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Preface 

The unprecedented development and industrialization of the world generates enormous amounts of waste materials 
which creates severe environmental problems. Waste generated by diverse human activities (both industrial and house­
hold) can also cause human health risks. Hence, efficient approaches to waste management are the need of the hour. 

In developing countries, garbage generation has increased in tandem due to exponential population growth. Many 
biodegradable wastes are currently disposed of in malicious ways, such as by burning, unscientific dumping, or direct 
discharge into the water bodies. Abundant biodegradable waste in the ecosystem can contaminate the environment as 
they promote the growth of many pathogenic microbial communities in the vicinity of wastes and these microbes can 
cause a variety of infectious diseases. 

However, biodegradable waste or biomass can be used as raw material for nanoparticle production via green synthe­
sis. This is because plant- and animal-related wastes have a treasure of biochemicals for the reduction of metal and non­
metal ions. Natural biological systems are used to produce nanomaterials through green material synthesis processes. 
NMs recycled from different types of nonbiogenic waste could be a pioneering approach to not only avoid hazardous 
effects on the environment but also to implement circular economy practices, which are crucial to attaining sustainable 
growth. Moreover, recycled NMs can be utilized as a safe and revolutionary alternative with outstanding potential for 
many biomedical applications. 

The book discusses the current status and perspectives of biogenic and nonbiogenic waste generation rates through­
out the globe along with holistic and sustainable approaches for the production of multifunctional nanomaterials using 
domestic waste, food waste, agriculture, and fruit wastes. Moreover, the book chapters have been discussed, to examine 
the characteristics of nonbiogenic synthesized nanomaterials, their applications, and limitations with the biogenic syn­
thesized nanomate1ials. 

Further, the incorporation of the chapter on the application of nanomaterials, synthesized from agricultural wastes 
for wastewater treatment, provides an environment-friendly, toxic-free, and sustainable approach. The synthesis of 
nanoparticles from biowaste offers potential benefits over the chemical-based synthesis approach as it is eco-friendly, 
cost-effective, and easy. Moreover, the precursor of natural sources can be reused, recycled, and reduced. 

The major challenge to scale up the synthesis of nanoparticles for industrial production from biowaste has been 
attributed to the monodispersity, size, and shape of the NPs, which have also been addressed in the chapters keeping in 
mind the recent progress and future prospects. 

This book will be a pioneering compilation of the different strategies to be adopted for the green synthesis of multi­
functional NPs and also for the effective management of the enormous amount of biogenic and nonbiogenic wastes. 
Thus the present book will be an asset to the students and researchers working on nanomaterial developments in multi­
disciplinary domains. 

xvii 
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 10 

Abstract 11 

Nanotechnology is the most important scientific breakthrough in the 21st century which has led 12 

to changes and advances in various fields of application. Generally, nanomaterials (NMs) with 13 

specific shapes, sizes, and compositions are required for nanotechnology. Synthesis of NMs 14 

using conventional chemical and physical methods involves high costs, the use of hazardous 15 

substances, and environmental damage. In contrast, the green synthesis approach provides a 16 

sustainable method for synthesizing NMs such as the utilization of biodegradable waste and 17 

microorganisms. Nowadays, microbially-synthesized NMs have been recognized as an 18 

effective and eco-friendly method suitable for the large-scale fabrication of biocompatible 19 

nanostructures. Various microorganisms such as yeast, fungi, algae, and bacteria can serve as 20 

potential stabilizing and reducing agents for synthesizing NMs. This chapter contributes to 21 

recent developments in the green synthesis of various NMs using microorganisms, focusing on 22 

intracellular or extracellular mechanisms and the purification of NMs. The characterization, 23 

applications, and prospects for NMs biosynthesis are also discussed in this chapter.  24 

Keywords: Nanomaterials, green synthesis, microbes, intracellular, extracellular, purification 25 
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1. Introduction 26 

Nanotechnology, which involves creating functional systems at the molecular level, is one 27 

of the scientific and technology fields that is growing the fastest. The word "nanotechnology" 28 

has gained enormous traction in recent years due to its numerous uses in agriculture, health, 29 

food, textiles, cosmetics, and electronics industries. Nanotechnology is linked to the production 30 

of nanomaterials (NMs) with improved properties that distinguish them from bulk materials. 31 

NMs consist of one or more components having at least one dimension between 1 and 100 nm, 32 

for example, nanoparticles, composite materials, nanofibers, and nano-structured surfaces 33 

(Borm et al., 2006; Verma et al., 2019, 2018). NMs have become more prominent in 34 

technological breakthroughs due to their superior performance compared to their bulk 35 

counterparts in terms of mechanical, electrical, and magnetic behavior, as well as chemical 36 

characteristics (Jeevanandam et al., 2018; Lloyd et al., 2011). These NMs can be classified into 37 

the following types based on their size and characteristics i.e., carbon-based NMs, composite-38 

based NMs, organic-based NMs, and inorganic-based NMs (Kolahalam et al., 2019; Zhang et 39 

al., 2012). Currently, metal-based NMs such as silver (Ag), zinc (Zn), lead (Pb), gold (Au), 40 

iron (Fe), carbon (C), and copper (Cu) have attracted great interest among researchers (Khan 41 

et al., 2021; Zhang et al., 2023).  42 

The synthesis of NMs can be prepared by various techniques, including a top-down 43 

approach and a bottom-up approach (self-assembly). These techniques are further divided into 44 

subclasses based on the operation and reaction conditions. The bottom-up approach also known 45 

as a building-up process involves constructing a structure atom by atom, molecule by molecule, 46 

or by self-arrangements. Techniques such as sedimentation and reduction through green 47 

synthesis, spinning, and biochemical synthesis serve as examples of this method. In the top-48 

down approach, physical and chemical techniques are used to reduce the size of the appropriate 49 

starting components. NMs have been synthesized using conventional physical techniques such 50 



  

as electrospinning, radiolysis, spray pyrolysis, ultrasonication, and photoirradiation (Bhardwaj 51 

et al., 2019, 2018, 2017; Khan et al., 2019) However, chemical techniques have attracted more 52 

interest than physical techniques due to their greater ability to control the size and structure 53 

of NMs. Sol-gel, solvothermal, co-precipitation, and template-based approaches are the major 54 

chemical techniques. The accessible and widely used physical and chemical methods for 55 

producing NMs are energy-intensive, contain hazardous chemicals, and require a high 56 

temperature for reaction (Abid et al., 2022; Nasaruddin et al., 2021). Although there are many 57 

physicochemical ways to synthesize NMs, it is still necessary to develop non-toxic, low-cost, 58 

high-yield, low-energy, and eco-friendly methods particularly for applications in the fields of 59 

human health and medicine. Therefore, numerous strategies for the bio-based synthesis of NMs 60 

have been explored to establish sustainable and cost-effective bioproduction alternatives. For 61 

instance, various flavonoids found in biomass waste produced from fruit residues can chelate 62 

metal ions and reduce them into nanoparticles (Aswathi et al., 2022; Putro et al., 2022). Several 63 

researchers have reported the production of graphene utilizing pulp waste and biodegradable 64 

waste from paper cups (Shukla et al., 2020.; Singh et al., 2021). 65 

Other biosynthesis pathways of NMs using microbes involving bacteria, fungi, yeast, and 66 

algae have been widely reported due to their reducing characteristics, which are often 67 

responsible for reducing metal compounds in particular NMs. Microorganisms can be used in 68 

nanotechnology as a green technology for sustainable development strategies due to the use of 69 

cleaner production as well as the preservation of natural resources. For instance, fungus-70 

mediated methods include simple procedures for the nano-synthesis of inorganic substances 71 

such as CuAlO2 which requires low-temperature conditions (Ahmad et al., 2007). Moreover, 72 

fungal biomass was also essential for chemically synthesized BiOCl nanoplates with sizes 73 

between 150 and 200 nm to break down into extremely tiny particles (<10 nm) without 74 

affecting their crystalline structure (Chung et al., 2016). Researchers have recently exploited a 75 



  

variety of biological extracts to synthesize metallic NMs by following direct techniques and 76 

employing microbial extracts as a source of reductants. With the use of biological resources, it 77 

is feasible to get the specific size, shape, and monodispersity of NMs either extracellularly or 78 

intracellularly (de Jesus et al., 2021). This chapter reviewed the current works in green 79 

synthesis of NMs by microbes that focused on their intra and extracellular mechanisms, 80 

purification techniques, characterizations, and applications. The difficulties of elaborating this 81 

technology at a large-scale level and the prospects of biological synthesis approaches are also 82 

highlighted in the last section.  83 

 84 

2. Microbially-synthesized of NMs 85 

2.1. Intracellular and extracellular mechanisms 86 

Since the formation of the Earth, biological organisms and inorganic materials have been 87 

in continual touch with each other. The interactions between inorganic substances and living 88 

things have drawn more attention from scientists in recent years. Numerous microorganisms 89 

produce various inorganic compounds either extracellularly or intracellularly, and the 90 

mechanisms vary from one organism to another (Fariq et al., 2017; Hulkoti and Taranath, 2014). 91 

By using several synthesis components, including microorganisms, plant extracts, and other 92 

biological components, NMs are synthesized through biological processes (Saravanan et al., 93 

2021). Due to their ease of cultivation, rapid growth, and potential to thrive under ambient 94 

conditions, microbes such as bacteria, algae, yeast, and fungi are typically selected for synthesis 95 

in NMs. Interestingly, microbes can detoxify and accumulate heavy metals in the presence of 96 

reductase enzymes, which play a crucial role in reducing metal salts into NMs (Ovais et al., 97 

2018). Different biological agents and various metal solutions have varying effects on the 98 

production of NMs.  99 



  

There are two categories for microbial production of NMs. The first category is 100 

biosorption, which does not require energy use and involves the attachment of metal ions found 101 

in aqueous solutions to the cell wall. Stable NMs are formed as a result of interactions with the 102 

cell wall or peptides (Egan-Morriss et al., 2022; Pantidos, 2014). The prospective processes for 103 

the biosorption of the metal on microbes consist of physical processes including ion exchange, 104 

complexation, precipitation, and physisorption. Microbes typically secrete lipopolysaccharide, 105 

glycoprotein, and other exopolysaccharide compounds that have anionic structural groups for 106 

positive metal adhering to negative charges of the cell wall. Chitin was shown to be the primary 107 

component of the fungal cell wall and it is associated with the complex formation of heavy 108 

metals, which leads to the synthesis of NMs (L. Wang et al., 2018). Few researchers have 109 

reported the biosynthesis of copper NMs via the biosorption method from Rhodotorula 110 

mucilaginosa biomass. The spherical form of the produced NMs made them accessible for 111 

simultaneous pollution removal and NMs synthesis. The formation of metallic molybdenum 112 

NMs by Clostridium pasteurianum has also been the subject of another investigation 113 

(Nordmeier et al., 2018; Salvadori et al., 2014). 114 

Meanwhile, bioreduction occurs when metal ions are chemically reduced by living 115 

organisms into more stable forms. Numerous species can utilize metabolism metal reduction, 116 

in which the reduction of a metal ion is linked to the oxidation of an enzyme. As a consequence, 117 

stable and inert metallic NMs are formed which may be removed safely from a polluted 118 

material. The synthesis of NMs may be triggered by several substances found in microbial cells, 119 

notably amides, amines, alkaloids, carbonyl groups, proteins, pigments, and other reducing 120 

agents (Quintero-Quiroz et al., 2019; Sable et al., 2020). Some microbes usually release 121 

chemicals with a high capacity for oxidation or reduction of metal ions to produce zero valent 122 

or magnetic NMs. Additionally, these organisms are easy to handle and susceptible to genetic 123 

manipulation (Puspitasari et al., 2021; Puspitasari and Lee, 2021).  124 



  

It is well known that both intracellular and extracellular proteins, enzymes, lipids, and 125 

chelating activity of DNA subunits are actively involved as reducing agents throughout the 126 

biosynthesis process. These bioactive substances have high reduction potential and can 127 

donate H+ ions to reduce metal ions from a higher oxidation form to a lower oxidation form 128 

(Dauthal and Mukhopadhyay, 2016; Srivastava et al., 2021). According to the site where NMs 129 

are generated, extracellular and intracellular synthesis become the most common processes of 130 

biosynthesis (Fig.1). NMs can be accumulated in the periplasm, cytoplasmic membrane, and 131 

cell wall when observed under a microscope.  132 

In the extracellular approach, NMs are produced outside cells by capturing metal ions on 133 

their surfaces and reducing ions in the presence of microbe-secreted enzymes (Li et al., 2011). 134 

Cofactors such as reduced nicotinamide adenine dinucleotide (NADH) and reduced 135 

nicotinamide adenine dinucleotide phosphate (NADPH) reliant enzymes both have crucial 136 

roles as reductants via electron transfer from NADH through NADH-reliant enzymes. For 137 

example, the release of NADH and NADH-reliant enzymes is an important process in the 138 

extracellular biosynthesis of silver nanomaterials (AgNMs) by microbes. The bioreduction of 139 

silver is initiated by NADH-reliant reductase enzymes found in microbes by 140 

electron transfer from NADH (He et al., 2007). As a result, silver ions (Ag+) receive electrons 141 

and are reduced (Ag0), resulting in the generation of enlarged metal nuclei and the formation 142 

of stable AgNMs within cell-free supernatant. Precursor concentration, pH, temperature, and 143 

reaction time are some limiting factors affecting the size and properties of NMs.   144 

The intracellular approach includes transporting ions into the inner space of microbial cells 145 

to produce NMs when the enzymes are present. Microbial cells and sugar molecules are 146 

primarily involved in the intracellular process of metal bioreduction. The interactions between 147 

intracellular enzymes and positively charged groups are the main mechanism for the trapping 148 

of metal ions from the media and their subsequent reduction within the cell. This resulted from 149 



  

NMs being produced as a result of enzymatic reduction and metal ion transport across 150 

membranes (Dauthal and Mukhopadhyay, 2016). In order to release the biosynthesized NMs 151 

from intracellular production, additional processes are needed such as ultrasonic treatment or 152 

interactions with the appropriate detergents. In contrast, extracellular biosynthesis is 153 

inexpensive, requires less complex downstream processing, and supports large-scale 154 

production of NMs to investigate its possible uses. Therefore, the extracellular method for 155 

biosynthesis of NMs has been the main subject of several studies compared to the intracellular 156 

method (Das et al., 2014). An extensive list of the microbes used in synthesizing NMs is 157 

provided in Table 1. 158 

 159 

Fig. 1. Biosynthesis of silver nanomaterials via intra and extracellular mechanisms 160 



  

Table 1. Biosynthesis of various NMs using microbes and their applications 161 

 

No. 

 

Microbe 

 

Type of 

nanomaterial 

 

Synthesis 

location 

Physicochemical parameters  

Size 

(nm) 

 

Shape 

 

Application 

 

Reference 

Temperature pH Incubation 

time 

   

 

 

 

Bacteria 

         

1. Geobacillus spp. Silver (Ag) Extracellular 55°C 7.5 48 h <100 Spherical - (Cekuolyte et 

al., 2023) 

2. Vibrio  

alginolyticus 

Gold (Au) Extracellular 40°C 7 14 h 100-

150 

Irregular Anticancer and 

antioxidant 

(Shunmugam 

et al., 2021) 

3. Marinomonas sp. ef1  Cooper (Cu) Extracellular 22°C - 48 h 10-70 Spherical

/ ovoidal 

Antimicrobial (John et al., 

2021) 

4. Shewanella loihica 

PV-4 

Palladium (Pd) Extracellular 30°C 7 72 h 4-10 Spherical Catalyst for Cr 

(VI) reduction 

(W. Wang et 

al., 2018) 

5. Nocardiopsis 

flavascens RD30 

Silver (Ag) Extracellular 30°C - 72 h 5-50 Spherical Cytotoxicity (Ranjani et 

al., 2018) 

6. Pseudoalteromonas 

lipolytica 

Silver (Ag) Extracellular 28°C 6.5-7 72 h 5-15 Spherical Dye 

decolorization 

(Kulkarni et 

al., 2018) 

7. Shewanella loihica 

PV-4 

Platinum (Pt) Extracellular 30°C 7 48 h 2-6 - Dye 

decomposition 

(Ahmed et al., 

2018) 

8. Desulfovibrio sp. 

LS4  

Maghemite 

(Fe2O3) 

Extracellular 30°C 7.8 35 days 18 Round Iron nanoparticle 

formation in 

saltpan sediment 

(Das et al., 

2018) 

9. Enterococcus 

faecalis 

Selenium (Se) Extracellular 37°C 7 24 h 29-

195 

Spherical Antibacterial (Shoeibi and 

Mashreghi, 

2017) 



  

10. Pseudomonas 

aeruginosa JP-11  

Cadmium 

sulfide (CdS) 

Extracellular 50°C - 20 h 20-40 Spherical Cadmium 

removal from 

aqueous solution 

(Raj et al., 

2016) 

  

Fungi 

         

1. Penicillium oxalicum Silver (Ag) Extracellular 28°C - 24 h 10-50 Spherical Antimicrobial, 

anticancer, 

antioxidant 

(Gupta et al., 

2022) 

2. Trichoderma 

longibranchiatum 

Silver (Ag) Extracellular 55°C 7 24 h 5-50 Spherical  Biosafety 

assessment 

(Cui et al., 

2022) 

3. Periconium sp. Zinc oxide 

(ZnO) 

Extracellular 45°C 5 24 h 16-78 Quasi-

spherical 

Antioxidant, 

antibacterial 

(Ganesan et 

al., 2020) 

4. Lignosus 

rhinocerotis 

Gold (Au) Extracellular 65°C 4.5 2.5 h 49.5-

82.4 

Spherical Antibacterial (Katas et al., 

2019) 

5. Trichoderma 

asperellum  

Copper oxide 

(CuO) 

Extracellular 40°C - 24 h 110 Spherical Photothermolisis 

on human lung 

carcinoma 

(Saravanaku

mar et al., 

2019) 

6. Rhodotorula 

mucilaginosa  

Silver (Ag) Extracellular 25°C 7 168 h 13.7 Spherical Antifungal, 

catalyst, 

cytotoxicity 

(Cunha et al., 

2018) 

7. Aspergillus niger Zinc oxide 

(ZnO) 

Extracellular 32°C 6.2 48 h 53-69 Spherical Antibacterial, dye 

degradation 

(Kalpana et 

al., 2018) 

8. Penicillium 

chrysogenum 

Platinum (Pt) Extracellular 100°C - 12 h  5-40 Spherical Cytotoxicity (Subramaniya

n et al., 2017) 

9. Cladosporium 

cladosporioides 

Gold (Au) Extracellular 30°C 7 48 h 60 Round Antioxidant, 

antibacterial 

(Joshi et al., 

2017) 

10. Rhizopus stolonifer Silver (Ag) Extracellular 40°C - 48 h 2.86 Spherical - (AbdelRahim 

et al., 2017) 

  

Yeast 

         



  

162 

1. Saccharomyces 

cerevisiae 

Iron oxide 

(Fe2O3) 

Extracellular 30°C - 2-3 days 70-

100 

Spherical Antimicrobial (Asha Ranjani 

et al., 2022) 

2. Pichia 

kudriavzeviiHA 

Silver (Ag) Extracellular 30°C - 72 h 29.6-

30.14 

Round 

/cubic 

Anticancer (Ammar et 

al., 2021) 

3. Saccharomyces 

cerevisiae 

Silica  Intracellular 29°C 6-11 1 h 40-70 Spherical Oil recovery (Zamani et 

al., 2020) 

4. Saccharomyces 

cerevisiae 

Silver (Ag) Intracellular 25°C 7 24 h 2-20 Spherical Biocatalyst  (Korbekandi 

et al., 2016) 

5. Magnusiomyces 

ingens LH-F1 

Gold (Au) Extracellular 30°C - 24 h 80.1 Sphere/ 

triangle/ 

hexagon 

Catalytic 

reduction of 

nitrophenols 

(Zhang et al., 

2016) 

  

Algae 

         

1. Spirogyra hyalina  Silver (Ag) Extracellular 60°C - 24 h 52.7 Spherical Antimicrobial (Abdullah et 

al., 2022) 

2. Coelastrella 

aeroterrestrica 

Silver (Ag) Extracellular 30°C - 24 h 14.5 Hexagon Antimicrobial, 

anticancer, 

antioxidant 

(Hamida et 

al., 2022) 

3. Padina sp. Silver (Ag)  Extracellular 60°C - 48 h 25-60 Spherical

/oval 

Antibacterial (Bhuyar et al., 

2020) 

4. Colpomenia sinuosa Iron oxide 

(Fe3O4) 

Extracellular 30°C 2 1 h 11.24–

33.71  

Nano 

spheres 

Antibacterial, 

antifungal 

(Salem et al., 

2019) 

5. Spirulina platensis Palladium (Pd) Extracellular 70°C - 20 min 10-20 Spherical Adsorbent (Sayadi et al., 

2018) 



  

 163 

2.2. Synthesis of NMs using bacteria 164 

Bacteria have become one of the most useful research subjects due to their abundance in 165 

the environment and their ability to endure harsh circumstances. Additionally, they can grow 166 

rapidly and their cultivation is easy to control, such as temperature, pH, oxygenation, and 167 

incubation time. Optimizing these conditions is crucial since different sizes of NMs are needed 168 

for various applications including optics, catalysts, and antimicrobials (He et al., 2007). 169 

Bacteria typically produce intracellular or extracellular inorganic substances, which can be 170 

employed for the biosynthesis of NMs. Bacillus marisflavi was shown to produce AuNMs with 171 

a particle size of 14 nm. AuNMs synthesis from bacterial cell-free extract occurred 172 

extracellularly and the color changed from light yellow to bluish-purple. The production of 173 

AuNMs was indicated by the presence of bluish-purple color caused by surface plasmon 174 

resonance (Nadaf and Kanase, 2019).  175 

 176 

2.3. Synthesis of NMs using fungi 177 

Researchers across the world frequently utilize fungi for NMs synthesis using both 178 

intracellular and extracellular processes. It is well known that using fungi to produce metal 179 

oxide or NMs is an effective technique with clear morphology (Ijaz et al., 2020). Fungi produce 180 

more NMs than bacteria because their intracellular enzymes function as biological substances 181 

that increase the bioaccumulation capacity and metal resistance (Kalpana and Devi Rajeswari, 182 

2018). Significant advantages include the ease of scaling up and downstream processing, 183 

economic feasibility, and the presence of mycelia which supplies a high surface area 184 

(Mohanpuria et al., 2008). The most well-known fungi for synthesizing silver and gold 185 

nanomaterials are Fusarium sp., Penicillium sp., and Aspergillus sp. (Shah et al., 2015). The 186 

extracellular production of AgNMs was carried out using Penicillium sp. The enzyme 187 



  

induction was facilitated by the existence of silver nitrate in the cell culture broth and optimal 188 

synthesis was shown at pH 6 with a substrate concentration of about 1.5 mM (Shareef et al., 189 

2017; Spagnoletti et al., 2019).  190 

 191 

2.4. Synthesis of NMs using yeast 192 

Due to their improved function and stability, yeasts have been considered a highly efficient 193 

source of NMs synthesis. Additionally, they can capture large amounts of potentially toxic 194 

metals. The present study on yeast focuses mostly on the production of nanocrystalline 195 

quantum semiconductors, notably cadmium sulfide (CdS) and zinc sulfide (ZnS) nanomaterials. 196 

The biosynthesis of silver and gold NMs was mainly carried out by S. cerevisiae and other 197 

silver-resistant yeast strains (Korbekandi et al., 2016). The production of silica NMs is another 198 

use of S. cerevisiae in the nanomaterial generation process. The NMs were produced when 199 

yeast extract and sodium silicate (precursor solution) were added. One potential mechanism 200 

involves the interaction of yeast extract and sodium silicate in an aqueous medium to generate 201 

sodium hydroxide and silica oxide NMs (Zamani et al., 2020). 202 

 203 

2.5. Synthesis of NMs using algae 204 

It has been reported that algae play a significant part in the biological synthesis of NMs and 205 

the buildup of certain toxic metals. Large-scale algae production is mostly utilized to 206 

synthesize gold, silver, and possibly zinc oxide NMs. Algae are recognized for their capacity 207 

to transform toxic metals into their harmless equivalents (Ong et al., 2021). For example, 208 

Sargassum muticum was employed in the production of ZnO NMs and was found to have anti-209 

apoptotic and anti-angiogenesis properties in HepG2 cells (Yang and Cui, 2008). Furthermore, 210 

Staphylococcus aureus and Pseudomonas aeruginosa were effectively inhibited by the NMs, 211 

with inhibition zones of 13.33 mm and 15.17 mm, respectively (Bhuyar et al., 2020). 212 



  

 213 

3. Purification methods of biosynthesized NMs 214 

The biosynthesized NMs can be purified by several methods including chromatography, 215 

magnetic fields, density gradient centrifugation, and electrophoresis (Table 2). 216 

3.1. Chromatography 217 

 Chromatography is a method for separating mixtures of substances based on variations in 218 

how fast the different components spread through a given media. These media are the stationary 219 

phase and mobile phase. The stationary phase can be solid or liquid while the mobile phase can 220 

be liquid or gas. This chromatography can be used for purification and separation in the 221 

biosynthesis of NMs. Several uses of chromatographic methods in the purification of NMs 222 

synthesis are described. Current researchers widely use intracellular enzymes in producing 223 

AuNM for various applications (Gholami-Shabani et al., 2015). The enzyme is an agent in 224 

reducing the metal NMs to be stable material. Enzymes produced by microbes (e.g., 225 

Acinetobacter sp.) extracellularly and intracellularly after purification by anion exchange and 226 

gel filtration chromatography were used to produce Au and Se nanomaterials (Wadhwani et 227 

al., 2018).  228 

 229 

3.2. Magnetic fields 230 

 Magnetic fields are purification methods that use magnetic properties to separate and 231 

purify NMs, particularly iron (Fe) NMs. One magnetotactic bacteria is Magnetospirillum 232 

gryphiswaldense, which can move along magnetic field lines due to magnetosomes (MagMn). 233 

Magnetosomes produced by intracellular bacteria are membrane-enclosed single-domain 234 

ferromagnetic NMs (Rosenfeldt et al., 2021). The purification of synthetic materials containing 235 

Fe by bacteria consists of 2 stages: (1) cell wall breakdown and (2) separation-purification. For 236 

the breakdown of cell walls, sonification and ultracentrifugation methods can be used, while 237 



  

column-based magnetic (neodymium magnet) can be used for the separation-purification 238 

method (Hamdous et al., 2017; Raschdorf et al., 2018; Rosenfeldt et al., 2021).  239 

 240 

3.3. Density gradient centrifugation 241 

 Density gradient centrifugation is the simple purification method of NMs extracellular 242 

synthesis. The process of centrifugation is used to separate particles from a solution based on 243 

their size, shape, density, medium viscosity, and rotor speed. The density gradient 244 

centrifugation method may be required more than once in some cases. For example, 245 

Nocardiopsis sp. cultures were centrifuged at 10,000x g, 4oC for 10 min up to three times after 246 

incubation, and 5 ml of each strain's cell-free supernatant was then subjected to 50 ml of an 247 

aqueous solution containing 1x10-3 M HAuCl4.3H2O. Subsequently, the samples were 248 

centrifuged again at high speed after the reaction for a certain time to separate the produced 249 

AuNMs (Manivasagan et al., 2015). Extracellular purification of AgNMs synthesized using 250 

Bacillus subtilis can be performed by centrifugation method at 10,000 rpm for 5 minutes twice 251 

(Alsamhary, 2020). 252 

 253 

3.4. Electrophoresis 254 

 Electrophoresis is the term used to describe the movement and separation of charged 255 

particles (ions) caused by electric fields. Two electrodes (anode, cathode) with opposing 256 

charges are joined by a conducting liquid known as an electrolyte to form an electrophoretic 257 

system. Agarose gel electrophoresis is usually used to purify and separate NMs based on size 258 

and shape. For example, one percent agarose gel electrophoresis (Bio-Rad) was used to purify 259 

AgNMs generated by fungi isolated from mangroves (Rodrigues et al., 2013). Another work 260 

on AgNMs that utilized amplified DNA fragments from Streptomyces sp. was separated using 261 

TBE buffer containing ethidium bromide (1 g/mL) on 1% agarose gel electrophoresis 262 



  

(Mabrouk et al., 2021). The synthesis of AgNMs by Staphylococcus aureus can be carried out 263 

intracellularly and extracellularly so that the purification process requires cell wall lysis 264 

(Triton-X100), as well as separation using centrifugation and gel electrophoresis (Amin et al., 265 

2019). 266 

 267 

Table 2. Purification methods of biosynthesized NMs by various microbes 268 

Type Microbe NMs Synthetic 

location 

Purification method Application Reference 

 

Chromatography 

Fungi Talaromyces 

purpurogenus 
(pigment) 

 

Ag Extracellular Two steps: 

-Centrifugation 

(6,700xg, 4oC, 20 min) 

- Thin Layer 

Chromatography 

Biomedical 

 

(Bhatnagar 

et al., 2022) 

Bacteria Acinetobacter sp. 

(lignin 

peroxidase) 

Au, Se Extracellular Two steps sequentially: 

- Anion exchange 

chromatography 

- Gel filtration 

chromatography 

(lignin peroxidase) 

Biocatalyst (Wadhwani 

et al., 2018) 

Bacteria Escherichia coli 

(sulfite reductase) 

Au Extracellular Two steps: 

- Column 

chromatography (sulfite 

reductase) 

- Centrifugation 

(80,000xg, 20 min) 

(mixed sulfite reductase 

AuNMs) 

Biocatalyst (Gholami-

Shabani et 

al., 2015) 

Bacteria Pseudomonas 

aeruginosa 

(rhamnolipids) 

Ag Extracellular Two steps: 

- Gel column 

chromatography 

(rhamnolipids) 

- Centrifugation (mixed 

rhamnolipids - AgNMs) 

Biosurfactant (Ganesh et 

al., 2010) 

 

Magnetic Fields 

Bacteria Magnetospirillum 

magneticum 

Mag 

Mn 

Intracellular Two steps: 

- Centrifugation 

(8,000xg, 10oC, 20 min) 

- Neodymium magnets 

Magnetic 

tumor 

targeting 

(Designed 

Research; K, 

2022) 



  

Bacteria Magnetospirillum 

gryphiswaldense 

Mag 

Mn 

Intracellular Two steps: 

- Column-based 

magnetic 

- Ultracentrifugation 

Biomedical 

and 

Biotechnology 

Rosenfeldt et 

al., 2021) 

Fungi Mixed fungi Fe3O4 Intracellular Two steps: 

- Centrifugation (500 

rpm, 10oC, 20 min) 

- Permanent magnets 

Cleaning agent (Sayed et al., 

2021) 

 

Fungi Aspergillus niger FeS 

and 

Fe3O4 

Intracellular Permanent magnets Biomedical (Abdeen et 

al., 2016) 

 

Density gradient Centrifugation 

Fungi Aspergillus flavus Fe Extracellular Centrifugation 
(5000 rpm, 5 min) 

Extraction and 

Clarification 
(Hassan et 

al., 2022) 

Bacteria Bacillus subtilis Ag Extracellular Centrifugation twice 

(10,000 rpm, 5 min) 

Antibacterial (Alsamhary, 

2020) 

Bacteria Actinomycetes sp. Ag Extracellular Centrifugation (15,000 

rpm, 15 min) 

Antimicrobial (Al-Dhabi et 

al., 2018) 

Fungi Pleurotus 

ostreatus 

(Laccase) 

Au Extracellular Centrifugation (2415xg, 

15 min, 4oC) 

Decolorization (El-Batal et 

al., 2015) 

 

 

Electrophoresis 

Bacteria Streptomyces 

spiralis; 

Streptomyces 

rochei 

Ag Extracellular Agarose gel 

electrophoresis 1% 

Antibacterial (Mabrouk et 

al., 2021) 

Fungi Aspergillus 

tubingensis; 

Bionectria 

ochroleuca 

Ag Extracellular Electrophoresis (sodium 

dodecyl 

sulfate-polyacrylamide 

gel) 

Antimicrobial (Rodríguez-

González et 

al., 2020) 

 

Bacteria Staphylococcus 

aureus 

Ag Intracellular 

and 

Extracellular 

Agarose gel 

electrophoresis 0.7% 

Biosensors (Amin et al., 

2019) 

 

 269 
4. Characterization of biosynthesized NMs 270 

Biosynthesized nanomaterials characterizations were determined by various techniques, 271 

such as spectroscopic technique, microscopic technique, and diffraction technique. 272 

Nanomaterials characterization play a huge role in various application of nanomaterials. Each 273 

technique has a different purpose, methods, and instruments, which will be discovered below. 274 

4.1. Spectroscopic techniques 275 



  

The spectroscopic technique is a measurement to examine the content of the materials, 276 

specifically nanomaterials and the surface properties in a mixture solution. It uses various types 277 

of instruments, such as UV-Vis Spectroscopy, Fourier Transform Infra-Red (FTIR), and 278 

Raman Scattering which have distinctive methods. UV-Vis Spectroscopy aims to detect and 279 

monitor the size and shape of metal ions of NMs with particle sizes between 2 nm to 100 nm 280 

(Begum et al., 2018; Kumar et al., 2020). Another spectroscopy technique commonly used in 281 

NMs is FTIR, to observe the functional group, composition, and inter interaction of molecules 282 

(Alessio et al., 2017; Kamnev et al., 2021). In addition, FTIR could identify and classify several 283 

microorganisms, such as Bacillus (Procacci et al., 2021), Escherichia coli (Farouk et al., 2022), 284 

Pseudomonas (Lee et al., 2019), and Staphylococcus aureus (Hong et al., 2022).  285 

 286 

4.2. Microscopic techniques 287 

The microscopic technique is used to determine the physical morphology, texture, and size 288 

of the NMs. Several instruments included microscopic techniques, such as the optical 289 

microscope, Scanning Electron Microscope (SEM), and Transmission Electron Microscope 290 

(TEM). SEM performs morphology, size, and shape of nanoparticles between 0.001 to 5 μm 291 

(Maheshwari et al., 2018). In addition, compositional information could be collected by Energy 292 

Dispersive X-Ray (EDX) and mapping analysis with an SEM instrument. TEM could observe 293 

material with a particle size of up to 1 nm due to high image resolutions, thus real size and 294 

structures are detected (Sierra, 2019). The NMs microbially synthesized keep developing with 295 

various raw materials, microorganisms, and methods to acquire wider and better applications 296 

of NMs. Moreover, High Resolution-TEM (HR-TEM) can provide the morphology of the 297 

samples and identify the crystal structure from the atomic scale to thin layer of samples (Javed 298 

et al., 2018). All SEM, TEM, and HR-TEM perform best in solid samples, usually powder, 299 

fiber, and membrane. 300 



  

 301 

4.3. Diffraction techniques 302 

One of the diffraction techniques well-known in NMs characterization is X-Ray 303 

Diffraction (XRD), which provides data on the crystallography and structure of the material, 304 

also the lattice parameter of samples (Mourdikoudis et al., 2018). Various peaks in the 2θ range 305 

show different molecules, for example, Ag nanoparticles appear at 27.81⁰, 32.16⁰, 38.12⁰, 44.3⁰, 306 

46.21⁰, 54.83⁰, 57.39⁰, 64.42⁰, and 77.45⁰ (Meng, 2015); while TiO2 nanoparticles show peaks 307 

at 25.23⁰, 37.71⁰, 47.72⁰, and 62.54⁰ (Toro et al., 2020). XRD performs well in solid, dry, and 308 

homogeneous materials. However, for suspension of NMs, measurement of hydrodynamic 309 

diameter could be conducted by Dynamic Light Scattering (DLS). Liquid NMs with high 310 

viscosity, such as liposomes (Zong et al., 2022), polymeric micelles (Ghezzi et al., 2021), nano 311 

gels (Ahmed et al., 2020; Pourjavadi et al., 2020), and microemulsion (Gunarto et al., 2020) 312 

are required for dilution to have an accurate measurement. 313 

 314 

5. Challenges and limitations 315 

The NMs are produced from various sources of microbes and have been developed rapidly 316 

since the 21st century. Over the years, different methods, sources, and analyses have been 317 

carried out and resulted in different types of NMs based on their structure and sizes. However, 318 

obtaining homogeneous NMs with the same methods and type of microbe is still challenging 319 

due to the unpredictable growth and ability of the microbes. Therefore, more experiments are 320 

essential in determining and observing the microorganism in NMs systems. Purification steps 321 

of NMs by either intra or extracellular are considered expensive on an industrial scale as the 322 

process requires advanced equipment like nanofiltration to enhance the purity of NMs. Another 323 

limitation in NMs microbially-synthesized is an insufficient yield. However, the discovery of 324 

a cost-effective NMs biosynthesis alternative can be carried out by utilizing waste materials. 325 



  

 326 

6. Conclusions and future outlook 327 

In this chapter, green and sustainable approaches of microbially-synthesized nanomaterials 328 

was summarized, as well as the intra-extracellular mechanisms and purification methods of 329 

NMs. Nanomaterials are synthesized by several types of microbes, such as bacteria, fungi, yeast, 330 

and algae. Several researchers are manipulating the DNA of microbes to improve the yield of 331 

NMs. In addition, the combination of synthesis mechanism, intra-extracellular in a system is 332 

likely to produce a higher amount of nanomaterial. However, it required an established and 333 

complete process of purification for industrial production. On the other hand, utilization of 334 

NMs specifically in medical applications is possibly over-absorbed due to their tiny size and 335 

excellent efficient absorption towards the human body.  336 

 337 
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