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Abstract

A linear system over the symmetrized max plus algebra has form
A® xVbh with V as a balance relation. The linear system is called
the linear balance systems. This paper describes the necessary and
sufficient condition of a solution of the linear balance systems with a
matrix X that satisfies 4 & X ® AVA We obtain that if )X is any
matrix satisfying 4 ® X & AVA, then 4 ® xVh has a solution if and
only if 4 ® X ®bVh, in which case the most general solution is

x=X@bB(ES X @A)®h, where h is arbitrary and A4 e
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1. Introduction

Each element in R, does not have an inverse of the @, so it cannot be

defined as a determinant on max plus algebra. Whereas, every element in the
symmetrized max plus algebra has an inverse to @, so it can be defined as a
determinant which can then be used in determining the solution of a linear
system over the symmetrized max plus algebra, especially for a square

matrix.

In the max plus algebra R, there is a linear equation system one of
which is in the form 4 ® x = b, Farlow [3] stated that the greatest
subsolution of linear system 4 ® x = b 1s the largest vector x such that
A® x < b denoted by x"(4, b). The greatest subsolution is not necessarily
a solution of 4 ® x = b, so that the linear system does not necessarily have
solution. Therefore, the greatest sub solution is not a sufficient condition for
the solution of linear system over the max plus algebra.

With the limitations in R, which does not have an inverse element in @,

so R, extended into the set S that divided into three parts, they are S&), S(.",

and S°. Thus, the linear system over the symmetrized max plus algebra does
not have the equation form but the balance form. Therefore, the linear
systems over S has the form 4 ® xVb with 4 € M,,,,(S), b€ M,.4(S),

xeM,,, and V as a balance relation. Furthermore, the linear system is

called the linear balance systems. The purpose of this paper is to determine
the condition of a solution of the linear balance systems with a matrix X that
satisfies 4 ®@ X ® AVA.

2. The Symmetrized Max Plus Algebra

Let R denote the set of all real numbers and R, = R U {&} with
g:=—oo as the null element and e:=0 as the unit element. For all

a, b € R, the operations @ and ® are defined as follows:
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a@®b=max(a,b)and a®b=a+b
and then, (R, @, ®) is called the max plus algebra.

Definition 2.1 [2,4]. Let u = (x, ¥), v = (w, z) € RsA

(1) Two unary operators © and (.)° are defined as follows:

ou=(y,x)and u* = u @ (cu).
(2) An element u is called balances with v, denoted by uVv, if

x@z=yDdw
(3) A relation B is defined as follows:

L, VIV(w, z), if x # dw# z,
(x, y)B(MJ, Z) lf{(x y) (“ I x yand w

(x, ¥) = (w, z), otherwise.
Because B is an equivalence relation, we have the set of factor

S= RE/B and the system (S, ®, ®) is called the symmetrized max plus
ebra, with the operations of addition and multiplication on S are defined

as follows:

(a, )@ (c,d)=(aDc, bDd),

(a,b)B(c.d)=(a®cBb®d,a®d Bb®c)

for (a, b), (¢, d) € S. The system (S, @, @) is a semiring, because (S, @)
is associative, (S, ®) is associative, and (S, @, ®) satisfies both the left and
right distributive.

Lemma 2.2 [2]. Let (S, ®, ®) be the symmetrized max plus algebra.

Then the following statements hold:

(1) (8, ®, ®) is commutative,

(2) an element (g, €) is a null element and an absorbent element,
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(3) an element (e, €) is a unit element,
(4) (8, ®, ®) is an additively idempotent.

The system S is divided into three classes, they are:

(1) 8% = {(.'B,e)h‘ eR,} with (7, &) = {(t, x) e R2|x < 1},

(2) 87 = {{& )|t & Ry} with (&, 1) = {(x, 1) e R |x < 1},

(3) 8* = {(t. 0)|1 By} with (1, 1) = {(1, 1) € BZ}.

Because S® isomorphic with R, so it will be shown that for a € R, can

be expressed by (a, £) € S®. Furthermore, we have:

(1) @ = (a, €) with (a, €) € s®,

(2) ©a = Aa, €) = S(a, €) = (g, a) with (g, a) € s°,

(3) a® =aca =(a, £)o(a, €) = (a, &) D(&, a) = (a, a) € S*.
e

Let S be the symmetrized max plus algebra, a positive integer n and

M, (S) be the set of all nx n matrices over S. The n x n zero matrix over

S is €, with (g,); =& and an n>xn identity matrix over § is £, with

e if i = J, : o
[E”]ii = The properties of balance relation, i.e., the operator V,

g if i # J.
are given in the following lemma.

Lemma 2.3 [1,2]. (1) Va, b, c € S, a© Vb < aVb @ ¢,

(2) Va, b e S®PUS", aVb = a = b,

(3) Let AeM,(S). The homogeneous linear balance systems
A ® xVe,. has a nontrivial solution in s® or §° if and only if det( A)Ve.

3. The Main Result

In this section, we indicate how a technique that is used to obtain the
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necessary and sufficient condition for an existence of a general solution of a
non homogeneous linear balance systems for matrix X that satisfies
A® X ® AVA. It will be shown how to construct the set of all matrices X
such that 4 ® X ® AVA. The construction of the matrix X such that
A® X ® AVA for an arbitrary 4 € M,,,.,(S) is simplified by transforming

A into a sequence elementary row and column operations, as shown in the
following theorem. The following theorems establish the existence of the
matrix X such that 4 ® X ® 4V4 and its applications in solving equations.

Theorem 3.1. Let A € M, ,(S) with rankg(A4) =r. An nxm matrix
X satisfies A® X ® AVA ifand only if

(1)
_ E. ¢
AVo® ® P
€ D
for D e M(H—}'}X(HI—}'}(S)'! P e My (S)and Q € M, (S) with P, Q are
product of the elementary matrices that satisfv

(2)

E. =
PR®A®QV .
E €

Proof. (<) Rewriting (2) as
-1 E i
AVP® ®[ r 8] ® 0%
E €

it is easily verified that any X given by (1) satisfies

®_1 E}, £ .®_1 i E}, £
A0 X® AVP® ® ®0% ®0
£ £ £

—1 E. —1
® P® P® @[ ’ E]®Q® A
& &
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1 il
Hence, A® X ® AVP® ®[ ro 8

-1
]@Q@’ VA (=) Let ARX ®
E &

AV A. Then,both 4 ® X and X ® 4 satisfy

ARX@ARXVAR®Y and X ® AR X ® AVX ® A

A® X and X ® A4 have the same rank as 4. Thus, both 4 ® X and X ® A4

E. ¢
are of the form [ ! ] Therefore, there exists nonsingular R such that
£ €
€

iy E,
R'®4® X®RY
£ £

-1 E}, &
and 0'® X® 4A®QV A
€ €

Thus, '@ AQQOVR ' ® A X ® A® X ® A® Q. Hence,

-1 ) E}v & -1 ) E}, £
R'®4®0v ®RI®4®0® A
£ £

& &

It follows that B! ® 4 ® Q is of the form

-1 C‘ & C‘ & -1
R'® 4@ 0V & AVR® ® 0
E € E €
+—1
with rankg(C) = rankg(A4). Let P = [C 8] ® R~ Then
€ €

-1 c E C
¢ EJ@R_'@)R@[ E]@Q"@QV[ ‘ ]
£ £ t E t t

Consider the matrix Q_l ® X ® P!, We have

P@A@QV[

E,
[ ! E]Q)Q_'@X@P"'VP@A@Q@Q_ICEX@P_IA
& &

E. E.
So,[’ 8]®Q"®X®P"VP®A®X®P"V[’ &

. Furthermore,
£ € £ €

we have
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E g
Q4®X®P4®[’ ]vg*®X®P4®P®A®Q
E &
Consequently,

-1 -1 EF’ E -1 Ej,, E
olexer'le volex®i®0v A
£ t £

1

We conclude from the previous forms, that is
—1 —1 Er €
O ®BX®P 'V D

]

E,
for arbitrary D. Finally, XVQ@[ ! ;]@R This completes the
>

proof. O
According to Theorem 3.1, we give the following example:

o2 1" ¢ 0
Example 3.2. Let 4 = 1 & o0}
1 0

e (1) & (-2
We have PR®A®Q=|¢ e & (-1)°|V(Eye) with P=
0 (=) & (-2

E3(1) ® E3p(0) ® Ey(-1) ® E3y(c1) ® Ey(5(-2))

£ € e € & e & g e £ =
P=lge e € |®|le e e|®@|e -1 £|®| ¢ e =
g & -1 E e e g g e Il & e
o(-2) o(-2) € >
® g e E|= g -1 o
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and
h £ & g h g g -2
0-E ®E g 0 & -l ® g 0 g
- RaA-) A Tle 6 0 & e € 0
E & & 0 £E & & 0
0 & g -2
e 0 =« -1
e 0 g
g sﬁ g 0
There is
e €& & i(-2) & >
Es e € £ -1 £
AVQO ® & PVQO ® ® PV
g E & e -2 |
£ E ¢ £ £ £

satisfies 4 ® X ® AVA.

Theorem 3.3. Let Ae M, (S). If X is any matrix satisfving
A® X ® AVA, then A ® xVb has a solution if and only if A ® X ® bVb,
in which case the most general solutionis x =X @b D (E O X @ 4) @ h,

where h is arbitrary.
Proof.
AR x=AR[X®bB(EC X ® A)® h]
=ARXPhDARECXRA)®h
=(4®X ®)EBA @hO(A®X®@A)®hVhD 4
®ho AR IWb® (4® h)".

Because we have (4 ® h)* Ve, we conclude that 4 ® xVb. O
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Corollary 3.4. If X is any matrix satisfying 4@ X ® AVA, then
A® xVe has a solution if and only if the most general solution is
x=(E O X ®A4)® h, where his arbitrary.

Proof. AQx=A®EOCXPA)Oh=ARhO ARXR®A®h=
A®h o A® h Because A®h © A®h=(4A®h)" and (4 ® h)"Ve, we
conclude that 4 ® xVe. O
aC®y

v

general solution from the linear balance systems A ® xVe, if and only if X

Corollary 3.5. Vector xV[ ], where vy is arbitrary, is the

E, €
that has [ ! D] & P form where D is arbitrary, is any matrix satisfying
€

) &1 E. C
AR X ® AVA, which AVP ® .
£ £

Proof. According to Corollary 3.4, we have

]

-1 E. C
@[;ﬁ @[ ! m ® h.
£ £
Furthermore, we obtain

ool 5ot Goulrelt or

E, € h, )
If we take E = and h = , then we obtain that x can be
€ m-r 1

x=(Ec X ®A) @W[E o [[E" ;] ® P]

m-r

presented as the following form:

[[E}, £ ] ) [E}, (JH [ h, ]
xV o ® .
€ EHT—!' € € ;IHT—!'
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A acC h, aoC® h,_,
Hence, xV[F E- ] ® [)’ L ]V[ i / m—t ] We now conclude that
£ h h

m-r m-r m-r

oC® . . . .
xV[ y]’ where y is arbitrary, is the solution of 4 ® xVe. O
v
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