplified DNA fragments from Strepromyces sp. was separated using

TBE buffer containing ethidium bromide (1 g/mL) on 1% agarose gel electrophoresis
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(Mabrouk et al., 2021). The synthesis of AgNMs by Staphylococcus aureus can be carried out

intracellularly and extracellularly so that the purification process requires cell wall lysis

(Triton-X100), as well as separation using centrifugation and gel electrophoresis (Amin et al.,

2019).

Table 2. Purification methods of biosynthesized NMs by various microbes

Type Microbe NMs Synthetic Purification method Application Reference
location
Chromatography
Fungi Talaromyces Ag Extracellular  Two steps: Biomedical (Bhatnagar
purpurogenus -Centrifugation etal., 2022)
(pigment) (6.700xg, 4°C. 20 min)
- Thin Layer
Chromatography
Bacteria  Acinetobacter sp.  Au,Se  Extracellular Two steps sequentially: Biocatalyst (Wadhwani
(lignin - Anion exchange etal., 2018)
peroxidase) chromatography
- Gel filtration
chromatography
(lignin peroxidase)
Bacteria  Escherichia coli Au Extracellular Two steps: Biocatalyst (Gholami-
(sulfite reductase) - Column Shabani et
chromatography (sulfite al., 2015)
reductase)
- Centrifugation
(80.000xg, 20 min)
(mixed sulfite reductase
AuNMs)
Bacteria Pseudomonas Ag Extracellular Two steps: Biosurfactant (Ganesh et
aeruginosa - Gel column al., 2010)
(thamnolipids) chromatography
(rhamnolipids)
- Centrifugation (mixed
rhamnolipids - AgNMs)
Magnetic Fields
Bacteria Magnerospirillum ~ Mag  Intracellular  Two steps: Magnetic (Designed
magneticum Mn - Centrifugation tumor Research; K,
(8.000xg, 10°C, 20 min) targeting 2022)

- Neodymium magnets




Bacteria Magnetospirillum  Mag Intracellular  Two steps: Biomedical Rosenfeldt et
gryphiswaldense Mn - Column-based and al., 2021)
magnetic Biotechnology
- Ultracentrifugation
Fungi Mixed fungi Fe:Os  Intracellular  Two steps: Cleaning agent (Sayed etal.,
- Centrifugation (500 2021)
rpm, 10°C, 20 min)
- Permanent magnets
Fungi  Aspergillus niger FeS Intracellular ~ Permanent magnets Biomedical (Abdeen et
and al., 2016)
Fe;0s
Density gradient Centrifugation
Fungi  Aspergillus flavus Fe Extracellular Centrifugation Extraction and (Hassan et
(5000 rpm, 5 min) Clarification al., 2022)
Bacteria  Bacillus subtilis Ag Extracellular  Centrifugation twice Antibacterial  (Alsamhary,
(10,000 rpm, 5 min) 2020)
Bacteria  Actinomycetes sp. Ag Extracellular  Centrifugation (15,000 Antimicrobial ~ (Al-Dhabi et
rpm, 15 min) al., 2018)
Fungi Pleurotus Au Extracellular ~ Centrifugation (2415xg,  Decolorization  (El-Batal et
ostreatus 15 min, 4°C) al., 2015)
(Laccase)
Electrophoresis
Bacteria Streptomyces Ag Extracellular  Agarose gel Antibacterial ~ (Mabrouk et
spiralis; electrophoresis 1% al., 2021)
Streptomyces
rochei
Fungi Aspergillus Ag Extracellular  Electrophoresis (sodium  Antimicrobial — (Rodriguez-
tubingensis; dodecyl Gonzilez et
Bionectria . al., 2020)
ochroleuca sulfate-polyacrylamide
gel)
Bacteria  Staphylococcus Ag Intracellular ~ Agarose gel Biosensors (Aminet al.,
aureus and electrophoresis 0.7% 2019)

Extracellular
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4. Characterization of biosynthesized NMs

Biosynthesized nanomaterials characterizations were determined by various techniques,
such as spectroscopic technique, microscopic technique, and diffraction technique.
Nanomaterials characterization play a huge role in various application of nanomaterials. Each

technique has a different purpose, methods, and instruments, which will be discovered below.

4.1. Spectroscopic techniques
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The spectroscopic technique is a measurement to examine the content of the materials,
specifically nanomaterials and the surface properties in a mixture solution. It uses various types
of instruments, such as UV-Vis Spectroscopy, Fourier Transform Infra-Red (FTIR), and
Raman Scattering which have distinctive methods. UV-Vis Spectroscopy aims to detect and
monitor the size and shape of metal ions of NMs with particle sizes between 2 nm to 100 nm
(Begum et al., 2018; Kumar et al., 2020). Another spectroscopy technique commonly used in
NMs is FTIR, to observe the functional group, composition, and inter interaction of molecules
(Alessio etal.,2017; Kamnev et al., 2021). In addition, FTIR could identify and classify several
microorganisms, such as Bacillus (Procacci et al., 2021), Escherichia coli (Farouk et al., 2022),

Pseudomonas (Lee et al., 2019), and Staphylococcus aureus (Hong et al., 2022).

4.2. Microscopic techniques

The microscopic technique is used to determine the physical morphology, texture, and size
of the NMs. Several instruments included microscopic techniques, such as the optical
microscope, Scanning Electron Microscope (SEM), and Transmission Electron Microscope
(TEM). SEM performs morphology, size, and shape of nanoparticles between 0.001 to 5 pm
(Maheshwari et al., 2018). In addition, compositional information could be collected by Energy
Dispersive X-Ray (EDX) and mapping analysis with an SEM instrument. TEM could observe
material with a particle size of up to 1 nm due to high image resolutions, thus real size and
structures are detected (Sierra, 2019). The NMs microbially synthesized keep developing with
various raw materials, microorganisms, and methods to acquire wider and better applications
of NMs. Moreover, High Resolution-TEM (HR-TEM) can provide the morphology of the
samples and identify the crystal structure from the atomic scale to thin layer of samples (Javed
et al., 2018). All SEM, TEM, and HR-TEM perform best in solid samples, usually powder,

fiber, and membrane.
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4.3. Diffraction techniques

One of the diffraction techniques well-known in NMs characterization is X-Ray
Diffraction (XRD), which provides data on the crystallography and structure of the material,
also the lattice parameter of samples (Mourdikoudis et al., 2018). Various peaks in the 20 range
show different molecules, for example, Ag nanoparticles appear at 27.81°,32.16°, 38.12°,44.3°,
46.21°, 54.83° 57.39°, 64.42°, and 77.45° (Meng, 2015); while TiO; nanoparticles show peaks
at 25.23° 37.71°, 47.72°, and 62.54° (Toro et al., 2020). XRD performs well in solid, dry, and
homogeneous materials. However, for suspension of NMs, measurement of hydrodynamic
diameter could be conducted by Dynamic Light Scattering (DLS). Liquid NMs with high
viscosity, such as liposomes (Zong et al., 2022), polymeric micelles (Ghezzi et al., 2021), nano
gels (Ahmed et al., 2020; Pourjavadi et al., 2020), and microemulsion (Gunarto et al., 2020)

are required for dilution to have an accurate measurement.

5. Chall and li

The NMs are produced from various sources of microbes and have been developed rapidly
since the 21% century. Over the years, different methods, sources, and analyses have been
carried out and resulted in different types of NMs based on their structure and sizes. However,
obtaining homogeneous NMs with the same methods and type of microbe is still challenging
due to the unpredictable growth and ability of the microbes. Therefore, more experiments are
essential in determining and observing the microorganism in NMs systems. Purification steps
of NMs by either intra or extracellular are considered expensive on an industrial scale as the
process requires advanced equipment like nanofiltration to enhance the purity of NMs. Another
limitation in NMs microbially-synthesized is an insufficient yield. However, the discovery of

a cost-effective NMs biosynthesis alternative can be carried out by utilizing waste materials.
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6. Conclusions and future outlook

Inthis chapter, green and sustainable approaches of microbially-synthesized nanomaterials
was summarized, as well as the intra-extracellular mechanisms and purification methods of
NMs. Nanomaterials are synthesized by several types of microbes, such as bacteria, fungi, yeast,
and algae. Several researchers are manipulating the DNA of microbes to improve the yield of
NMs. In addition, the combination of synthesis mechanism, intra-extracellular in a system is
likely to produce a higher amount of nanomaterial. However, it required an established and
complete process of purification for industrial production. On the other hand, utilization of
NMs specifically in medical applications is possibly over-absorbed due to their tiny size and

excellent efficient absorption towards the human body.
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