

Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials

1st Edition - January 19, 2024

Editors: Abhishek Kumar Bhardwaj, Arun Lal Srivastav, Kuldip Dwivedi, Mika Sillanpaa

Paperback ISBN: 9780443191831 • eBook ISBN: 9780443191848

Description

Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials focuses on the examination of green synthesis utilizing green waste materials derived from home and industrial applications. This book also examines the current state of material generations, future problems and their industrial constraints, and the synthesis of NMs for various applications such as medicinal, agriculture, environmental, food and beverage storage, and so on. The book includes the most recent practical and theoretical aspects of the use of waste materials released in the fabrication of various types of valuable nanomaterials, such as metal, metal oxide, polymeric, and graphene, among others. This is a relatively new concept in waste utilization, and green synthesis is a viable resource in making NPs. This book will also be valuable for waste management professionals who need proper disposal techniques for byproducts.

Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials

Edited by Abhishek Kumar Bhardwaj Arun Lal Srivastav Kuldip Dwivedi Mika Sillanpää

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands 125 London Wall, London EC2Y 5AS, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www. elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-443-19183-1

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Candice Janco Acquisitions Editor: Jessica Mack Editorial Project Manager: Aleksandra Packowska Production Project Manager: Bharatwaj Varatharajan Cover Designer: Miles Hitchen

Typeset by MPS Limited, Chennai, India

Contents

List of contributors Preface			xiii xvii		
1.	 Global status of biogenic and nonbiogenic waste production and their employability in nanomaterial production 				
	Manisha G. Verma, Ranjita S. Das, Abhishek Kumar Bhardwaj and Anupama Kumai				
	1.1 1.2	Introduction Biogenic waste 1.2.1 Sources 1.2.2 Impact on environment and human health	1 3 4		
	1.3	Nonbiogenic waste	4		
	1.5 1.6	 1.3.1 Sources National and International effort in waste management 1.4.1 Business opportunity Disposal Future perspective Concluding remarks 	4 10 11 12 12 12		
2.	Ref Sus syr val	erences stainable advances in the nthesis of waste-derived ue-added metal nanoparticles d their applications	12 17		
	Nav	hita Narwal, Deeksha Katyal, Aastha Malik, vish Kataria, Abhishek Kumar Bhardwaj, Md. an Jahan Rakib and Mian Adnan Kakakhel			
	2.1 2.2	Introduction Nanoparticles: types and synthesis	17		
	2.3	approaches Metallic nanoparticles and their	19		
		classification	20		
		2.3.1 Metal nanoparticles	21		
		2.3.2 Metal oxide nanoparticles	21		
		2.3.3 Metal sulfide nanoparticles	22		

	2.3.4	Doped metal and metal oxide	
		nanoparticles	22
	2.3.5	Metal organic framework	22
2.4	Waste	e-derived metal nanoparticles	22
	2.4.1	Agro waste, forest residues,	
		and plant waste	23
	2.4.2	Animal waste	23
	2.4.3	Mining waste	27
	2.4.4	Sewage and industrial waste	27
		Electronic waste	27
2.5	Appli	cations of metal nanoparticles	27
2.6	Conc	lusion and future paradigms	29
Ref	erence	s	30

Fundamental scope of nanomaterial synthesis from wastes			35		
	Pooja Thathola, Priyanka Adhikari, Vibhash Dhyani and Dinesh Chandola				
3.	Introc	luction	35		
3.2	2 Waste	e as a synthesis of nanomaterial	36		
	3.2.1	Different types of waste for			
		nanomaterial synthesis	36		
	3.2.2	Wastewater and biosludge	39		
	3.2.3	Electric and electronic wastes	39		
	3.2.4	Plastic waste	39		
	3.2.5	Graphene	39		
	3.2.6	Rice husk	40		
3.3	8 Applie	cation of nanoparticles derived			
	from	waste	40		
	3.3.1	Antimicrobial activity	40		
	3.3.2	Antioxidant activity	41		
		Anticancer activity	41		
		Nanodrugs and nanovaccine	42		
	3.3.5	Biosensors	42		
	3.3.6	Wastewater treatment	42		
3.4	Waste	e as a synthesis of nanomaterials	43		
		cterization and synthesis of the			
		naterials	43		
3.0	5 Future	e directions and conclusions	44		
Re	ferences	S	45		

4.	 Anticipated challenges in the synthe of different nanomaterials using 			sis	
		genic	있는 것 동안 수가 있는 것 같은 것 같은 것 같은 것 같은 것이 있는 것 같은 것 같	49	
			ogi, Kristi Priya Choudhury Ius Subhan		
	4.1	Introdu	iction	49	
	4.2	Sustain	able development of the green		
			sis of nanoparticles	50	
	4.3		nges of green approaches in		
			articles synthesis	50	
			Reproducibility	50	
			Scale-up	51	
			Predictability	51	
	4.4		nges of synthesis of different		
			aterials using biogenic waste	51	
			Carbon dot and graphene	51	
			Nanofluid	52	
			Metal-based nanoparticles Nanotubes	53 55	
			Metal-organic framework	55	
			Nanocellulose	55	
	45	Conclu		57	
		erences	301	57	
5.			waste utilization in the of functional nanomaterial	61	
	Abh	ishek Kı	Bharti, Chhavi Baran, umar Bhardwaj, Shipra Tripathi, ey and Kailash Narayan Uttam		
	5.1	Introdu	iction	61	
		5.1.1	Categorization of the		
			domestic waste	61	
		5.1.2	Domestic waste collection history	62	
		5.1.3	Domestic waste material utilization		
			in different sectors	62	
		5.1.4	Nanomaterial synthesis using		
		2564 3025	domestic waste	62	
		5.1.5	Techniques used for domestic	1213	
		- 1 -	waste-derived nanoparticles	64	
		5.1.6	Application of waste-derived	65	
		F 1 7	nanomaterials (NMs)	65 65	
		5.1.8	Antimicrobial application Application in the wastewater	05	
		5.1.0	treatment	66	
		5.1.9		67	
			Applications in energy storage	67	
		5.1.11	Applications in the industrial and	2225	
			commercial sector	68	
		5.1.12	Applications of waste-derived		
			nanoparticles in the environment	68	
	5.2	Conclu	sion	73	
	Refe	erences		73	

6.	Panorama of microbial regimes toward nanomaterials' synthesis					
		Dipankar Ghosh, Soumita Sarkar, Shrestha Debnath, Parna Das and Y. Devika				
		Introduction Application	on n of nanomaterials in	77		
		different f		77		
		6.2.1 Me	dical uses	77		
		6.2.2 Agr	icultural uses	78		
		6.2.3 Ind	ustrial uses	78		
	6.3		f biosynthesis of nanomaterials	79		
			sicochemical methods for			
			omaterials' synthesis	80		
			logical methods for			
			omaterials synthesis	80		
	6.4		of various nanomaterials			
			nicroorganisms	80		
			al nanomaterials	80		
			d nanomaterials (AuNPs)	82		
			er nanomaterials (AgNPs)	83		
			al oxide nanomaterials	83		
			anic nanomaterials	83		
	6.5		approach of biosynthesis of			
		nanomate		84		
		Conclusio		84		
		nowledgme rences	ent	84		
	Kete	rences		84		
7.	Sus	tainable	valorization of food			
	waste for the biogeneration of					
		omateria		91		
	0.0000			51		
			Shashi Soni, Shalini Purwar			
	and	Ena Gupta				
	7.1	Introducti	on to food waste and			
		nanomate	rials	91		
	7.2	Elucidation	n of food waste	92		
	7.3	Synthesis	of nanomaterials through			
		different t		92		
			logical methods	93		
			sical route for the synthesis of			
			omaterials	94		
			emical route of synthesis of			
			omaterials	94		
	7.4		anomaterials synthesized	200		
		from food		95		
			al oxide nanoparticles	95		
	_		er nanoparticles	97		
	7.5		ns and future perspective of			
	7 (rials in various areas	99		
		Conclusion nowledgme		99 99		
	ACA	Towneuging	an	33		

	Disclosure statement References				
8.	Industrial wastes and their suitabilit for the synthesis of nanomaterials				
	Shikha Baghel Chauhan, Shikha Saxena and Abhishek Kumar Bhardwaj				
	8.1	Introduction	103		
		8.1.1 Waste as starting materials for the			
		production of nanoparticles	104		
	8.2	Industrial waste	104		
		8.2.1 Types of industrial waste	104		
	8.3	Advantages of synthesis of nanomaterial			
		from industrial waste	107		
		8.3.1 Nanomaterial recover/synthesis			
		from industrial waste	107		
		8.3.2 Prior treatment of industrial waste	108		
		8.3.3 Nanoparticle synthesis from	100		
		recycled material	108		
		8.3.4 Nanomaterial synthesis from waste methods	100		
	9.4	Challenges	109 112		
	8.5	Future opportunities	112		
	8.6	Conclusion	113		
		erences	113		
9.	Scope to improve the synthesis of nanomaterial's using industrial waste				
	nar		117		
	Ajay	nomaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla,	117		
	Ajay Roh	omaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh,			
	Ajay Roh Abh	nomaterial's using industrial waste / Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak			
	Ajay Roh Abh	nomaterial's using industrial waste / Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, nimanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit			
	Ajay Roh Abh Rud 9.1	nomaterial's using industrial waste / Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, nimanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction			
	Ajay Roh Abh Rud 9.1	nomaterial's using industrial waste / Kumar Tiwari, Saket Jha, Mohee Shukla, hit Shukla, Ravikant Singh, himanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes	, 117 117		
	Ajay Roh Abh Rud 9.1	Kumar Tiwari, Saket Jha, Mohee Shukla, Kumar Tiwari, Saket Jha, Mohee Shukla, Nit Shukla, Ravikant Singh, Nimanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste	117 117 118		
	Ajay Roh Abh Rua 9.1 9.2	Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste	, 117 117		
	Ajay Roh Abh Rua 9.1 9.2	Kumar Tiwari, Saket Jha, Mohee Shukla, Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on	117 117 118 118		
	Ajay Roh Abh Rud 9.1 9.2 9.3	Kumar Tiwari, Saket Jha, Mohee Shukla, Kumar Tiwari, Saket Jha, Mohee Shukla, Manayu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment	117 117 118		
	Ajay Roh Abh Rua 9.1 9.2	Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from	117 117 118 118 118 118		
	Ajay Roh Abh 9.1 9.2 9.3 9.4	Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste	117 117 118 118 118 118 118		
	Ajay Roh Abh 9.1 9.2 9.3 9.4	Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste Various types of nanomaterial synthesis	117 117 118 118 118 118 119 122		
	Ajay Roh Abh 9.1 9.2 9.3 9.4	 Nomaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste 9.5.1 Coprecipitation method 	117 117 118 118 118 118 118 119 122 122		
	Ajay Roh Abh 9.1 9.2 9.3 9.4	 Nomaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 	117 117 118 118 118 118 119 122 122 123		
	Ajay Roh Abh 9.1 9.2 9.3 9.4	Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste Various types of nanomaterial synthesis 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 9.5.3 Microwave-supported synthesis	117 117 118 118 118 118 119 122 122 123 123		
	Ajay Roh Abh 9.1 9.2 9.3 9.4	Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 9.5.3 Microwave-supported synthesis 9.5.4 Pyrolysis	117 117 118 118 118 118 119 122 122 123 123 123		
	Ajay Roh Abh 9.1 9.2 9.3 9.4	Kumar Tiwari, Saket Jha, Mohee Shukla, it Shukla, Ravikant Singh, imanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste Various types of nanomaterial synthesis 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 9.5.3 Microwave-supported synthesis	117 117 118 118 118 118 119 122 122 123 123		
	Ajay Roh Abh Rud 9.1 9.2 9.3 9.4 9.5	 Nomaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla, hit Shukla, Ravikant Singh, himanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 9.5.3 Microwave-supported synthesis 9.5.4 Pyrolysis 9.5.5 The sol-gel method 9.5.6 Calcination 	117 117 118 118 118 118 118 119 122 122 122 123 123 123 123		
	Ajay Roh Abh Rud 9.1 9.2 9.3 9.4 9.5	 Nomaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla, hit Shukla, Ravikant Singh, himanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 9.5.3 Microwave-supported synthesis 9.5.4 Pyrolysis 9.5.5 The sol-gel method 9.5.6 Calcination Mechanism of nanomaterial synthesis from industrial waste 	117 117 118 118 118 119 122 123 123 123 123 123 123 123 123 123 123 123		
	Ajay Roh Abh Rud 9.1 9.2 9.3 9.4 9.5	 Nomaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla, hit Shukla, Ravikant Singh, himanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 9.5.3 Microwave-supported synthesis 9.5.4 Pyrolysis 9.5.5 The sol-gel method 9.5.6 Calcination Mechanism of nanomaterial synthesis from industrial waste 9.6.1 Carbon nanotubes 	117 117 118 118 118 118 119 122 123 123 123 123 123 123 124		
	Ajay Roh Abh Rud 9.1 9.2 9.3 9.4 9.5 9.5	 Nomaterial's using industrial waste Kumar Tiwari, Saket Jha, Mohee Shukla, hit Shukla, Ravikant Singh, himanyu Kumar Singh, Ashok Kumar Pathak Ira Prakash Ojha and Anupam Dikshit Introduction Industrial wastes 9.2.1 Biodegradable industrial waste 9.2.2 Nonbiodegradable industrial waste Effect of industrial waste material on the environment Synthesis of nanomaterials from industrial waste 9.5.1 Coprecipitation method 9.5.2 Hydrothermal method 9.5.3 Microwave-supported synthesis 9.5.4 Pyrolysis 9.5.5 The sol-gel method 9.5.6 Calcination Mechanism of nanomaterial synthesis from industrial waste 	 117 117 118 118 118 119 122 123 		

	9.8 Conclusion			125	
	Ackn	owledgr	nents	125	
	Refer	ences		125	
10.	Application and characterization of nonbiogenic synthesized nanomaterials				
	Devi	Selvaraj	and Tharmaraj Vairaperumal		
	10.1	Introdu	iction	131	
	10.2	Impacts	s of nonbiogenic wastes	132	
	10.3		genic methods for the synthesis		
			omaterials	133	
			Physical methods	133	
	1000000		Chemical methods	134	
	10.4		sis of nanomaterials from		
			genic wastes	134	
		10.4.1			
		10 1 2	nanomaterials	134	
		10.4.2	Industrial waste-derived nanomaterials	120	
		10.4.2	Plastic waste-derived	136	
		10.4.5	nanomaterials	136	
		10.4.4	Tires waste-derived nanomaterials		
			Paper waste-derived nanomaterials	137	
		10.4.6		137	
		10.4.0	nanomaterials	137	
	10.5	Charac	terization techniques of	137	
	1010		genic synthesized nanomaterials	138	
		10.5.1	UV-Vis spectroscopy	138	
		10.5.2			
			spectroscopy	138	
		10.5.3	X-ray diffraction	138	
			Scanning electron microscopy	138	
		10.5.5	Transmission electron microscopy	138	
	10.6	Applica	tion of nonbiogenic		
			derived nanomaterials	142	
		10.6.1	Antifungal activity	142	
			Supercapacitors	142	
			Electrocatalyst	143	
			Sensor	143	
	0.000		Water remediation	143	
			ry and conclusion	143	
	Refer	ences		144	
11.	Nan	omate	rial synthesis using tire		
		plastic	, 0	151	
	Muha	ammad S	ed Mahesar, Saqaf Jagirani, Aamna Balouch, n Khuhawar, Abdul Hameed Kori		
	and Syed Tufail Hussain Sherazi				

11.1 Introduction 151

	11.2	Tire and plastic-based preparation of	
		nanomaterials	152
	11.3	Quartz tube	152
	11.4	Autoclave	152
	11.5	Crucible	153
	11.6	Muffle furnace	153
	11.7	Plastic and tire waste-based	
		nanomaterials	153
	11.8	Graphene-based nanomaterials	154
	11.9	Metal and metal oxide nanoparticles	155
	11.10	Applications of plastic and tire	
		waste-based nanomaterials	155
	11.11	Conclusion	158
	Refere	ences	158
12.	to su nano	rging biowaste-derived surfaces pport redox-sensitive particles: applications in	1(2
		oval of synthetic dyes	163
	Nitin I	Khandelwal and Gopala Krishna Darbha	

12.1 Introduction			uction	163	
	12.2	Availab	le dyes removal techniques	164	
	12.3	Redox-	sensitive iron nanoparticles	165	
		12.3.1	Synthesis, characterization, and		
			modifications of nZVI	166	
		12.3.2	Surface-supported redox-sensitive		
			iron nanocomposites	167	
	12.4	Use of	biowastes in designing and		
		preserv	ving reactivity of redox-sensitive		
		nanopa	articles	167	
		12.4.1	Use in green synthesis of redox-		
			sensitive nanoparticles	168	
		12.4.2	Use in functionalization and		
			stabilization of redox-sensitive		
			nanoparticles	168	
		12.4.3	Use as supporting surfaces	168	
	12.5	Applica	ation of surface-supported		
			sensitive iron nanocomposites in		
		dyes re	moval and prevailing		
		mecha	nisms	169	15
	12.6	Conclu	sion: current challenges and		
		future	perspectives	171	
	Refer	rences		172	
13.	Nan	omate	erials synthesis from the		
			solid wastes	177	
	10000-0000	222222222		•••	
			ng Lyly, Zhen Hong Chang		
	and Y	leit Haai	n Teow		
	13.1	Introdu	uction	177	
	13.2		ial solid waste for the synthesis		
			omaterials	178	

		13.2.1 Generation of waste for	
		production of nanomaterials	
		and their potential application	178
	13.3	Synthesis of nanomaterials from solid	
		waste	181
		13.3.1 Pretreatment of industrial waste	181
		13.3.2 Methods to synthesis	
		nanomaterials from waste	182
	13.4	Sustainability consideration and	
		future outlook	186
	13.5	Conclusion	187
	Ackn	owledgement	187
		rences	187
14.		omaterials' synthesis from the	404
	indu	strial solid wastes	191
	Brahi	im Achiou, Doha El Machtani Idrissi,	
		n Essate, Zakariya Chafiq Elidrissi,	
		ess Kouzi, Majda Breida,	
		amed Ouammou and Saad Alami Younssi	
		Introduction	191
	14.2	Synthesis processes	192
		14.2.1 Physical processes	192
		14.2.2 Chemical processes	194
		14.2.3 Biological processes	194
	101000	14.2.4 Hybrid processes	196
	14.3	Inorganic waste-based nanomaterials	196
		14.3.1 Fly ash	196
		14.3.2 Phosphogypsum	197
		14.3.3 Glass wastes	198
		14.3.4 Mining wastes	199
		14.3.5 Batteries and electronic wastes	199
	14.4	Organic waste-based nanomaterials	200
		14.4.1 Carbonaceous industrial waste	200
		14.4.2 Food wastes	201
		14.4.3 Plastic waste	201
		Challenges and recommendations	202
		Conclusion	203
	Refer	rences	204
15	Cro	en synthesis of nanomaterials	
15.			
		n plant resources: its properties	207
	and	applications	207
	Rajas	hree Bhuyan, Palakshi Bordoloi,	
		dra Singh Verma, Kulbhushan Samal	
		Sachin Rameshrao Geed	
	15 1	Introduction	207
		Plant-extracted bioactive molecules	207
	13.2	involved in the synthesis	
		of nanomaterials	207
	15.3	Plant resource for nanomaterials	207
	15.5		208
		synthesis	200

15.4	Green	Green synthesis methods for		
	nanom	aterials	212	
	15.4.1	Plant-mediated synthesis	212	
		Plant parts sources for synthesis		
		of metallic nanomaterials	213	
15.5	Advant	ages of green synthesis methods		
	over ch	nemical synthesis for		
	nanom	aterials	214	
15.6	Proper	ties of nanomaterials		
	synthes	sized from plant resources	214	
	15.6.1	Surface area	214	
	15.6.2	Quantum effects	214	
		Great catalyst support	214	
		Antimicrobial activity	215	
		Electrical and optical properties	215	
		Mechanical properties	215	
		Magnetic properties	215	
	15.6.8	Thermal properties	215	
15.7		ations of green synthesis		
		aterials	215	
		Pharmaceutical applications	215	
		Commercial applications	217	
15.8		sion	217	
Refe	erences		218	
16 Na	notech	nology for sustainable		
			001	
		eni and innire: a review	//	
		ent and future: a review	221	
Raja	t Tokas, I	Laxmi Kant Bhardwaj,	221	
Raja	t Tokas, I		221	
Raja	t Tokas, I esh Kuma	Laxmi Kant Bhardwaj, ar and Tanu Jindal	221	
Raja Nar	t Tokas, I esh Kuma Introdu	Laxmi Kant Bhardwaj, ar and Tanu Jindal		
Raja Nar	t Tokas, I esh Kuma Introdu	Laxmi Kant Bhardwaj, ar and Tanu Jindal uction	221	
Raja Nar	t Tokas, I esh Kuma Introdu 16.1.1	Laxmi Kant Bhardwaj, ar and Tanu Jindal action Need toward sustainability How can nanotechnology contribute?	221 221 221	
Raja Nar	t Tokas, I esh Kuma Introdu 16.1.1	Laxmi Kant Bhardwaj, ar and Tanu Jindal Iction Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad	221 221 221	
Raja Nar	t Tokas, I esh Kuma Introdu 16.1.1 16.1.2	Laxmi Kant Bhardwaj, ar and Tanu Jindal Iction Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for	221 221 221 ch	
Raja Nar	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3	Laxmi Kant Bhardwaj, ar and Tanu Jindal Inction Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0	221 221 221	
Raja Nar	t Tokas, I esh Kuma Introdu 16.1.1 16.1.2	Laxmi Kant Bhardwaj, ar and Tanu Jindal Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable	221 221 221 ch	
Raja Nar	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4	Laxmi Kant Bhardwaj, ar and Tanu Jindal Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development	221 221 221 ch 222 222	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5	Laxmi Kant Bhardwaj, ar and Tanu Jindal Inction Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission	221 221 221 ch	
Raja Nar	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica	Laxmi Kant Bhardwaj, ar and Tanu Jindal action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology	221 221 221 ch 222 222 225	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment	221 221 221 ch 222 222 225 225 225	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment Clinical and medical	221 221 221 ch 222 222 225 225 225 227	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.2	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission Ations/uses of nanotechnology equipment Clinical and medical Agriculture	221 221 221 ch 222 222 225 225 225 227 227	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.2 16.2.3	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment	221 221 221 222 222 225 225 225 227 227 228	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.3 16.2.4	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment Electronics	221 221 221 ch 222 225 225 225 227 227 228 228 228	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission Actions/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment Electronics Food	221 221 221 ch 222 225 225 225 227 227 228 228 228 228 228	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.3 16.2.4 16.2.5 16.2.6	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment Electronics Food Textile	221 221 221 ch 222 225 225 225 227 227 228 228 228 228 228 229	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment Electronics Food Textile Water treatment	221 221 221 ch 222 225 225 225 227 227 228 228 228 228 228 229 229	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7 16.2.8	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission Ations/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment Electronics Food Textile Water treatment Cosmetics	221 221 221 ch 222 225 225 225 225 227 227 228 228 228 228 229 229 229 229	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7 16.2.8 16.2.6	Laxmi Kant Bhardwaj, ar and Tanu Jindal Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment Electronics Food Textile Water treatment Cosmetics Sports	221 221 221 ch 222 225 225 225 225 225 227 227 228 228 228 228 228 229 229 229 229	
Raja Nar 16.1	tt Tokas, I esh Kuma Introdu 16.1.1 16.1.2 16.1.3 16.1.4 16.1.5 Applica and its 16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6 16.2.7 16.2.8	Laxmi Kant Bhardwaj, ar and Tanu Jindal Action Need toward sustainability How can nanotechnology contribute? Teamwork, collaborative approad significant for consequential for Society 5.0 Nanotechnology for sustainable development Product transmission ations/uses of nanotechnology equipment Clinical and medical Agriculture Energy and environment Electronics Food Textile Water treatment Cosmetics Sports Furniture	221 221 221 ch 222 225 225 225 225 227 227 228 228 228 228 229 229 229 229	

	Ackn	Conclusions and recommendations owledgments	229 230
		ilict of interest rences	230 230
	Nere		250
17.		ization of biogenic waste	
		valuable calcium resource ne hydrothermal synthesis of	
		ium-orthophosphate	
		omaterial	235
	A.P. E	Bayuseno, R. Ismail, J. Jamari and S. Muryanto)
	17.1	Introduction 17.1.1 Recovery of biogenic waste	235
		calcium resources for hydroxyapatite production	235
	17.2	Calcium orthophosphates phases	236
		The demand for nanoparticle	
		hydroxyapatite biomaterial powder	
		on a global scale	237
	17.4	Synthesis methods of hydroxyapatite	2127031
		based on biogenic waste	238
	17.5	Various syntheses for producing hydroxyapatite powder	239
	176	Hydrothermal synthesis of	239
	17.0	hydroxyapatite powders	239
	17.7	Hydrothermal hydroxyapatite synthesis	
		using biogenic waste shell sources	239
	17.8		
		integrated calcium resource recovery	3.00
	17.0	for hydroxyapatite biomaterials	244
		Conclusion owledgment	245 245
		rences	245
	Refer		245
18.		eview of plant-derived	
	met	allic nanoparticles synthesized	
		piosynthesis: synthesis,	
		racterization,	0.54
	and	applications	251
	Bana	fsheh Haji Ali and Majid Baghdadi	
	18.1	Introduction	251
		18.1.1 The general procedure for	0.50
	10.0	preparing a plant extract	252
	10.2	Advantages of the plant extract-mediated synthesis of metallic	
		nanoparticles	253
	18.3	The role of plant extract in the	ाल्लाहर्ष्ट्रहर्ष
		synthesis of metallic nanoparticles	253
		18.3.1 Reduction mechanism	253
		18.3.2 Potential capping and	0.55
		stabilizing agent	255

18.4		s sources of plant extract yed in the synthesis of metallic	
	nanopa	and the second se	255
		Metallic nanoparticles' synthesis	
		using leaf extracts of plants	255
	18.4.2	Metallic nanoparticles' synthesis	
		using stem extract	256
	18.4.3	Metallic nanoparticles' synthesis	
		using flower extract	256
	18.4.4	Metallic nanoparticles' synthesis	
		using plant peel extract	260
18.5	Effect of	of the plant extract on the	
	synthes	sis and characteristics of	
	metalli	c nanoparticles	260
18.6	Applica	ations of plant extract-mediated	
	synthes	sized metallic nanoparticles	260
	18.6.1	Biomedical applications	260
	18.6.2	Wastewater treatment	
		applications	264
	18.6.3	Agricultural applications	264
18.7	Future	prospects	265
18.8	Conclu	sion	266
Ackn	owledge	ment	266
Refe	rences		266

19.	The intra- and extracellular	
	mechanisms of microbially	
	synthesized nanomaterials and	
	their purification	273

Nathania Puspitasari, Ery Susiany Retnoningtyas, Chintya Gunarto and Felycia Edi Soetaredjo

19.1	Introdu	uction	273
19.2	Microb	ially synthesized nanomaterials	274
	19.2.1	Intracellular and extracellular	
		mechanisms	274
	19.2.2	Synthesis of nanomaterials	
		using bacteria	276
	19.2.3	Synthesis of nanomaterials	
		using fungi	276
	19.2.4	Synthesis of nanomaterials	
		using yeast	276
	19.2.5	Synthesis of nanomaterials using	
		algae	276
19.3	Purifica	ation methods of biosynthesized	
	nanom	aterials	276
	19.3.1	Chromatography	281
	19.3.2	Magnetic fields	281
	19.3.3	Density gradient centrifugation	281
	19.3.4	Electrophoresis	281
19.4	Charac	terization of biosynthesized	
	nanom	aterials	282
	19.4.1	Spectroscopic techniques	282

9.4.3 Diffraction techniques	202
9.4.5 Dimaction techniques	282
hallenges and limitations	282
Conclusions and future outlook	283
nces	283
	hallenges and limitations Conclusions and future outlook

20. Fundamental scope of nanomaterial synthesis from wastes 289

Naveed Qasim Abro, Najma Memon, Muhammad Siddique Kalhoro, Sakib Hussain Laghari and Zafar Ali

Abbr	eviation	IS	289		
20.1	Introduction				
	20.1.1	Electronic and electrical waste or			
		electronic waste	291		
	20.1.2	Batteries	292		
	20.1.3	Instruments and machines	292		
20.2	Recycli	ng strategies of retrieved metals			
	against	the electronic waste	292		
	20.2.1	Formal recycling	292		
	20.2.2	Biohydrometallurgy or			
		biometallurgy	293		
20.3	Synthe	tic approaches for the			
	nanom	aterials from electronic waste	293		
	20.3.1	Synthesis of nanomaterials			
		from fish wastes	293		
	20.3.2	Synthesis of nanomaterials from			
		expired medicine			
		(pharmaceutical wastes)	297		
	20.3.3	Synthesis of nanomaterials			
		from hair waste	298		
20.4	Conclu	ision	299		
Refe	rences		299		

21.	synt	hesize	n of nanomaterials ed using agriculture wastewater treatment	305
			l, Manoj Kumar Yadav, Iajumder and Partha Sarathi Ghosal	
	21.1	Introdu	uction	305
	21.2	nanom	vater treatment using aterials synthesized using	
		agricul	tural waste	306
		21.2.1	Removal of dyes and phenolic compounds	306
		21.2.2	Removal of antibiotics and pesticides	314
		21.2.3	Removal of inorganics	314
			Removal of pathogenic bacteria	314
	21.3		nism and functions of nanocatalysts,	
			sorbent, and nanodisinfectant	315

	21.4	Summary, present status, conclusion,	
		and future outlook	315
	Refer	rences	315
22	Niam	amatarial authoric from the	
22.		omaterial synthesis from the	319
	pian	t extract and tree part	519
	Thi T	hao Truong and Minh Quy Bui	
	22.1	Introduction	319
	22.2	, 0	
		nanomaterials from plant extract and	220
		other parts	320
		22.2.1 Inorganic nanomaterials	320
		22.2.2 Organic-based nanomaterials22.2.3 Carbon-based nanomaterials	321 322
	22.3		322
	22.5	from plants	323
		22.3.1 Water treatments	323
		22.3.2 Biomedical field	324
		22.3.3 Other applications	325
	22.4	Conclusion and future prospective	325
		rences	326
23	Reco	ent advances in agriculture	
201		te for nanomaterial production	331
		28-2 19-20-0 - 22-22 19-20-0 - 22-22	
		sh Gaur, Charu Misra,	
		d Kumar Bajpayee and	
	Abhis	shek Kumar Bhardwaj	
	23.1	Introduction	331
	23.2	Various forms of agricultural waste	332
	23.3	Types of nanomaterial synthesized from	
		agricultural wastes	332
		23.3.1 Synthesis of carbon nanomaterials	
		from agricultural wastes	332
		23.3.2 Synthesis of graphene oxide from	
		agricultural wastes	333
		23.3.3 Production of silica nanoparticles	
		from agricultural waste	336
		23.3.4 Preparation of nanocellulose	339
		23.3.5 Preparation of metal	2.40
	22.4	nanoparticles Conclusion and future perspectives	340
		rences	340 341
			341
	Refer	ences	
21			
24.	Nan	omaterials' synthesis from	
24.	Nan		345
24.	Nan the	omaterials' synthesis from	
24.	Nan the Swat	omaterials' synthesis from fruit wastes	
24.	Nan the Swat	omaterials' synthesis from fruit wastes <i>i Rose Toppo</i> Nanotechnology in pomology science Types of nanomaterials	345
24.	Nan the Swati 24.1	omaterials' synthesis from fruit wastes <i>i Rose Toppo</i> Nanotechnology in pomology science	345

	000000000000000000000000000000000000000	0.001 20 89 64 900 64	292220465
		Two-dimensional nanoparticles	346
	24.2.3		
		nanoparticles	346
	24.2.4	Classification of nanomaterials	
		on the basis of structural	
		configuration	346
	24.2.5	Classification on the basis of	
		chemical form	346
24.3		sis of nanomaterials	346
	24.3.1	Top-to-bottom approach	346
	24.3.2	Bottom-to-up approach	346
24.4		hesis of nanomaterial	347
24.5		of the fruit wastes known for	
		sis of nanomaterials	347
	24.5.1		347
	24.5.2	0	348
	24.5.3		348
		Orange	348
		Lemon	348
		Pomegranate	348
		Avocado	348
		Dragon fruit	349
	24.5.9		349
	24.5.10		349
	24.5.11		349
24.6		of nanomaterials produced	9.05
		arious fruit waste	349
		Noble metal nanoparticles	349
		Semiconductor nanoparticles	350
247		Other types of nanoparticles	351
24.7		hesis methods	351
		Collection of fruit wastes	352
	24.7.2		252
	2472	and synthesis of nanoparticles There are various protocols	352
	24.7.3		
		adopted by different researchers	252
24.8	Charac	for nanoparticles' synthesis terization of nanomaterials	353
24.0		sized from fruit wastes	354
	24.8.1	UV-Vis spectroscopy	355
	24.8.2	Spectroscatter	355
	24.8.3		355
	24.8.3	Fourier-transform infrared	222
	24.0.4	spectroscopy	355
	2485	Microscope	355
		Size distribution and zeta	555
	24.0.0	potential	356
	24.8.7	Biomedical assays of	550
	27.0./	nanomaterials	356
24.9	Multifu	nctional application of	550
		rticles produced by green	
	method		357
		Applications in medicine	357
		Tumor detection and treatment	357

24.9.3	Antimicrobial and antibiofilm	
	agents	358
24.9.4	Use as a catalyst in chemistry	358
24.9.5	Use of nanoparticles in	
	agriculture and food industries	358
24.9.6	Bioremediation and waste water	
	treatment	358
24.9.7	Applications for generating	
	energy	358
24.9.8	Use of nanoparticles in	
	microwiring	359

24.10	Future a	spects	359
	24.10.1	Ideal raw materials	359
	24.10.2	Use of wastes	360
	24.10.3	Product enhancement	360
	24.10.4	Limit energy consumption	361
	24.10.5	Preservation	361
24.11	Conclus	ions	361
Refere	ences		362

Index

List of contributors

- Naveed Qasim Abro National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- Brahim Achiou Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Priyanka Adhikari National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
- Saad Alami Younssi Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Banafsheh Haji Ali School of Environment, College of Engineering, University of Tehran, Tehran, Iran
- Zafar Ali Chemistry Department, University of Turbat, Balochistan, Pakistan
- Majid Baghdadi School of Environment, College of Engineering, University of Tehran, Tehran, Iran
- Anand Kumar Bajpayee Department of Zoology, MLK [PG] College, Balrampur, Uttar Pradesh, India
- Aamna Balouch National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- Chhavi Baran Centre for Environmental Science, IIDS, University of Allahabad, Allahabad, Madhya Pradesh, India
- A.P. Bayuseno Centre for Waste Management, Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
- Abhishek Kumar Bhardwaj Department of Environmental Science, Amity School of Life Sciences, Amity University, Gwalior, Madhya Pradesh, India
- Laxmi Kant Bhardwaj Amity Institute of Environmental Toxicology, Safety and Management (AIETSM), Amity University, Noida, Uttar Pradesh, India
- Abhi Sarika Bharti Faculty of Science and Technology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh, India

- Rajashree Bhuyan Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
- Palakshi Bordoloi CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Majda Breida Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Minh Quy Bui TNU-University of Sciences, Thai Nguyen City, Thai Nguyen, Vietnam
- Zakariya Chafiq Elidrissi Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Dinesh Chandola Govind Ballabh Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
- Zhen Hong Chang Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
- Shikha Baghel Chauhan Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
- Kristi Priya Choudhury Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Gopala Krishna Darbha Environmental Nanoscience Laboratory, Department of Earth Sciences & Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- Parna Das Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University Agarpara, Kolkata, India
- Ranjita S. Das Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
- Shrestha Debnath Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University Agarpara, Kolkata, India

- Y. Devika Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University Agarpara, Kolkata, India; Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
- Vibhash Dhyani Govind Ballabh Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
- Anupam Dikshit Biological Product Laboratory, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
- **Doha El Machtani Idrissi** Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Ahlam Essate Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Manish Gaur Centre of Biotechnology, Institute of Inter-Disciplinary Sciences, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Sachin Rameshrao Geed CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Partha Sarathi Ghosal School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- Dipankar Ghosh Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University Agarpara, Kolkata, India
- Chintya Gunarto Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Widya Mandala Surabaya Catholic University, Surabaya, East Java, Indonesia
- **Ena Gupta** Department of Family and Community Sciences, University of Allahabad, Prayagraj, Uttar Pradesh, India
- **R. Ismail** Centre for Waste Management, Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
- Muhammad Saqaf Jagirani National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan; Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P.R. China; School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P.R. China

- J. Jamari Centre for Waste Management, Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
- Saket Jha Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, United States
- **Tanu Jindal** Amity Institute of Environmental Toxicology, Safety and Management (AIETSM), Amity University, Noida, Uttar Pradesh, India
- Mian Adnan Kakakhel College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, Hubei, P.R. China
- Muhammad Siddique Kalhoro Institute of Physics, University of Sindh, Jamshoro, Pakistan
- Navish Kataria Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
- **Deeksha Katyal** University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
- Nitin Khandelwal Environmental Nanoscience Laboratory, Department of Earth Sciences & Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- Aftab Hussain Khuhawar Chemical Engineering and Technology, Ocean University of China, Qingdao, P.R. China
- Abdul Hameed Kori National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- Youness Kouzi Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Anupama Kumar Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
- Naresh Kumar Amity Institute of Environmental Sciences (AIES), Amity University, Noida, Uttar Pradesh, India
- Sakib Hussain Laghari National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- Leow Hui Ting Lyly Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

- Sarfaraz Ahmed Mahesar National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- Abhradeep Majumder School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- Aastha Malik University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
- Pubali Mandal Department of Civil Engineering, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
- Najma Memon National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- Charu Misra Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
- **S. Muryanto** Centre for Waste Management, Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
- Nishita Narwal University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
- Newton Neogi Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Uroosa Noor Department of Family and Community Sciences, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Rudra Prakash Ojha Department of Zoology, Nehru Gram Bharati (Deemed to be University), Prayagraj, Uttar Pradesh, India
- Mohamed Ouammou Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
- Rahul Pandey Department of Biotechnology, S. M. M. Town P. G. College, Ballia, Uttar Pradesh, India
- Ashok Kumar Pathak Department of Physics, Ewing Christian College, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Shalini Purwar Banda University of Agriculture and Technology, Banda, Uttar Pradesh, India
- Nathania Puspitasari Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, Indonesia; Collaborative Research Center for Zero Waste and

Sustainability, Widya Mandala Surabaya Catholic University, Surabaya, East Java, Indonesia

- Md. Refan Jahan Rakib Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
- **Ery Susiany Retnoningtyas** Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, Indonesia
- Kulbhushan Samal CSIR- Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India
- Soumita Sarkar Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University Agarpara, Kolkata, India
- Shikha Saxena Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
- **Devi Selvaraj** PG Department of Chemistry, Cauvery College for Women (Autonomous), Tiruchirappalli, Tamil Nadu, India
- Syed Tufail Hussain Sherazi National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- Mohee Shukla Biological Product Laboratory, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Rohit Shukla Biological Product Laboratory, Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Abhimanyu Kumar Singh Department of Physics, Shyama Prasad Mukherjee Govt. Degree College, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Ravikant Singh Department of Biotechnology, Swami Vivekanand University, Sagar, Madhya Pradesh, India
- Felycia Edi Soetaredjo Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Widya Mandala Surabaya Catholic University, Surabaya, East Java, Indonesia
- Shashi Soni Department of Family and Community Sciences, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Md Abdus Subhan Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh; Division of Nephrology, School of Medicine and Dentistry, Medical Center, University of Rochester, NY, United States

- Yeit Haan Teow Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- **Pooja Thathola** Govind Ballabh Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
- Ajay Kumar Tiwari Department of Physics, Nehru Gram Bharati (Deemed to be University), Prayagraj, Uttar Pradesh, India
- **Rajat Tokas** Amity Institute of Environmental Toxicology, Safety and Management (AIETSM), Amity University, Noida, Uttar Pradesh, India
- Swati Rose Toppo Department of Microbiology and Bioinformatics, Atal Bihari Vajpayee Vishwavidyalaya, Bilaspur, Chhattisgarh, India
- Shipra Tripathi Department of Physics, Faculty of Science and Technology, Dr. Shakuntala Misra

National Rehabilitation University, Lucknow, Uttar Pradesh, India

- Thi Thao Truong TNU-University of Sciences, Thai Nguyen City, Thai Nguyen, Vietnam
- Kailash Narayan Uttam Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, Uttar Pradesh, India
- Tharmaraj Vairaperumal Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan ROC; Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Jitendra Singh Verma CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Manisha G. Verma Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
- Manoj Kumar Yadav Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna, Bihar, India

Preface

The unprecedented development and industrialization of the world generates enormous amounts of waste materials which creates severe environmental problems. Waste generated by diverse human activities (both industrial and house-hold) can also cause human health risks. Hence, efficient approaches to waste management are the need of the hour.

In developing countries, garbage generation has increased in tandem due to exponential population growth. Many biodegradable wastes are currently disposed of in malicious ways, such as by burning, unscientific dumping, or direct discharge into the water bodies. Abundant biodegradable waste in the ecosystem can contaminate the environment as they promote the growth of many pathogenic microbial communities in the vicinity of wastes and these microbes can cause a variety of infectious diseases.

However, biodegradable waste or biomass can be used as raw material for nanoparticle production via green synthesis. This is because plant- and animal-related wastes have a treasure of biochemicals for the reduction of metal and nonmetal ions. Natural biological systems are used to produce nanomaterials through green material synthesis processes. NMs recycled from different types of nonbiogenic waste could be a pioneering approach to not only avoid hazardous effects on the environment but also to implement circular economy practices, which are crucial to attaining sustainable growth. Moreover, recycled NMs can be utilized as a safe and revolutionary alternative with outstanding potential for many biomedical applications.

The book discusses the current status and perspectives of biogenic and nonbiogenic waste generation rates throughout the globe along with holistic and sustainable approaches for the production of multifunctional nanomaterials using domestic waste, food waste, agriculture, and fruit wastes. Moreover, the book chapters have been discussed, to examine the characteristics of nonbiogenic synthesized nanomaterials, their applications, and limitations with the biogenic synthesized nanomaterials.

Further, the incorporation of the chapter on the application of nanomaterials, synthesized from agricultural wastes for wastewater treatment, provides an environment-friendly, toxic-free, and sustainable approach. The synthesis of nanoparticles from biowaste offers potential benefits over the chemical-based synthesis approach as it is eco-friendly, cost-effective, and easy. Moreover, the precursor of natural sources can be reused, recycled, and reduced.

The major challenge to scale up the synthesis of nanoparticles for industrial production from biowaste has been attributed to the monodispersity, size, and shape of the NPs, which have also been addressed in the chapters keeping in mind the recent progress and future prospects.

This book will be a pioneering compilation of the different strategies to be adopted for the green synthesis of multifunctional NPs and also for the effective management of the enormous amount of biogenic and nonbiogenic wastes. Thus the present book will be an asset to the students and researchers working on nanomaterial developments in multidisciplinary domains.

1	The Intra and Extracellular Mechanisms of Microbially-Synthesized
2	Nanomaterials and Their Purification
3	Nathania Puspitasari ^{1,2} *, Ery Susiany Retnoningtyas ¹ , Chintya Gunarto ^{1,2} , Felycia Edi
4	Soetaredjo ^{1,2}
5	¹ Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Jl.
6	Kalijudan 37, Surabaya 60114, East Java, Indonesia
7	² Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya
8	60114, East Java, Indonesia
9	*Email: nathania.puspita@ukwms.ac.id
10	
11	Abstract
12	Nanotechnology is the most important scientific breakthrough in the 21 st century which has led
13	to changes and advances in various fields of application. Generally, nanomaterials (NMs) with
14	specific shapes, sizes, and compositions are required for nanotechnology. Synthesis of NMs
15	using conventional chemical and physical methods involves high costs, the use of hazardous
16	substances, and environmental damage. In contrast, the green synthesis approach provides a
17	sustainable method for synthesizing NMs such as the utilization of biodegradable waste and
18	microorganisms. Nowadays, microbially-synthesized NMs have been recognized as an
19	effective and eco-friendly method suitable for the large-scale fabrication of biocompatible
20	nanostructures. Various microorganisms such as yeast, fungi, algae, and bacteria can serve as
21	potential stabilizing and reducing agents for synthesizing NMs. This chapter contributes to

recent developments in the green synthesis of various NMs using microorganisms, focusing on
intracellular or extracellular mechanisms and the purification of NMs. The characterization,
applications, and prospects for NMs biosynthesis are also discussed in this chapter.

Keywords: Nanomaterials, green synthesis, microbes, intracellular, extracellular, purification

26 **1. Introduction**

Nanotechnology, which involves creating functional systems at the molecular level, is one 27 of the scientific and technology fields that is growing the fastest. The word "nanotechnology" 28 has gained enormous traction in recent years due to its numerous uses in agriculture, health, 29 food, textiles, cosmetics, and electronics industries. Nanotechnology is linked to the production 30 of nanomaterials (NMs) with improved properties that distinguish them from bulk materials. 31 32 NMs consist of one or more components having at least one dimension between 1 and 100 nm, for example, nanoparticles, composite materials, nanofibers, and nano-structured surfaces 33 34 (Borm et al., 2006; Verma et al., 2019, 2018). NMs have become more prominent in technological breakthroughs due to their superior performance compared to their bulk 35 counterparts in terms of mechanical, electrical, and magnetic behavior, as well as chemical 36 37 characteristics (Jeevanandam et al., 2018; Lloyd et al., 2011). These NMs can be classified into the following types based on their size and characteristics i.e., carbon-based NMs, composite-38 based NMs, organic-based NMs, and inorganic-based NMs (Kolahalam et al., 2019; Zhang et 39 al., 2012). Currently, metal-based NMs such as silver (Ag), zinc (Zn), lead (Pb), gold (Au), 40 iron (Fe), carbon (C), and copper (Cu) have attracted great interest among researchers (Khan 41 et al., 2021; Zhang et al., 2023). 42

The synthesis of NMs can be prepared by various techniques, including a top-down 43 approach and a bottom-up approach (self-assembly). These techniques are further divided into 44 subclasses based on the operation and reaction conditions. The bottom-up approach also known 45 as a building-up process involves constructing a structure atom by atom, molecule by molecule, 46 or by self-arrangements. Techniques such as sedimentation and reduction through green 47 synthesis, spinning, and biochemical synthesis serve as examples of this method. In the top-48 down approach, physical and chemical techniques are used to reduce the size of the appropriate 49 starting components. NMs have been synthesized using conventional physical techniques such 50

as electrospinning, radiolysis, spray pyrolysis, ultrasonication, and photoirradiation (Bhardwaj 51 et al., 2019, 2018, 2017; Khan et al., 2019) However, chemical techniques have attracted more 52 interest than physical techniques due to their greater ability to control the size and structure 53 of NMs. Sol-gel, solvothermal, co-precipitation, and template-based approaches are the major 54 chemical techniques. The accessible and widely used physical and chemical methods for 55 producing NMs are energy-intensive, contain hazardous chemicals, and require a high 56 57 temperature for reaction (Abid et al., 2022; Nasaruddin et al., 2021). Although there are many physicochemical ways to synthesize NMs, it is still necessary to develop non-toxic, low-cost, 58 59 high-yield, low-energy, and eco-friendly methods particularly for applications in the fields of human health and medicine. Therefore, numerous strategies for the bio-based synthesis of NMs 60 have been explored to establish sustainable and cost-effective bioproduction alternatives. For 61 62 instance, various flavonoids found in biomass waste produced from fruit residues can chelate metal ions and reduce them into nanoparticles (Aswathi et al., 2022; Putro et al., 2022). Several 63 researchers have reported the production of graphene utilizing pulp waste and biodegradable 64 waste from paper cups (Shukla et al., 2020.; Singh et al., 2021). 65

Other biosynthesis pathways of NMs using microbes involving bacteria, fungi, yeast, and 66 algae have been widely reported due to their reducing characteristics, which are often 67 responsible for reducing metal compounds in particular NMs. Microorganisms can be used in 68 nanotechnology as a green technology for sustainable development strategies due to the use of 69 70 cleaner production as well as the preservation of natural resources. For instance, fungusmediated methods include simple procedures for the nano-synthesis of inorganic substances 71 such as CuAlO₂ which requires low-temperature conditions (Ahmad et al., 2007). Moreover, 72 fungal biomass was also essential for chemically synthesized BiOCl nanoplates with sizes 73 between 150 and 200 nm to break down into extremely tiny particles (<10 nm) without 74 affecting their crystalline structure (Chung et al., 2016). Researchers have recently exploited a 75

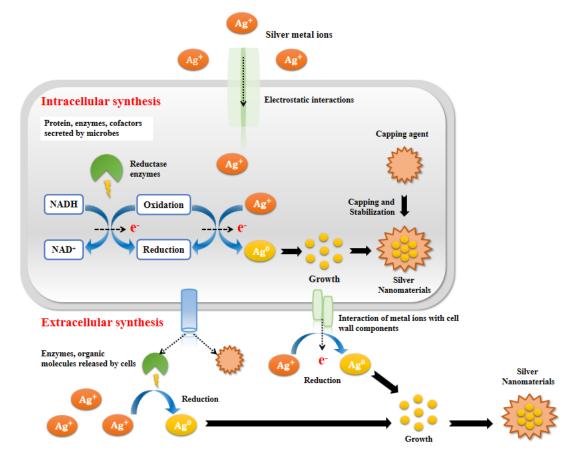
variety of biological extracts to synthesize metallic NMs by following direct techniques and 76 employing microbial extracts as a source of reductants. With the use of biological resources, it 77 is feasible to get the specific size, shape, and monodispersity of NMs either extracellularly or 78 intracellularly (de Jesus et al., 2021). This chapter reviewed the current works in green 79 synthesis of NMs by microbes that focused on their intra and extracellular mechanisms, 80 purification techniques, characterizations, and applications. The difficulties of elaborating this 81 82 technology at a large-scale level and the prospects of biological synthesis approaches are also highlighted in the last section. 83

84

85 2. Microbially-synthesized of NMs

86 2.1. Intracellular and extracellular mechanisms

87 Since the formation of the Earth, biological organisms and inorganic materials have been in continual touch with each other. The interactions between inorganic substances and living 88 things have drawn more attention from scientists in recent years. Numerous microorganisms 89 produce various inorganic compounds either extracellularly or intracellularly, and the 90 mechanisms vary from one organism to another (Fariq et al., 2017; Hulkoti and Taranath, 2014). 91 By using several synthesis components, including microorganisms, plant extracts, and other 92 biological components, NMs are synthesized through biological processes (Saravanan et al., 93 94 2021). Due to their ease of cultivation, rapid growth, and potential to thrive under ambient 95 conditions, microbes such as bacteria, algae, yeast, and fungi are typically selected for synthesis in NMs. Interestingly, microbes can detoxify and accumulate heavy metals in the presence of 96 reductase enzymes, which play a crucial role in reducing metal salts into NMs (Ovais et al., 97 2018). Different biological agents and various metal solutions have varying effects on the 98 production of NMs. 99


There are two categories for microbial production of NMs. The first category is 100 biosorption, which does not require energy use and involves the attachment of metal ions found 101 in aqueous solutions to the cell wall. Stable NMs are formed as a result of interactions with the 102 cell wall or peptides (Egan-Morriss et al., 2022; Pantidos, 2014). The prospective processes for 103 the biosorption of the metal on microbes consist of physical processes including ion exchange, 104 complexation, precipitation, and physisorption. Microbes typically secrete lipopolysaccharide, 105 106 glycoprotein, and other exopolysaccharide compounds that have anionic structural groups for positive metal adhering to negative charges of the cell wall. Chitin was shown to be the primary 107 108 component of the fungal cell wall and it is associated with the complex formation of heavy metals, which leads to the synthesis of NMs (L. Wang et al., 2018). Few researchers have 109 reported the biosynthesis of copper NMs via the biosorption method from Rhodotorula 110 mucilaginosa biomass. The spherical form of the produced NMs made them accessible for 111 simultaneous pollution removal and NMs synthesis. The formation of metallic molybdenum 112 NMs by Clostridium pasteurianum has also been the subject of another investigation 113 (Nordmeier et al., 2018; Salvadori et al., 2014). 114

Meanwhile, bioreduction occurs when metal ions are chemically reduced by living 115 organisms into more stable forms. Numerous species can utilize metabolism metal reduction, 116 in which the reduction of a metal ion is linked to the oxidation of an enzyme. As a consequence, 117 stable and inert metallic NMs are formed which may be removed safely from a polluted 118 119 material. The synthesis of NMs may be triggered by several substances found in microbial cells, notably amides, amines, alkaloids, carbonyl groups, proteins, pigments, and other reducing 120 agents (Quintero-Quiroz et al., 2019; Sable et al., 2020). Some microbes usually release 121 chemicals with a high capacity for oxidation or reduction of metal ions to produce zero valent 122 or magnetic NMs. Additionally, these organisms are easy to handle and susceptible to genetic 123 manipulation (Puspitasari et al., 2021; Puspitasari and Lee, 2021). 124

It is well known that both intracellular and extracellular proteins, enzymes, lipids, and 125 chelating activity of DNA subunits are actively involved as reducing agents throughout the 126 127 biosynthesis process. These bioactive substances have high reduction potential and can donate H⁺ ions to reduce metal ions from a higher oxidation form to a lower oxidation form 128 (Dauthal and Mukhopadhyay, 2016; Srivastava et al., 2021). According to the site where NMs 129 are generated, extracellular and intracellular synthesis become the most common processes of 130 131 biosynthesis (Fig.1). NMs can be accumulated in the periplasm, cytoplasmic membrane, and cell wall when observed under a microscope. 132

133 In the extracellular approach, NMs are produced outside cells by capturing metal ions on their surfaces and reducing ions in the presence of microbe-secreted enzymes (Li et al., 2011). 134 Cofactors such as reduced nicotinamide adenine dinucleotide (NADH) and reduced 135 nicotinamide adenine dinucleotide phosphate (NADPH) reliant enzymes both have crucial 136 roles as reductants via electron transfer from NADH through NADH-reliant enzymes. For 137 example, the release of NADH and NADH-reliant enzymes is an important process in the 138 extracellular biosynthesis of silver nanomaterials (AgNMs) by microbes. The bioreduction of 139 silver is initiated by NADH-reliant reductase enzymes found in microbes by 140 electron transfer from NADH (He et al., 2007). As a result, silver ions (Ag⁺) receive electrons 141 and are reduced (Ag⁰), resulting in the generation of enlarged metal nuclei and the formation 142 of stable AgNMs within cell-free supernatant. Precursor concentration, pH, temperature, and 143 reaction time are some limiting factors affecting the size and properties of NMs. 144

The intracellular approach includes transporting ions into the inner space of microbial cells to produce NMs when the enzymes are present. Microbial cells and sugar molecules are primarily involved in the intracellular process of metal bioreduction. The interactions between intracellular enzymes and positively charged groups are the main mechanism for the trapping of metal ions from the media and their subsequent reduction within the cell. This resulted from 150 NMs being produced as a result of enzymatic reduction and metal ion transport across membranes (Dauthal and Mukhopadhyay, 2016). In order to release the biosynthesized NMs 151 from intracellular production, additional processes are needed such as ultrasonic treatment or 152 interactions with the appropriate detergents. In contrast, extracellular biosynthesis is 153 inexpensive, requires less complex downstream processing, and supports large-scale 154 production of NMs to investigate its possible uses. Therefore, the extracellular method for 155 biosynthesis of NMs has been the main subject of several studies compared to the intracellular 156 method (Das et al., 2014). An extensive list of the microbes used in synthesizing NMs is 157 provided in Table 1. 158

159

160

Fig. 1. Biosynthesis of silver nanomaterials via intra and extracellular mechanisms

Table 1. Biosynthesis of various NMs using microbes and their applications

				Physicoche	rameters					
No.	Microbe	Type of nanomaterial	Synthesis location	Temperature	рН	Incubation time	Size (nm)	Shape	Application	Reference
	Bacteria									
1.	Geobacillus spp.	Silver (Ag)	Extracellular	55°C	7.5	48 h	<100	Spherical	-	(Cekuolyte et al., 2023)
2.	Vibrio alginolyticus	Gold (Au)	Extracellular	40°C	7	14 h	100- 150	Irregular	Anticancer and antioxidant	(Shunmugam et al., 2021)
3.	Marinomonas sp. ef1	Cooper (Cu)	Extracellular	22°C	-	48 h	10-70	Spherical / ovoidal	Antimicrobial	(John et al., 2021)
4.	Shewanella loihica PV-4	Palladium (Pd)	Extracellular	30°C	7	72 h	4-10	Spherical	Catalyst for Cr (VI) reduction	(W. Wang et al., 2018)
5.	Nocardiopsis flavascens RD30	Silver (Ag)	Extracellular	30°C	-	72 h	5-50	Spherical	Cytotoxicity	(Ranjani et al., 2018)
6.	Pseudoalteromonas lipolytica	Silver (Ag)	Extracellular	28°C	6.5-7	72 h	5-15	Spherical	Dye decolorization	(Kulkarni et al., 2018)
7.	Shewanella loihica PV-4	Platinum (Pt)	Extracellular	30°C	7	48 h	2-6	-	Dye decomposition	(Ahmed et al., 2018)
8.	Desulfovibrio sp. LS4	Maghemite (Fe ₂ O ₃)	Extracellular	30°C	7.8	35 days	18	Round	Iron nanoparticle formation in saltpan sediment	(Das et al., 2018)
9.	Enterococcus faecalis	Selenium (Se)	Extracellular	37°C	7	24 h	29- 195	Spherical	Antibacterial	(Shoeibi and Mashreghi, 2017)

10.	Pseudomonas aeruginosa JP-11	Cadmium sulfide (CdS)	Extracellular	50°C	-	20 h	20-40	Spherical	Cadmium removal from aqueous solution	(Raj et al., 2016)
	Fungi									
1.	Penicillium oxalicum	Silver (Ag)	Extracellular	28°C	-	24 h	10-50	Spherical	Antimicrobial, anticancer, antioxidant	(Gupta et al., 2022)
2.	Trichoderma longibranchiatum	Silver (Ag)	Extracellular	55°C	7	24 h	5-50	Spherical	Biosafety assessment	(Cui et al., 2022)
3.	Periconium sp.	Zinc oxide (ZnO)	Extracellular	45°C	5	24 h	16-78	Quasi- spherical	Antioxidant, antibacterial	(Ganesan et al., 2020)
4.	Lignosus rhinocerotis	Gold (Au)	Extracellular	65°C	4.5	2.5 h	49.5- 82.4	Spherical	Antibacterial	(Katas et al., 2019)
5.	Trichoderma asperellum	Copper oxide (CuO)	Extracellular	40°C	-	24 h	110	Spherical	Photothermolisis on human lung carcinoma	(Saravanaku mar et al., 2019)
6.	Rhodotorula mucilaginosa	Silver (Ag)	Extracellular	25°C	7	168 h	13.7	Spherical	Antifungal, catalyst, cytotoxicity	(Cunha et al., 2018)
7.	Aspergillus niger	Zinc oxide (ZnO)	Extracellular	32°C	6.2	48 h	53-69	Spherical	Antibacterial, dye degradation	(Kalpana et al., 2018)
8.	Penicillium chrysogenum	Platinum (Pt)	Extracellular	100°C	-	12 h	5-40	Spherical	Cytotoxicity	(Subramaniya n et al., 2017)
9.	Cladosporium cladosporioides	Gold (Au)	Extracellular	30°C	7	48 h	60	Round	Antioxidant, antibacterial	(Joshi et al., 2017)
10.	Rhizopus stolonifer	Silver (Ag)	Extracellular	40°C	-	48 h	2.86	Spherical	-	(AbdelRahim et al., 2017)

Yeast

1.	Saccharomyces cerevisiae	Iron oxide (Fe ₂ O ₃)	Extracellular	30°C	-	2-3 days	70- 100	Spherical	Antimicrobial	(Asha Ranjani et al., 2022)
2.	Pichia kudriavzeviiHA	Silver (Ag)	Extracellular	30°C	-	72 h	29.6- 30.14	Round /cubic	Anticancer	(Ammar et al., 2021)
3.	Saccharomyces cerevisiae	Silica	Intracellular	29°C	6-11	1 h	40-70	Spherical	Oil recovery	(Zamani et al., 2020)
4.	Saccharomyces cerevisiae	Silver (Ag)	Intracellular	25°C	7	24 h	2-20	Spherical	Biocatalyst	(Korbekandi et al., 2016)
5.	Magnusiomyces ingens LH-F1	Gold (Au)	Extracellular	30°C	-	24 h	80.1	Sphere/ triangle/ hexagon	Catalytic reduction of nitrophenols	(Zhang et al., 2016)
	Algae									
1.	Spirogyra hyalina	Silver (Ag)	Extracellular	60°C	-	24 h	52.7	Spherical	Antimicrobial	(Abdullah et al., 2022)
2.	Coelastrella aeroterrestrica	Silver (Ag)	Extracellular	30°C	-	24 h	14.5	Hexagon	Antimicrobial, anticancer, antioxidant	(Hamida et al., 2022)
3.	Padina sp.	Silver (Ag)	Extracellular	60°C	-	48 h	25-60	Spherical /oval	Antibacterial	(Bhuyar et al., 2020)
4.	Colpomenia sinuosa	Iron oxide (Fe ₃ O ₄)	Extracellular	30°C	2	1 h	11.24– 33.71	Nano spheres	Antibacterial, antifungal	(Salem et al., 2019)
5.	Spirulina platensis	Palladium (Pd)	Extracellular	70°C	-	20 min	10-20	Spherical	Adsorbent	(Sayadi et al., 2018)

164 2.2. Synthesis of NMs using bacteria

Bacteria have become one of the most useful research subjects due to their abundance in 165 the environment and their ability to endure harsh circumstances. Additionally, they can grow 166 rapidly and their cultivation is easy to control, such as temperature, pH, oxygenation, and 167 incubation time. Optimizing these conditions is crucial since different sizes of NMs are needed 168 169 for various applications including optics, catalysts, and antimicrobials (He et al., 2007). Bacteria typically produce intracellular or extracellular inorganic substances, which can be 170 171 employed for the biosynthesis of NMs. Bacillus marisflavi was shown to produce AuNMs with a particle size of 14 nm. AuNMs synthesis from bacterial cell-free extract occurred 172 extracellularly and the color changed from light yellow to bluish-purple. The production of 173 AuNMs was indicated by the presence of bluish-purple color caused by surface plasmon 174 resonance (Nadaf and Kanase, 2019). 175

176

177 2.3. Synthesis of NMs using fungi

Researchers across the world frequently utilize fungi for NMs synthesis using both 178 intracellular and extracellular processes. It is well known that using fungi to produce metal 179 oxide or NMs is an effective technique with clear morphology (Ijaz et al., 2020). Fungi produce 180 more NMs than bacteria because their intracellular enzymes function as biological substances 181 182 that increase the bioaccumulation capacity and metal resistance (Kalpana and Devi Rajeswari, 2018). Significant advantages include the ease of scaling up and downstream processing, 183 economic feasibility, and the presence of mycelia which supplies a high surface area 184 (Mohanpuria et al., 2008). The most well-known fungi for synthesizing silver and gold 185 nanomaterials are Fusarium sp., Penicillium sp., and Aspergillus sp. (Shah et al., 2015). The 186 extracellular production of AgNMs was carried out using Penicillium sp. The enzyme 187

induction was facilitated by the existence of silver nitrate in the cell culture broth and optimal
synthesis was shown at pH 6 with a substrate concentration of about 1.5 mM (Shareef et al.,
2017; Spagnoletti et al., 2019).

191

192 2.4. Synthesis of NMs using yeast

Due to their improved function and stability, yeasts have been considered a highly efficient 193 194 source of NMs synthesis. Additionally, they can capture large amounts of potentially toxic metals. The present study on yeast focuses mostly on the production of nanocrystalline 195 196 quantum semiconductors, notably cadmium sulfide (CdS) and zinc sulfide (ZnS) nanomaterials. The biosynthesis of silver and gold NMs was mainly carried out by S. cerevisiae and other 197 silver-resistant yeast strains (Korbekandi et al., 2016). The production of silica NMs is another 198 199 use of S. cerevisiae in the nanomaterial generation process. The NMs were produced when yeast extract and sodium silicate (precursor solution) were added. One potential mechanism 200 involves the interaction of yeast extract and sodium silicate in an aqueous medium to generate 201 sodium hydroxide and silica oxide NMs (Zamani et al., 2020). 202

203

204 2.5. Synthesis of NMs using algae

It has been reported that algae play a significant part in the biological synthesis of NMs and 205 the buildup of certain toxic metals. Large-scale algae production is mostly utilized to 206 207 synthesize gold, silver, and possibly zinc oxide NMs. Algae are recognized for their capacity to transform toxic metals into their harmless equivalents (Ong et al., 2021). For example, 208 Sargassum muticum was employed in the production of ZnO NMs and was found to have anti-209 apoptotic and anti-angiogenesis properties in HepG₂ cells (Yang and Cui, 2008). Furthermore, 210 Staphylococcus aureus and Pseudomonas aeruginosa were effectively inhibited by the NMs, 211 with inhibition zones of 13.33 mm and 15.17 mm, respectively (Bhuyar et al., 2020). 212

214 **3.** Purification methods of biosynthesized NMs

The biosynthesized NMs can be purified by several methods including chromatography,
magnetic fields, density gradient centrifugation, and electrophoresis (Table 2).

217 *3.1. Chromatography*

Chromatography is a method for separating mixtures of substances based on variations in 218 219 how fast the different components spread through a given media. These media are the stationary phase and mobile phase. The stationary phase can be solid or liquid while the mobile phase can 220 221 be liquid or gas. This chromatography can be used for purification and separation in the biosynthesis of NMs. Several uses of chromatographic methods in the purification of NMs 222 synthesis are described. Current researchers widely use intracellular enzymes in producing 223 224 AuNM for various applications (Gholami-Shabani et al., 2015). The enzyme is an agent in reducing the metal NMs to be stable material. Enzymes produced by microbes (e.g., 225 Acinetobacter sp.) extracellularly and intracellularly after purification by anion exchange and 226 gel filtration chromatography were used to produce Au and Se nanomaterials (Wadhwani et 227 al., 2018). 228

229

230 *3.2. Magnetic fields*

Magnetic fields are purification methods that use magnetic properties to separate and purify NMs, particularly iron (Fe) NMs. One magnetotactic bacteria is *Magnetospirillum gryphiswaldense*, which can move along magnetic field lines due to magnetosomes (MagMn). Magnetosomes produced by intracellular bacteria are membrane-enclosed single-domain ferromagnetic NMs (Rosenfeldt et al., 2021). The purification of synthetic materials containing Fe by bacteria consists of 2 stages: (1) cell wall breakdown and (2) separation-purification. For the breakdown of cell walls, sonification and ultracentrifugation methods can be used, while column-based magnetic (neodymium magnet) can be used for the separation-purification
method (Hamdous et al., 2017; Raschdorf et al., 2018; Rosenfeldt et al., 2021).

240

241 *3.3. Density gradient centrifugation*

Density gradient centrifugation is the simple purification method of NMs extracellular 242 synthesis. The process of centrifugation is used to separate particles from a solution based on 243 their size, shape, density, medium viscosity, and rotor speed. The density gradient 244 centrifugation method may be required more than once in some cases. For example, 245 246 *Nocardiopsis sp.* cultures were centrifuged at 10,000x g, 4°C for 10 min up to three times after incubation, and 5 ml of each strain's cell-free supernatant was then subjected to 50 ml of an 247 aqueous solution containing 1x10⁻³ M HAuCl₄.3H₂O. Subsequently, the samples were 248 249 centrifuged again at high speed after the reaction for a certain time to separate the produced AuNMs (Manivasagan et al., 2015). Extracellular purification of AgNMs synthesized using 250 Bacillus subtilis can be performed by centrifugation method at 10,000 rpm for 5 minutes twice 251 (Alsamhary, 2020). 252

253

254 *3.4. Electrophoresis*

Electrophoresis is the term used to describe the movement and separation of charged 255 particles (ions) caused by electric fields. Two electrodes (anode, cathode) with opposing 256 257 charges are joined by a conducting liquid known as an electrolyte to form an electrophoretic system. Agarose gel electrophoresis is usually used to purify and separate NMs based on size 258 and shape. For example, one percent agarose gel electrophoresis (Bio-Rad) was used to purify 259 260 AgNMs generated by fungi isolated from mangroves (Rodrigues et al., 2013). Another work on AgNMs that utilized amplified DNA fragments from *Streptomyces sp.* was separated using 261 TBE buffer containing ethidium bromide (1 g/mL) on 1% agarose gel electrophoresis 262

- (Mabrouk et al., 2021). The synthesis of AgNMs by *Staphylococcus aureus* can be carried out
 intracellularly and extracellularly so that the purification process requires cell wall lysis
 (Triton-X100), as well as separation using centrifugation and gel electrophoresis (Amin et al.,
 2019).
- 267
- **Table 2.** Purification methods of biosynthesized NMs by various microbes

Туре	Microbe	NMs	Synthetic location	Purification method	Application	Reference
Chromat	ography					
Fungi	Talaromyces purpurogenus (pigment)	Ag	Extracellular	Two steps: -Centrifugation (6,700xg, 4°C, 20 min) - Thin Layer Chromatography	Biomedical	(Bhatnagar et al., 2022)
Bacteria	Acinetobacter sp. (lignin peroxidase)	Au, Se	Extracellular	Two steps sequentially: - Anion exchange chromatography - Gel filtration chromatography (lignin peroxidase)	Biocatalyst	(Wadhwani et al., 2018)
Bacteria	<i>Escherichia coli</i> (sulfite reductase)	Au	Extracellular	Two steps: - Column chromatography (sulfite reductase) - Centrifugation (80,000xg, 20 min) (mixed sulfite reductase AuNMs)	Biocatalyst	(Gholami- Shabani et al., 2015)
Bacteria	Pseudomonas aeruginosa (rhamnolipids)	Ag	Extracellular	Two steps: - Gel column chromatography (rhamnolipids) - Centrifugation (mixed rhamnolipids - AgNMs)	Biosurfactant	(Ganesh et al., 2010)
Magnetic	Fields					
Bacteria	Magnetospirillum magneticum	Mag Mn	Intracellular	Two steps: - Centrifugation (8,000xg, 10°C, 20 min) - Neodymium magnets	Magnetic tumor targeting	(Designed Research; K, 2022)

Bacteria	Magnetospirillum gryphiswaldense	Mag Mn	Intracellular	Two steps: - Column-based magnetic - Ultracentrifugation	Biomedical and Biotechnology	Rosenfeldt et al., 2021)
Fungi	Mixed fungi	Fe ₃ O ₄	Intracellular	Two steps: - Centrifugation (500 rpm, 10°C, 20 min) - Permanent magnets	Cleaning agent	(Sayed et al., 2021)
Fungi Aspergillus niger FeS and Fe ₃ O ₄		Intracellular	Permanent magnets	Biomedical	(Abdeen et al., 2016)	
Density g	radient Centrifugat	ion				
Fungi	Aspergillus flavus	Fe	Extracellular	Centrifugation (5000 rpm, 5 min)	Extraction and Clarification	(Hassan et al., 2022)
Bacteria	Bacillus subtilis	Ag	Extracellular	Centrifugation twice (10,000 rpm, 5 min)	Antibacterial	(Alsamhary, 2020)
Bacteria	Actinomycetes sp.	Ag	Extracellular	Centrifugation (15,000 rpm, 15 min)	Antimicrobial	(Al-Dhabi et al., 2018)
Fungi	Pleurotus ostreatus (Laccase)	Au	Extracellular	Centrifugation (2415xg, 15 min, 4°C)	Decolorization	(El-Batal et al., 2015)
Electroph	noresis					
Bacteria	Streptomyces spiralis; Streptomyces rochei	Ag	Extracellular	Agarose gel electrophoresis 1%	Antibacterial	(Mabrouk et al., 2021)
Fungi	Aspergillus tubingensis; Bionectria ochroleuca	Ag	Extracellular	Electrophoresis (sodium dodecyl sulfate-polyacrylamide gel)	Antimicrobial	(Rodríguez- González et al., 2020)
Bacteria	Staphylococcus aureus	Ag	Intracellular and Extracellular	Agarose gel electrophoresis 0.7%	Biosensors	(Amin et al., 2019)

4. Characterization of biosynthesized NMs

271	Biosynthesized nanomaterials characterizations were determined by various techniques,					
272	such as spectroscopic technique, microscopic technique, and diffraction technique.					
273	Nanomaterials characterization play a huge role in various application of nanomaterials. Each					
274	technique has a different purpose, methods, and instruments, which will be discovered below.					

4.1. Spectroscopic techniques

The spectroscopic technique is a measurement to examine the content of the materials, 276 specifically nanomaterials and the surface properties in a mixture solution. It uses various types 277 of instruments, such as UV-Vis Spectroscopy, Fourier Transform Infra-Red (FTIR), and 278 Raman Scattering which have distinctive methods. UV-Vis Spectroscopy aims to detect and 279 monitor the size and shape of metal ions of NMs with particle sizes between 2 nm to 100 nm 280 (Begum et al., 2018; Kumar et al., 2020). Another spectroscopy technique commonly used in 281 282 NMs is FTIR, to observe the functional group, composition, and inter interaction of molecules (Alessio et al., 2017; Kamnev et al., 2021). In addition, FTIR could identify and classify several 283 284 microorganisms, such as Bacillus (Procacci et al., 2021), Escherichia coli (Farouk et al., 2022), Pseudomonas (Lee et al., 2019), and *Staphylococcus aureus* (Hong et al., 2022). 285

286

287 4.2. Microscopic techniques

The microscopic technique is used to determine the physical morphology, texture, and size 288 of the NMs. Several instruments included microscopic techniques, such as the optical 289 microscope, Scanning Electron Microscope (SEM), and Transmission Electron Microscope 290 (TEM). SEM performs morphology, size, and shape of nanoparticles between 0.001 to 5 µm 291 (Maheshwari et al., 2018). In addition, compositional information could be collected by Energy 292 Dispersive X-Ray (EDX) and mapping analysis with an SEM instrument. TEM could observe 293 material with a particle size of up to 1 nm due to high image resolutions, thus real size and 294 295 structures are detected (Sierra, 2019). The NMs microbially synthesized keep developing with various raw materials, microorganisms, and methods to acquire wider and better applications 296 of NMs. Moreover, High Resolution-TEM (HR-TEM) can provide the morphology of the 297 298 samples and identify the crystal structure from the atomic scale to thin layer of samples (Javed et al., 2018). All SEM, TEM, and HR-TEM perform best in solid samples, usually powder, 299 300 fiber, and membrane.

302 *4.3. Diffraction techniques*

One of the diffraction techniques well-known in NMs characterization is X-Ray 303 Diffraction (XRD), which provides data on the crystallography and structure of the material, 304 also the lattice parameter of samples (Mourdikoudis et al., 2018). Various peaks in the 2θ range 305 show different molecules, for example, Ag nanoparticles appear at 27.81°, 32.16°, 38.12°, 44.3°, 306 46.21°, 54.83°, 57.39°, 64.42°, and 77.45° (Meng, 2015); while TiO₂ nanoparticles show peaks 307 at 25.23°, 37.71°, 47.72°, and 62.54° (Toro et al., 2020). XRD performs well in solid, dry, and 308 309 homogeneous materials. However, for suspension of NMs, measurement of hydrodynamic diameter could be conducted by Dynamic Light Scattering (DLS). Liquid NMs with high 310 viscosity, such as liposomes (Zong et al., 2022), polymeric micelles (Ghezzi et al., 2021), nano 311 gels (Ahmed et al., 2020; Pourjavadi et al., 2020), and microemulsion (Gunarto et al., 2020) 312 are required for dilution to have an accurate measurement. 313

314

315 5. Challenges and limitations

The NMs are produced from various sources of microbes and have been developed rapidly 316 since the 21st century. Over the years, different methods, sources, and analyses have been 317 carried out and resulted in different types of NMs based on their structure and sizes. However, 318 obtaining homogeneous NMs with the same methods and type of microbe is still challenging 319 320 due to the unpredictable growth and ability of the microbes. Therefore, more experiments are essential in determining and observing the microorganism in NMs systems. Purification steps 321 of NMs by either intra or extracellular are considered expensive on an industrial scale as the 322 process requires advanced equipment like nanofiltration to enhance the purity of NMs. Another 323 limitation in NMs microbially-synthesized is an insufficient yield. However, the discovery of 324 a cost-effective NMs biosynthesis alternative can be carried out by utilizing waste materials. 325

327 6. Conclusions and future outlook

In this chapter, green and sustainable approaches of microbially-synthesized nanomaterials 328 was summarized, as well as the intra-extracellular mechanisms and purification methods of 329 NMs. Nanomaterials are synthesized by several types of microbes, such as bacteria, fungi, yeast, 330 and algae. Several researchers are manipulating the DNA of microbes to improve the yield of 331 332 NMs. In addition, the combination of synthesis mechanism, intra-extracellular in a system is likely to produce a higher amount of nanomaterial. However, it required an established and 333 334 complete process of purification for industrial production. On the other hand, utilization of NMs specifically in medical applications is possibly over-absorbed due to their tiny size and 335 excellent efficient absorption towards the human body. 336

337

338 7. References

- Abdeen, M., Sabry, S., Ghozlan, H., El-Gendy, A.A., Carpenter, E.E., 2016. Microbial-339 Physical Synthesis of Fe and Fe3O4 Magnetic Nanoparticles Using Aspergillus Niger 340 YESM1 and Supercritical Condition of Ethanol. J Nanomater 2016. 341 https://doi.org/10.1155/2016/9174891 342
- AbdelRahim, K., Mahmoud, S.Y., Ali, A.M., Almaary, K.S., Mustafa, A.E.Z.M.A., Husseiny,
 S.M., 2017. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer.
 Saudi J Biol Sci 24, 208–216. https://doi.org/10.1016/j.sjbs.2016.02.025
- Abdullah, Al-Radadi, N.S., Hussain, T., Faisal, S., Ali Raza Shah, S., 2022. Novel biosynthesis,
 characterization and bio-catalytic potential of green algae (Spirogyra hyalina) mediated
 silver nanomaterials. Saudi J Biol Sci 29, 411–419.
 https://doi.org/10.1016/j.sjbs.2021.09.013
- Abid, N., Khan, A.M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M.,
 Khan, Q., Maqbool, M., 2022. Synthesis of nanomaterials using various top-down and
 bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv
 Colloid Interface Sci. https://doi.org/10.1016/j.cis.2021.102597
- 354 Ahmad, A., Jagadale, T., Dhas, V., Khan, S., Patil, S., Pasricha, R., Ravi, V., Ogale, S., 2007. difficult-to-synthesize 355 Fungus-based synthesis of chemically multifunctional CUAIO2. Materials 19, 3295-3299. nanoparticles of Advanced 356 https://doi.org/10.1002/adma.200602605 357

- Ahmed, E., Kalathil, S., Shi, L., Alharbi, O., Wang, P., 2018. Synthesis of ultra-small platinum,
 palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active
 biofilms and their enhanced catalytic activities. Journal of Saudi Chemical Society 22,
 919–929. https://doi.org/10.1016/j.jscs.2018.02.002
- Ahmed, S., Alhareth, K., Mignet, N., 2020. Advancement in nanogel formulations provides
 controlled drug release. Int J Pharm 584, 119435.
 https://doi.org/10.1016/j.ijpharm.2020.119435
- Al-Dhabi, N.A., Mohammed Ghilan, A.K., Arasu, M.V., 2018. Characterization of silver
 nanomaterials derived from marine Streptomyces sp. Al-Dhabi-87 and its in vitro
 application against multidrug resistant and extended-spectrum beta-lactamase clinical
 pathogens. Nanomaterials 8. https://doi.org/10.3390/nano8050279
- Alessio, P., Aoki, P.H.B., Furini, L.N., Aliaga, A.E., Leopoldo Constantino, C.J., 2017.
 Spectroscopic Techniques for Characterization of Nanomaterials, Nanocharacterization
 Techniques. Elsevier Inc. https://doi.org/10.1016/B978-0-323-49778-7.00003-5
- Alsamhary, K.I., 2020. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and
 their antibacterial activity. Saudi J Biol Sci 27, 2185–2191.
 https://doi.org/10.1016/j.sjbs.2020.04.026
- Amin, Z.R., Khashyarmanesh, Z., Fazly Bazzaz, B.S., Noghabi, Z.S., 2019. Does Biosynthetic
 Silver Nanoparticles Are More Stable With Lower Toxicity than Their Synthetic
 Counterparts?, Iranian Journal of Pharmaceutical Research.
- Ammar, H.A., el Aty, A.A.A., el Awdan, S.A., 2021. Extracellular myco-synthesis of nanosilver using the fermentable yeasts Pichia kudriavzeviiHA-NY2 and Saccharomyces uvarumHA-NY3, and their effective biomedical applications. Bioprocess Biosyst Eng 44, 841–854. https://doi.org/10.1007/s00449-020-02494-3
- Asha Ranjani, V., Tulja Rani, G., Sowjanya, M., Preethi, M., Srinivas, M., Nikhil, M., 2022.
 Yeast Mediated Synthesis of Iron Oxide Nano Particles: Its Characterization and Evaluation of Antibacterial Activity. International Research Journal of Pharmacy and Medical Sciences (IRJPMS) 5, 12–16.
- Aswathi, V.P., Meera, S., Maria, C.G.A., Nidhin, M., 2022. Green synthesis of nanoparticles
 from biodegradable waste extracts and their applications: a critical review.
 Nanotechnology for Environmental Engineering. https://doi.org/10.1007/s41204-022 00276-8
- Begum, R., Farooqi, Z.H., Naseem, K., Ali, F., Batool, M., Xiao, J., Irfan, A., 2018.
 Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble
 Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review. Crit Rev
 Anal Chem 48, 503–516. https://doi.org/10.1080/10408347.2018.1451299
- Bhardwaj, A.K., Kumar, V., Pandey, V., Naraian, R., Gopal, R., 2019. Bacterial killing efficacy
 of synthesized rod shaped cuprous oxide nanoparticles using laser ablation technique. SN
 Appl Sci 1. https://doi.org/10.1007/s42452-019-1283-9
- Bhardwaj, A.K., Shukla, A., Maurya, S., Singh, S.C., Uttam, K.N., Sundaram, S., Singh, M.P.,
 Gopal, R., 2018. Direct sunlight enabled photo-biochemical synthesis of silver

- nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and
 distribution control. J Photochem Photobiol B 188, 42–49.
 https://doi.org/10.1016/j.jphotobiol.2018.08.019
- Bhardwaj, A.K., Shukla, A., Mishra, R.K., Singh, S.C., Mishra, V., Uttam, K.N., Singh, M.P.,
 Sharma, S., Gopal, R., 2017. Power and time dependent microwave assisted fabrication
 of silver nanoparticles decorated cotton (SNDC) fibers for bacterial decontamination.
 Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00330
- Bhatnagar, S., Ogbonna, C.N., Ogbonna, J.C., Aoyagi, H., 2022. Effect of physicochemical
 factors on extracellular fungal pigment-mediated biofabrication of silver nanoparticles.
 Green Chem Lett Rev. https://doi.org/10.1080/17518253.2022.2036376
- Bhuyar, P., Rahim, M.H.A., Sundararaju, S., Ramaraj, R., Maniam, G.P., Govindan, N., 2020.
 Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial
 activity towards pathogenic bacteria. Beni Suef Univ J Basic Appl Sci 9.
 https://doi.org/10.1186/s43088-019-0031-y
- Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R.,
 Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D.B., Oberdorster, E.,
 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre
 Toxicol. https://doi.org/10.1186/1743-8977-3-11
- 417 Cekuolyte, K., Gudiukaite, R., Klimkevicius, V., Mazrimaite, V., Maneikis, A., Lastauskiene,
 418 E., 2023. Biosynthesis of Silver Nanoparticles Produced Using Geobacillus spp. Bacteria.
 419 Nanomaterials 13, 702. https://doi.org/10.3390/nano13040702
- Chung, I.M., Park, I., Seung-Hyun, K., Thiruvengadam, M., Rajakumar, G., 2016. PlantMediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and
 Therapeutic Applications. Nanoscale Res Lett. https://doi.org/10.1186/s11671-016-12574
- Cui, X., Zhong, Z., Xia, R., Liu, X., Qin, L., 2022. Biosynthesis optimization of silver 424 nanoparticles (AgNPs) using Trichoderma longibranchiatum and biosafety assessment 425 with silkworm (Bombyx mori). Arabian Journal of Chemistry 15. 426 https://doi.org/10.1016/j.arabjc.2022.104142 427
- Cunha, F.A., Cunha, M. da C.S.O., da Frota, S.M., Mallmann, E.J.J., Freire, T.M., Costa, L.S., 428 Paula, A.J., Menezes, E.A., Fechine, P.B.A., 2018. Biogenic synthesis of multifunctional 429 silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, 430 cytotoxicity activities. World J Microbiol Biotechnol 431 catalytic and 34. https://doi.org/10.1007/s11274-018-2514-8 432
- Das, K.R., Kowshik, M., Praveen Kumar, M.K., Kerkar, S., Shyama, S.K., Mishra, S., 2018.
 Native hypersaline sulphate reducing bacteria contributes to iron nanoparticle formation
 in saltpan sediment: A concern for aquaculture. J Environ Manage 206, 556–564.
 https://doi.org/10.1016/j.jenvman.2017.10.078
- Das, V.L., Thomas, R., Varghese, R.T., Soniya, E. v., Mathew, J., Radhakrishnan, E.K., 2014.
 Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4, 121–126. https://doi.org/10.1007/s13205-013-0130-8

- Dauthal, P., Mukhopadhyay, M., 2016. Noble Metal Nanoparticles: Plant-Mediated Synthesis,
 Mechanistic Aspects of Synthesis, and Applications. Ind Eng Chem Res 55, 9557–9577.
 https://doi.org/10.1021/acs.iecr.6b00861
- de Jesus, R.A., de Assis, G.C., de Oliveira, R.J., Costa, J.A.S., da Silva, C.M.P., Bilal, M., 443 444 Iqbal, H.M.N., Ferreira, L.F.R., Figueiredo, R.T., 2021. Environmental remediation 445 potentialities of metal and metal oxide nanoparticles: Mechanistic biosynthesis, influencing factors. and application standpoint. Environ Technol Innov. 446 https://doi.org/10.1016/j.eti.2021.101851 447
- Designed Research; K, J.W.M., 2022. Magnetosome-inspired synthesis of soft ferrimagnetic
 nanoparticles for magnetic tumor targeting. https://doi.org/10.1073/pnas
- Egan-Morriss, C., Kimber, R.L., Powell, N.A., Lloyd, J.R., 2022. Biotechnological synthesis
 of Pd-based nanoparticle catalysts. Nanoscale Adv. https://doi.org/10.1039/d1na00686j
- El-Batal, A.I., Elkenawy, N.M., Yassin, A.S., Amin, M.A., 2015. Laccase production by
 Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnology
 Reports 5, 31–39. https://doi.org/10.1016/j.btre.2014.11.001
- Fariq, A., Khan, T., Yasmin, A., 2017. Microbial synthesis of nanoparticles and their potential
 applications in biomedicine. J Appl Biomed. https://doi.org/10.1016/j.jab.2017.03.004
- Farouk, F., Essam, S., Abdel-Motaleb, A., El-Shimy, R., Fritzsche, W., Azzazy, H.M.E.S.,
 2022. Fast detection of bacterial contamination in fresh produce using FTIR and spectral
 classification. Spectrochim Acta A Mol Biomol Spectrosc 277, 121248.
 https://doi.org/10.1016/j.saa.2022.121248
- Ganesan, V., Hariram, M., Vivekanandhan, S., Muthuramkumar, S., 2020. Periconium sp.
 (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for
 antimicrobial and antioxidant applications. Mater Sci Semicond Process 105.
 https://doi.org/10.1016/j.mssp.2019.104739
- Ganesh, C.K., Mamidyala, S.K., Das, B., Sridhar, B., Sarala Devi, G., Karuna, M.S.L., 2010.
 Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated
 from Pseudomonas aeruginosa BS-161R. J Microbiol Biotechnol 20, 1061–1068.
 https://doi.org/10.4014/jmb.1001.01018
- Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., Nicoli, S., 2021.
 Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release 332, 312–336.
 https://doi.org/10.1016/j.jconrel.2021.02.031
- Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., Akbarzadeh, A., Riazi,
 G., Ajdari, S., Amani, A., Razzaghi-Abyaneh, M., 2015. Enzymatic synthesis of gold
 nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly
 approach. Process Biochemistry 50, 1076–1085.
 https://doi.org/10.1016/j.procbio.2015.04.004
- Gunarto, C., Ju, Y.H., Putro, J.N., Tran-Nguyen, P.L., Soetaredjo, F.E., Santoso, S.P., Ayucitra,
 A., Angkawijaya, A.E., Ismadji, S., 2020. Effect of a nonionic surfactant on the

- 480 pseudoternary phase diagram and stability of microemulsion. J Chem Eng Data 65, 4024–
 481 4033. https://doi.org/10.1021/acs.jced.0c00341
- Gupta, P., Rai, N., Verma, A., Saikia, D., Singh, S.P., Kumar, R., Singh, S.K., Kumar, D., 482 Gautam, V., 2022. Green-Based Approach to Synthesize Silver Nanoparticles Using the 483 484 Fungal Endophyte Penicillium oxalicum and Their Antimicrobial, Antioxidant, and in Vitro Anticancer Potential. ACS Omega 7. 46653-46673. 485 https://doi.org/10.1021/acsomega.2c05605 486
- Hamdous, Y., Chebbi, I., Mandawala, C., le Fèvre, R., Guyot, F., Seksek, O., Alphandéry, E., 487 488 2017. Biocompatible coated magnetosome minerals with various organization and cellular 489 interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. J Nanobiotechnology 490 15. https://doi.org/10.1186/s12951-017-0293-2 491
- Hamida, R.S., Ali, M.A., Almohawes, Z.N., Alahdal, H., Momenah, M.A., Bin-Meferij, M.M.,
 2022. Green Synthesis of Hexagonal Silver Nanoparticles Using a Novel Microalgae
 Coelastrella aeroterrestrica Strain BA_Chlo4 and Resulting Anticancer, Antibacterial, and
 Antioxidant Activities. Pharmaceutics 14.
 https://doi.org/10.3390/pharmaceutics14102002
- Hassan, S.S., Duffy, B., Williams, G.A., Jaiswal, A.K., 2022. Biofabrication of magnetic
 nanoparticles and their use as carriers for pectinase and xylanase. OpenNano 6.
 https://doi.org/10.1016/j.onano.2021.100034
- He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., Gu, N., 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61, 3984–3987. https://doi.org/10.1016/j.matlet.2007.01.018
- Hong, J.S., Kim, D., Jeong, S.H., 2022. Performance Evaluation of the IR Biotyper ® System
 for Clinical Microbiology : Application for Detection of Staphylococcus aureus Sequence
 Type 8 Strains. antibiotics 11.
- Hulkoti, N.I., Taranath, T.C., 2014. Biosynthesis of nanoparticles using microbes-A review.
 Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2014.05.027
- Ijaz, I., Gilani, E., Nazir, A., Bukhari, A., 2020. Detail review on chemical, physical and green
 synthesis, classification, characterizations and applications of nanoparticles. Green Chem
 Lett Rev. https://doi.org/10.1080/17518253.2020.1802517
- Javed, Y., Ali, K., Akhtar, K., Jawaria, Hussain, M.I., Ahmad, G., Arif, T., 2018. Chapter 5
 TEM for Atomic-Scale Study: Fundamental, Instrumentation, and Applications in
 Nanotechnology, Handbook of Materials Characterization. https://doi.org/10.1007/978-3319-92955-2
- Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K., 2018. Review on
 nanoparticles and nanostructured materials: History, sources, toxicity and regulations.
 Beilstein Journal of Nanotechnology. https://doi.org/10.3762/bjnano.9.98
- John, M.S., Nagoth, J.A., Zannotti, M., Giovannetti, R., Mancini, A., Ramasamy, K.P., Miceli,
 C., Pucciarelli, S., 2021. Biogenic synthesis of copper nanoparticles using bacterial strains
 isolated from an antarctic consortium associated to a psychrophilic marine ciliate:

- 521 Characterization and potential application as antimicrobial agents. Mar Drugs 19.
 522 https://doi.org/10.3390/md19050263
- Joshi, C.G., Danagoudar, A., Poyya, J., Kudva, A.K., BL, D., 2017. Biogenic synthesis of gold
 nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from
 seaweed and evaluation of their antioxidant and antimicrobial properties. Process
 Biochemistry 63, 137–144. https://doi.org/10.1016/j.procbio.2017.09.008
- Kalpana, V.N., Devi Rajeswari, V., 2018. A Review on Green Synthesis, Biomedical
 Applications, and Toxicity Studies of ZnO NPs. Bioinorg Chem Appl.
 https://doi.org/10.1155/2018/3569758
- Kalpana, V.N., Kataru, B.A.S., Sravani, N., Vigneshwari, T., Panneerselvam, A., Devi
 Rajeswari, V., 2018. Biosynthesis of zinc oxide nanoparticles using culture filtrates of
 Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 3, 48–
 55. https://doi.org/10.1016/j.onano.2018.06.001
- Kamnev, A.A., Dyatlova, Y.A., Kenzhegulov, O.A., Vladimirova, A.A., Mamchenkova, P. V.,
 Tugarova, A. V., 2021. Fourier transform infrared (FTIR) spectroscopic analyses of
 microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample
 preparation effects. Molecules 26. https://doi.org/10.3390/molecules26041146
- Katas, H., Lim, C.S., Nor Azlan, A.Y.H., Buang, F., Mh Busra, M.F., 2019. Antibacterial
 activity of biosynthesized gold nanoparticles using biomolecules from Lignosus
 rhinocerotis and chitosan. Saudi Pharmaceutical Journal 27, 283–292.
 https://doi.org/10.1016/j.jsps.2018.11.010
- Khan, Ibrahim, Saeed, K., Khan, Idrees, 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011
- Khan, M., Khan, M.S.A., Borah, K.K., Goswami, Y., Hakeem, K.R., Chakrabartty, I., 2021.
 The potential exposure and hazards of metal-based nanoparticles on plants and
 environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review.
 Environmental Advances. https://doi.org/10.1016/j.envadv.2021.100128
- Kolahalam, L.A., Kasi Viswanath, I. v., Diwakar, B.S., Govindh, B., Reddy, V., Murthy,
 Y.L.N., 2019. Review on nanomaterials: Synthesis and applications, in: Materials Today:
 Proceedings. Elsevier Ltd, pp. 2182–2190. https://doi.org/10.1016/j.matpr.2019.07.371
- Korbekandi, H., Mohseni, S., Jouneghani, R.M., Pourhossein, M., Iravani, S., 2016.
 Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells
 Nanomed Biotechnol 44, 235–239. https://doi.org/10.3109/21691401.2014.937870
- Kulkarni, R., Harip, S., Kumar, A.R., Deobagkar, D., Zinjarde, S., 2018. Peptide stabilized
 gold and silver nanoparticles derived from the mangrove isolate Pseudoalteromonas
 lipolytica mediate dye decolorization. Colloids Surf A Physicochem Eng Asp 555, 180–
 https://doi.org/10.1016/j.colsurfa.2018.06.083
- Kumar, H., Bhardwaj, K., Kuča, K., Kalia, A., Nepovimova, E., Verma, R., Kumar, D., 2020.
 Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance.
 Nanomaterials 10. https://doi.org/10.3390/nano10040766

- Lee, J., Ahn, M.S., Lee, Y.L., Jie, E.Y., Kim, S.G., Kim, S.W., 2019. Rapid tool for
 identification of bacterial strains using Fourier transform infrared spectroscopy on
 genomic DNA. J Appl Microbiol 126, 864–871. https://doi.org/10.1111/jam.14171
- Li, X., Xu, H., Chen, Z.S., Chen, G., 2011. Biosynthesis of nanoparticles by microorganisms
 and their applications. J Nanomater. https://doi.org/10.1155/2011/270974
- Lloyd, J.R., Byrne, J.M., Coker, V.S., 2011. Biotechnological synthesis of functional
 nanomaterials. Curr Opin Biotechnol. https://doi.org/10.1016/j.copbio.2011.06.008
- Mabrouk, M., Elkhooly, T.A., Amer, S.K., 2021. Actinomycete strain type determines the 568 monodispersity and antibacterial properties of biogenically synthesized silver 569 nanoparticles. Journal of Genetic Engineering and Biotechnology 570 19. https://doi.org/10.1186/s43141-021-00153-y 571
- Maheshwari, R., Todke, P., Kuche, K., Raval, N., Tekade, R.K., 2018. Micromeritics in
 Pharmaceutical Product Development, in: Dosage Form Design Considerations: Volume
 I. pp. 599–635. https://doi.org/10.1016/B978-0-12-814423-7.00017-4
- Manivasagan, P., Alam, M.S., Kang, K.H., Kwak, M., Kim, S.K., 2015. Extracellular synthesis
 of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial,
 antioxidant and cytotoxic activities. Bioprocess Biosyst Eng 38.
 https://doi.org/10.1007/s00449-015-1358-y
- Meng, Y., 2015. A sustainable approach to fabricating ag nanoparticles/PVA hybrid nanofiber
 and its catalytic activity. Nanomaterials 5, 1124–1135.
 https://doi.org/10.3390/nano5021124
- Mohanpuria, P., Rana, N.K., Yadav, S.K., 2008. Biosynthesis of nanoparticles: Technological
 concepts and future applications. Journal of Nanoparticle Research.
 https://doi.org/10.1007/s11051-007-9275-x
- Mourdikoudis, S., Pallares, R.M., Thanh, N.T.K., 2018. Characterization techniques for
 nanoparticles: Comparison and complementarity upon studying nanoparticle properties.
 Nanoscale 10, 12871–12934. https://doi.org/10.1039/c8nr02278j
- Nadaf, N.Y., Kanase, S.S., 2019. Biosynthesis of gold nanoparticles by Bacillus marisflavi and
 its potential in catalytic dye degradation. Arabian Journal of Chemistry 12, 4806–4814.
 https://doi.org/10.1016/j.arabjc.2016.09.020
- Nasaruddin, R.R., Chen, T., Yao, Q., Zang, S., Xie, J., 2021. Toward greener synthesis of gold
 nanomaterials: From biological to biomimetic synthesis. Coord Chem Rev.
 https://doi.org/10.1016/j.ccr.2020.213540
- Nordmeier, A., Merwin, A., Roeper, D.F., Chidambaram, D., 2018. Microbial synthesis of
 metallic molybdenum nanoparticles. Chemosphere 203, 521–525.
 https://doi.org/10.1016/j.chemosphere.2018.02.079
- Ong, H.C., Tiong, Y.W., Goh, B.H.H., Gan, Y.Y., Mofijur, M., Fattah, I.M.R., Chong, C.T.,
 Alam, M.A., Lee, H.V., Silitonga, A.S., Mahlia, T.M.I., 2021. Recent advances in
 biodiesel production from agricultural products and microalgae using ionic liquids:

- 600Opportunitiesandchallenges.EnergyConversManag.601https://doi.org/10.1016/j.enconman.2020.113647
- Ovais, M., Khalil, A.T., Ayaz, M., Ahmad, I., Nethi, S.K., Mukherjee, S., 2018. Biosynthesis
 of metal nanoparticles via microbial enzymes: A mechanistic approach. Int J Mol Sci.
 https://doi.org/10.3390/ijms19124100
- Pantidos, N., 2014. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and
 Plants. J Nanomed Nanotechnol 05. https://doi.org/10.4172/2157-7439.1000233
- Pourjavadi, A., Doroudian, M., Bagherifard, M., Bahmanpour, M., 2020. Magnetic and light responsive nanogels based on chitosan functionalized with Au nanoparticles and poly(:
 N-isopropylacrylamide) as a remotely triggered drug carrier. New Journal of Chemistry
 44, 17302–17312. https://doi.org/10.1039/d0nj02345k
- Procacci, B., Rutherford, S.H., Greetham, G.M., Towrie, M., Parker, A.W., Robinson, C. V.,
 Howle, C.R., Hunt, N.T., 2021. Differentiation of bacterial spores via 2D-IR
 spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 249, 119319.
 https://doi.org/10.1016/j.saa.2020.119319
- Puspitasari, N., Lee, C.K., 2021. Class I hydrophobin fusion with cellulose binding domain for
 its soluble expression and facile purification. Int J Biol Macromol 193, 38–43.
 https://doi.org/10.1016/j.ijbiomac.2021.10.089
- Puspitasari, N., Tsai, S.L., Lee, C.K., 2021. Class I hydrophobins pretreatment stimulates
 PETase for monomers recycling of waste PETs. Int J Biol Macromol 176, 157–164.
 https://doi.org/10.1016/j.ijbiomac.2021.02.026
- Putro, J.N., Edi Soetaredjo, F., Irawaty, W., Budi Hartono, S., Santoso, S.P., Lie, J., Yuliana,
 M., Widyarani, Shuwanto, H., Wijaya, C.J., Gunarto, C., Puspitasari, N., Ismadji, S.,
 2022. Cellulose Nanocrystals (CNCs) and Its Modified Form from Durian Rind as
 Dexamethasone Carrier. Polymers (Basel) 14. https://doi.org/10.3390/polym14235197
- Quintero-Quiroz, C., Acevedo, N., Zapata-Giraldo, J., Botero, L.E., Quintero, J., ZárateTrivinõ, D., Saldarriaga, J., Pérez, V.Z., 2019. Optimization of silver nanoparticle
 synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity.
 Biomater Res 23. https://doi.org/10.1186/s40824-019-0173-y
- Raj, R., Dalei, K., Chakraborty, J., Das, S., 2016. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 462, 166–175.
 https://doi.org/10.1016/j.jcis.2015.10.004
- Ranjani, A., Gopinath, P.M., Ananth, S., Narchonai, G., Santhanam, P., Thajuddin, N.,
 Dhanasekaran, D., 2018. Multidimensional dose–response toxicity exploration of silver
 nanoparticles from Nocardiopsis flavascens RD30. Applied Nanoscience (Switzerland) 8,
 699–713. https://doi.org/10.1007/s13204-018-0824-7
- Raschdorf, O., Bonn, F., Zeytuni, N., Zarivach, R., Becher, D., Schüler, D., 2018. A
 quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic
 organelle. J Proteomics 172, 89–99. https://doi.org/10.1016/j.jprot.2017.10.007

- Rodrigues, A.G., Ping, L.Y., Marcato, P.D., Alves, O.L., Silva, M.C.P., Ruiz, R.C., Melo, I.S.,
 Tasic, L., de Souza, A.O., 2013. Biogenic antimicrobial silver nanoparticles produced by
 fungi. Appl Microbiol Biotechnol 97, 775–782. https://doi.org/10.1007/s00253-0124209-7
- Rodríguez-González, V., Obregón, S., Patrón-Soberano, O.A., Terashima, C., Fujishima, A.,
 2020. An approach to the photocatalytic mechanism in the TiO2-nanomaterials
 microorganism interface for the control of infectious processes. Appl Catal B.
 https://doi.org/10.1016/j.apcatb.2020.118853
- Rosenfeldt, S., Mickoleit, F., Jörke, C., Clement, J.H., Markert, S., Jérôme, V., Schwarzinger,
 S., Freitag, R., Schüler, D., Uebe, R., Schenk, A.S., 2021. Towards standardized
 purification of bacterial magnetic nanoparticles for future in vivo applications. Acta
 Biomater 120, 293–303. https://doi.org/10.1016/j.actbio.2020.07.042
- Sable, S.V., Kawade, S., Ranade, S., Joshi, S., 2020. Bioreduction mechanism of silver
 nanoparticles. Materials Science and Engineering C 107.
 https://doi.org/10.1016/j.msec.2019.110299
- Salem, D.M.S.A., Ismail, M.M., Aly-Eldeen, M.A., 2019. Biogenic synthesis and antimicrobial
 potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the
 Mediterranean Sea, Egypt. Egypt J Aquat Res. https://doi.org/10.1016/j.ejar.2019.07.002
- Salvadori, M.R., Ando, R.A., Oller Do Nascimento, C.A., Corrêa, B., 2014. Intracellular
 biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from
 the wastewater of a mine in the Brazilian Amazonia. PLoS One 9.
 https://doi.org/10.1371/journal.pone.0087968
- Saravanakumar, K., Shanmugam, S., Varukattu, N.B., MubarakAli, D., Kathiresan, K., Wang,
 M.H., 2019. Biosynthesis and characterization of copper oxide nanoparticles from
 indigenous fungi and its effect of photothermolysis on human lung carcinoma. J
 Photochem Photobiol B 190, 103–109. https://doi.org/10.1016/j.jphotobiol.2018.11.017
- Saravanan, A., Kumar, P.S., Karishma, S., Vo, D.V.N., Jeevanantham, S., Yaashikaa, P.R.,
 George, C.S., 2021. A review on biosynthesis of metal nanoparticles and its environmental
 applications. Chemosphere 264. https://doi.org/10.1016/j.chemosphere.2020.128580
- Sayadi, M.H., Salmani, N., Heidari, A., Rezaei, M.R., 2018. Bio-synthesis of palladium
 nanoparticle using Spirulina platensis alga extract and its application as adsorbent.
 Surfaces and Interfaces 10, 136–143. https://doi.org/10.1016/j.surfin.2018.01.002
- Sayed, H., Sadek, H., Abdel-Aziz, M., Mahmoud, N., Sabry, W., Genidy, G., Maher, M., 2021.
 BIOSYNTHESIS OF IRON OXIDE NANOPARTICLES FROM FUNGI ISOLATED
 FROM DETERIORATED HISTORICAL GILDED CARTONNAGE AND ITS
 APPLICATION IN CLEANING. Egyptian Journal of Archaeological and Restoration
 Studies 11, 129–145. https://doi.org/10.21608/ejars.2021.210365
- Shah, M., Fawcett, D., Sharma, S., Tripathy, S.K., Poinern, G.E.J., 2015. Green synthesis of
 metallic nanoparticles via biological entities. Materials.
 https://doi.org/10.3390/ma8115377

- Shareef, J.U., Navya Rani, M., Anand, S., Rangappa, D., 2017. Synthesis and characterization
 of silver nanoparticles from Penicillium sps., in: Materials Today: Proceedings. Elsevier
 Ltd, pp. 11923–11932. https://doi.org/10.1016/j.matpr.2017.09.113
- Shi, H., Sun, J., Han, R., Ding, C., Hu, F., Yu, S., 2020. The strategy for correcting interference
 from water in Fourier transform infrared spectrum based bacterial typing. Talanta 208,
 120347. https://doi.org/10.1016/j.talanta.2019.120347
- Shoeibi, S., Mashreghi, M., 2017. Biosynthesis of selenium nanoparticles using Enterococcus
 faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in
 Medicine and Biology 39, 135–139. https://doi.org/10.1016/j.jtemb.2016.09.003
- Shukla, K., Verma, A., Verma, L., Rawat, S., Singh, J., n.d. A Novel Approach to Utilize Used
 Disposable Paper Cups for the Development of Adsorbent and its Application for the
 Malachite Green and Rhodamine-B Dyes Removal from Aqueous Solutions.
- Shunmugam, R., Renukadevi Balusamy, S., Kumar, V., Menon, S., Lakshmi, T., Perumalsamy,
 H., 2021. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus)
 and its anticancer and antioxidant analysis. J King Saud Univ Sci 33.
 https://doi.org/10.1016/j.jksus.2020.101260
- Sierra, C.F.E., 2019. Fundamentals of transmission electron microscopy, the technique with
 the best resolution in the world. Bogota 0–6.
- Singh, M.P., Bhardwaj, A.K., Bharati, K., Singh, Rahul Pratap, Chaurasia, S.K., Kumar, S.,
 Singh, Rishi Pal, Shukla, A., Naraian, R., Vikram, K., 2021. Biogenic and Non-Biogenic
 Waste Utilization in the Synthesis of 2D Materials (Graphene, h-BN, g-C2N) and Their
 Applications. Frontiers in Nanotechnology. https://doi.org/10.3389/fnano.2021.685427
- Spagnoletti, F.N., Spedalieri, C., Kronberg, F., Giacometti, R., 2019. Extracellular biosynthesis
 of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina
 phaseolina. J Environ Manage 231, 457–466.
 https://doi.org/10.1016/j.jenvman.2018.10.081
- Srivastava, M., Srivastava, N., Saeed, M., Mishra, P.K., Saeed, A., Gupta, V.K., Malhotra,
 B.D., 2021. Bioinspired synthesis of iron-based nanomaterials for application in biofuels
 production: A new in-sight. Renewable and Sustainable Energy Reviews.
 https://doi.org/10.1016/j.rser.2021.111206
- Subramaniyan, S.A., Sheet, S., Vinothkannan, M., Yoo, D.J., Lee, Y.S., Belal, S.A., Shim, 710 K.S., 2017. One-Pot Facile Synthesis of Pt Nanoparticles Using Cultural Filtrate of 711 Microgravity Simulated Grown P. chrysogenum and Their Activity on Bacteria and 712 Nanosci Nanotechnol Cancer Cells 18, 3110-3125. 713 J https://doi.org/10.1166/jnn.2018.14661 714
- Toro, R.G., Diab, M., de Caro, T., Al-Shemy, M., Adel, A., Caschera, D., 2020. Study of the
 Effect of Titanium Dioxide Hydrosol on the Photocatalytic and Mechanical Properties of
 Paper Sheets. Materials 13. https://doi.org/10.3390/ma13061326
- Verma, S.K., Das, A.K., Gantait, S., Kumar, V., Gurel, E., 2019. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.02.409

- Verma, S.K., Das, A.K., Patel, M.K., Shah, A., Kumar, V., Gantait, S., 2018. Engineered nanomaterials for plant growth and development: A perspective analysis. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.02.313
- Wadhwani, S.A., Shedbalkar, U.U., Singh, R., Chopade, B.A., 2018. Biosynthesis of gold and
 selenium nanoparticles by purified protein from Acinetobacter sp. SW 30. Enzyme
 Microb Technol 111, 81–86. https://doi.org/10.1016/j.enzmictec.2017.10.007
- Wang, L., Liu, X., Lee, D.J., Tay, J.H., Zhang, Y., Wan, C.L., Chen, X.F., 2018. Recent
 advances on biosorption by aerobic granular sludge. J Hazard Mater.
 https://doi.org/10.1016/j.jhazmat.2018.06.010
- Wang, W., Zhang, B., Liu, Q., Du, P., Liu, W., He, Z., 2018. Biosynthesis of palladium
 nanoparticles using: Shewanella loihica PV-4 for excellent catalytic reduction of
 chromium(VI). Environ Sci Nano 5, 730–739. https://doi.org/10.1039/c7en01167a
- Yang, D.P., Cui, D.X., 2008. Advances and prospects of gold nanorods. Chem Asian J.
 https://doi.org/10.1002/asia.200800195
- Zamani, H., Jafari, A., Mousavi, S.M., Darezereshki, E., 2020. Biosynthesis of silica nanoparticle using Saccharomyces cervisiae and its application on enhanced oil recovery.
 J Pet Sci Eng 190. https://doi.org/10.1016/j.petrol.2020.107002
- Zhang, L., Wang, L., Jiang, Z., Xie, Z., 2012. Synthesis of size-controlled monodisperse Pd
 nanoparticles via a non-aqueous seed-mediated growth.
- Zhang, Q., Zhang, H., Hui, A., Lu, Y., Wang, A., 2023. Incorporation of Ag NPs/palygorskite
 into chitosan/glycyrrhizic acid films as a potential antibacterial wound dressing. Results
 in Materials 18. https://doi.org/10.1016/j.rinma.2023.100396
- Zhang, X., Qu, Y., Shen, W., Wang, J., Li, H., Zhang, Z., Li, S., Zhou, J., 2016. Biogenic
 synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic
 reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 497, 280–285.
 https://doi.org/10.1016/j.colsurfa.2016.02.033
- Zong, T.-X., Silveira, A.P., Morais, J.A.V., Sampaio, M.C., Muehlmann, L.A., Zhang, J., Jiang,
 C.-S., Liu, S.-K., 2022. Recent Advances in Antimicrobial Nano-Drug Delivery Systems.
 Nanomaterials 12, 1855. https://doi.org/10.3390/nano12111855
- 750