BABI

PENDAHULUAN

I.1 Latar Belakang

Jumlah penduduk di Indonesia terus meningkat seiring bertambahnya tahun. Jumlah penduduk di Indonesia pada tahun 2021 mencapai 273.879.750 jiwa, (Direktorat Jenderal Dukcapil, 2021). Semakin bertambahnya jumlah penduduk di Indonesia berdampak pada peningkatan konsumsi bahan bakar, salah satunya adalah LPG atau *Liquified Petroleum Gas*. Kebutuhan LPG yang semakin meningkat menyebabkan kemampuan untuk memenuhi kebutuhan LPG di Indonesia menjadi kurang. Oleh karena itu dibutuhkan pasokan LPG dari luar negeri dimana jumlahnya semakin meningkat pada tahun 2021, sedangkan produksi LPG di Indonesia cenderung menurun seiring bertambahnya tahun. Oleh karena itu, perlu dilakukan upaya untuk pembuatan bahan bakar lain sebagai alternatif, guna memenuhi kebutuhan bahan bakar di Indonesia, salah satunya menggunakan dimetil eter (DME). Dimetil eter (DME) merupakan bahan bakar alternatif yang telah direncanakan sejak tahun 2010 oleh Kementerian Energi dan Sumber Daya Mineral (Kementerian Energi dan Sumber Daya Mineral (Mementerian Energi dan Sumber Daya Mineral pabrik DME memiliki keuntungan tinggi dari segi ekonomi.

Dimetil eter (DME) merupakan senyawa organik dengan rumus kimia CH₃OCH₃ yang dapat dihasilkan dari gas bumi, hasil olahan dan hidrokarbon, hasil olahan biasanya digunakan sebagai bahan pendorong aerosol dan sebagai reagen. Selain dapat dimanfaatkan di industri dan transportasi serta pembangkit listrik sebagai substitusi minyak solar, juga sebagai bahan bakar di sektor rumah tangga, komersial dan industri yang saat ini sebagian besar diimpor (Mohamad, 2010). Sifat dari DME yang mudah dicairkan menjadikan DME mudah untuk disimpan dan dipindahkan. DME dapat diproduksi dengan satu tahap proses yaitu dengan *synthetic gas*, bahan baku dari pembuatan *synthetic gas* dapat menggunakan batu bara dan proses Absorber digunakan untuk menghilangakan kadar CO₂ didalam *syngas*. Ketersediaan batu bara

di Indonesia sangat melimpah, menurut Kementerian Energi dan Sumber Daya Mineral (ESDM), jumlah cadangan batu bara di Indonesia yaitu 14,9 miliar ton di wilayah Kalimantan, 11,2 miliar ton berada di Sumatera dan Sulawesi berkisar 0,12 juta ton. Jumlah batu bara yang sangat melimpah di Indonesia dapat diolah salah satunya menjadi produk DME. Hasil dari gas buang dari proses pembentukan akan dihilangakan dengan menggunakan *gas flare* untuk mengurangi hasil samping berupa gas beracum seperti H₂S dan CO (Insinyoer, 2014), sehingga unuk reaksi dari hasil pembakaran dari gas flare sebagai berikut:

$$CO + O_2 \rightarrow CO_2$$

 $H_2S + O_2 \rightarrow H_2O + SO_2$

Produk dan sebagai bahan bakar pembakit tenaga listrik hingga bahan bakar industri.DME ini bisa dimanfaatkan untuk menggantikan sebagaian kebutuhan LPG di Indonesia. Pabrik DME itu sendiri telah didirikan oleh PTBA-Pertamina mulai 26 januari 2022 dengan kapasitas 1,4 juta DME per tahun (Mulia, 2022), sehingga dengan adanya pabrik DME di Indonesia dapat menekan import LPG sebesar: 46%.

I.2 Sifat-Sifat Bahan Baku dan Produk

I.2.1 Batu Bara

Batu bara merupakan batuan yang terbentuk karena adanya dekomposisi tumbuhan yang sudah mati dan tersedimentasi selanjutnya berubah bentuk akibat proses fisik dan kimia yang berlangsung selama jutaan tahun (Ahsonul,2008). Batu bara yang akan digunakan sebagai bahan baku utama adalah batu bara berjenis bituminus yang dikirim langsung oleh PT. Kaltim Prima Coal.

Komponen %mol
Carbon 62,1
Hidrogen 45
Nitrogen 0,3

Tabel I-1 Komposisi batu bara

Oksigen	10
---------	----

Dari tabel diatas komponen utama yang akan digunakan sebagai penghasil syngas untuk proses pembuatan DME adalah carbon dan hidrogen, dimana carbon akan menghasilkan CO dan H₂ yang dimana merupakan bahan baku utama untuk pembuatan DME.

I.2.1.1 Gas sintetis

Gas sintesis merupakan campuran dari gas hidrogen dan karbon monoksida, sifat kimia dan fisika hidrogen dan karbon monoksida ditampilkan pada Tabel 1.2.

Tabel I-2 Karakteristik Hidrogen dan Karbon Monoksida (Airgas, 2012)

Karakteristik	Satuan	Hidrogen	Karbon Monoksida
Rumus kimia		H_2	CO
Berat molekul	Kg/Kmol	2,02	28,01
Bentuk fisik		Gas	Gas
Warna		Tidak berwarna	Tidak berwarna
Bau		Tidak berbau	Tidak berbau
Titik leleh	°C	-259,15	-211,6
Titik didih	°C	-253	-191,52
Densitas gas	kg/m ³	1,33	1,15

I.2.2 Oksigen

Oksigen pada proses ini digunakan pada proses autothermal reforming dan dapat bereaksi dengan metana pada reaksi partial oxidation. Sifat kimia dan fisika oksigen ditampilkan pada Tabel 1.3.

Tabel I-3 Karakteristik Oksigen [8]

Karakteristik	Satuan	Keterangan
Rumus kimia		O_2
Berat molekul	kg/Kmol	32
Bentuk fisik		Gas
Warna		Tidak berwarna
Bau		Tidak berbau
Titik leleh	°C	-218,4
Titik didih	°C	-183
Densitas gas	kg/m ³	1,33

I.2.3 H₂O

Air dalam bentuk steam digunakan pada proses pembuatan gasifikasi untuk. Sifat fisika dan kimia air adalah sebagai berikut:

Karakteristik Satuan Keterangan Rumus kimia H_2O Berat molekul kg/kmol 18 Bentuk fisik Cair Warna Tidak berwarna Tidak berbau Bau $^{\circ}C$ Titik leleh 0 Titik didih $^{\circ}C$ 100 Densitas kg/m^3 997

Tabel I-4 Karakteristik Air

I.2.4 Dimetil Eter

Dimetil eter (DME) merupakan senyawa eter yang paling sederhana, berbentuk gas yang tidak berwarna dengan bau eter dan larut dalam air maupun dalam minyak, tidak bersifat karsinogenik, teratogenik, mutagenik dan tidak beracun. DME mempunyai rumus molekul CH₃OCH₃.

Tabel I-5 Karakteristik DME (Mc.Ketta,198-		
1 4	G.4	TZ.

Karakteristik	Satuan	Keterangan
Berat molekul (pada 1 atm)	kg/kmol	46,069
Titik beku (pada 1 atm)	°C	-138,5
Titik didih (pada 1 atm)	°C	-24,7
Densitas (pada 20°C)	kg/L	0,67
Indeks bias, pada (-42,5°C)	-	1,3441
Panas pembakaran	kcal/mol	347,6

Panas pembentukan (gas)	cal/g	-44,3
Panas spesifik (-27,68°C)	kcal/mol C	111,64
Kelarutan dalam air (pada1atm)	%berat	34
Suhu kritis	K	400

I.2.5 MDEA (Methyl diethanolamine)

MDEA (Methyl diethanolamine) digunakan sebagai pelarut untuk proses absorpsi kimia karena sifatnya yang paling tidak korosif diatara amine lainnya. Reaksi MDEA juga tidak menghasilkan produk samping yang memiliki sifat korosif.

Karakteristik	Satuan	Keterangan
Berat molekul (pada 1 atm)	kg/kmol	119,164
Boiling point	°C	247,1
Melting point	°C	-21
Densitas (pada 20°C)	g/ml	1,038

Tabel I-6 Karakteristik MDEA (Wikipedia)

I.3 Kegunaan dan Keunggulan Produk

DME digunakan sebagai propelan atau pendorong dalam industri *consumer* product seperti sabun, krim cukur dan semprotan rambut. Secara umum DME dapat digunakan sebagai materi pendingin (refrigerant), bahan pelarut dan media reaksi kimia. Pemanfaatan DME akan menghasilkan dampak lingkungan yang rendah, pembakarannya tidak menghasilkan asam belerang (SOx), asap, mudah dicairkan dan mudah dalam penanganan, serta menghasilkan NOx dan CO yang sangat rendah (Boedoyo, 2010). Keunggulan lain DME adalah bahan bakar multi-source dan dapat diproduksi dari banyak sumber, diantaranya dari gas alam, minyak (fuel oil), batubara, limbah plastik, limbah pabrik gula, dan biomassa. Oleh karena itu DME dapat menekan kebutuhan impor LPG di Indonesia. Dengan Adanya DME maka angka impor LPG di Indonesia mengalami

penurunan, sehingga dapat menghemat cadangan alam yang ada di indonesia dan menaikkan pertumbuhan ekonomi Indonesia, dan adanya pabrik DME di Indonesia akan menambah lapangan kerja.

Keunggulan dari penggunaan DME merupakan senyawa yang dapat terurai di udara dan tidak akan merusak lapisan ozon, serta nyala api yang dihasilkan oleh DME lebih biru dan stabil. DME juga tidak menghasilkan polutan. Pembakaran DME juga lebih cepat dibandingkan dengan LPG (Kusdiana, 2020). Hasil pengujian menggunakan kompor LPG dan DME sebagai berikut:

Karakteristik	LPG	DME
Nilai Panas	12.075 Kcal/kg	7.749 Kcal/kg
Emisi	930 kg CO ₂ /tahun	745 kg CO ₂ /tahun
Nilai kalor	50,56 MJ/kg	30,5 MJ/kg
Efisiensi	53,75-59,13 %	64,7-68,9%
	, ,	, ,

Tabel I-7 Perbandingan LPG dan DME (Asmarini, 2022)

Dari tabel diatas dapat dilihat bahwa DME memiliki nilai panas yang lebih kecil dari pada LPG akan tetapi DME memilikii massa jenis yang lebih tinggi maka dalam 1liter DME = 1,1 liter LPG dan DME juga lebih sedikit menyumbang emisi CO₂ ke udara. Pengujian untuk pemakian DME 100% telah dilakukan di wilayah kota Palembang dan Muara Enim pada bulan Desember 2019-2020 kepada 155 kepala keluarga (Asmarini, 2022).

I.4 Ketersediaan Bahan Baku dan Analisis Pasar

I.4.1 Ketersediaan Bahan Baku

Indonesia merupakan negara yang memiliki cadangan batu bara sebesar 38,84 miliar ton di wilayah Kalimantan, 11,2 miliar ton berada di Sumatera dan Sulawesi berkisar 0,12

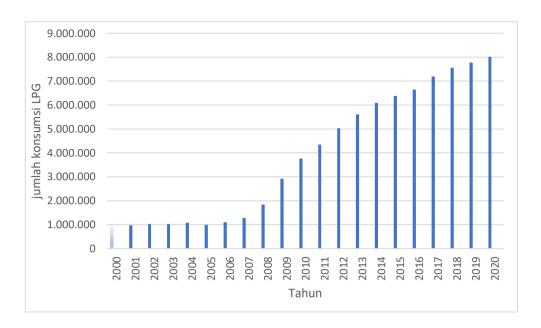
juta (Kementrian ESDM, 2021). Cadangan batu bara di Indonesia dapat dilihat pada Tabel 1.7

Provinsi	Cadangan	Provinsi	Cadangan
	(juta Ton)		(jutaTon)
Kalimantan Timur	16.075,49	Kalimantan Utara	1.641,57
Sumatera Selatan	9.507,11	Aceh	548,48
Kalimantan Selatan	4.210,5	Riau	527,92
Kalimantan Tengah	3.911,57	Bengkulu	134,3
Jambi	2.134,94	Sumatera Barat	102,46

Tabel I-8 Cadangan batu bara di Indonesia (Vika, 2021)

Pada tabel 1.7 dilihat bahwa Indonesia masih memiliki sumber daya energi yang melimpah, paling banyak berada di provinsi Kalimantan Timur dengan jumlah cadangan sebesar 16.075,49 juta Ton batu bara. Sehingga Bahan baku dapat ditinjau berdasarkan data cadangan batu bara di berbagai provinsi Kalimantan Timur memiliki jumlah batubara sehingga menjadi potensi untuk industri dalam negeri, yang telah melakukan produksi terbesar di Indonesia yaitu PT. Kaltim Prima Coal (KPC), PT. Adoro Indonesia (AI), PT Kideco Jaya Agung, PT. Arutmin Indonesia, dan PT. Berau Coal. Dari total cadangan batu bara sebesar 38.691,88 juta ton, Kalimantan memiliki cadangan batu bara setara dengan 41,42% dari total di indonesia. Karena itu pemilihan pendirian pabrik DME di Kalimantan Timur didasari oleh ketersediaan bahan baku, untuk suplai batu bara berasal dari PT. Kaltim Prima Coal (KPC) dengan kualitas prima, dikarenakan batu bara dengan kualitas prima memiliki nilai kalori yang tinggi, abu yang sangat rendah, sulfur moderat dan jumlah kelembaban yang relatif rendah.

Suplai oksigen yang digunakan untuk produksi DME pada proses pembakaran sangatlah penting, oleh karena itu berdasarkan data produksi oksigen dari PT. Samator, didapatkan bahwa PT. Samator mampu memproduksi 318,7 ribu ton oksigen setiap tahun, yang terdiri dari 143,4 ribu ton untuk industri dan 175,3 ribu ton untuk medis (Andrea,


2021). Selain itu, PT. Samator juga memiliki pabrik oksigen di kota Bontang yaitu PT. Samator Gas Industri.

I.4.2 Analisis Pasar

Dimetil eter yang telah diproduksi akan digunakan untuk mensubstitusikan penggunaan LPG, oleh karena itu untuk dapat mengetahui kebutuhan nasional akan dimetil eter dapat dilakukan dengan mengetahui kebutuhan LPG ketika pabrik didirikan nanti. Kebutuhan LPG Indonesia terus mengalami kenaikan dan data penggunaan LPG dapat dilihat pada Tabel 1.8 dan Gambar 1.1.

Tabel I-9 Konsumsi LPG di Indonesia (Kementerian ESDM, 2000-2020)

Tahun	Konsumsi (Ton)	Tahun	Konsumsi (Ton)	Tahun	Konsumsi (Ton)
2000	969.132	2007	1,081.000	2014	6.093.138
2001	971.360	2008	1.843.817	2015	6.376.990
2002	1.025.790	2009	2.922.080	2016	6.642.633
2003	1.028.360	2010	3.761.086	2017	7.190.871
2004	1.076.780	2011	4.347.465	2018	7.562.184
2005	996.000	2012	5.030.547	2019	7.777.990
2006	1.104.306	2013	5.607.430	2020	8.023.805

Gambar I-1 Grafik Konsumsi LPG di Indonesia

Peningkatan konsumsi dari LPG di Indonesia yang ditampilkan oleh Tabel 1.8 dan Gambar 1.1 tidak sebanding dengan kemampuan produksi LPG di Indonesia sebagaimana dapat dilihat pada Tabel 1.9 bahwa produksi LPG di Indonesia terus mengalami penurunan dari 2.388.193 ton pada tahun 2013 menjadi 1.921.652 ton pada tahun 2020.

	Duo dulesi	Takun	Due
Tabel	I-10 Produksi LPG	di Indonesia (Migas	s, 2009)

Tahun	Produksi LPG (Ton)	Tahun	Produksi LPG (Ton)
2013	2.388.193	2017	2.027.941
2014	2.380.862	2018	2.002.354
2015	2.307.407	2019	1.935.172
2016	2.241.567	2020	1.921.652

Kenaikan konsumsi jumlah LPG tidak didukung dengan jumlah produksi LPG di Indonesia membuat jumlah impor LPG Indonesia mengalami kenaikan dari tahun ke tahun yang dapat dilihat pada Tabel 1.10 dan Tabel 1.11. Nilai impor LPG telah mencapai lebih dari 70% dari kebutuhan nasional.

Tabel I-11 Impor LPG di Indonesia (Migas, 2009)

Tahun	Import LPG		
	(Ton)		
2013	3.299.808		
2014	3.604.009		
2015	4.237.499		
2016	4.475.929		
2017	5.461.934		
2018	5.566.572		
2019	5.714.695		
2020	6.396.962		

Tabel I-12 Data ekspor LPG di Indonesia (Migas, 2009)

Tahun	Ekspor	
	(Ton)	
2014	483	
2015	392	
2016	580	
2017	360	
2018	434	

Dengan adanya data yang telah didapat kebutuhan LPG yang harus dipenuhi akibat perbedaan pertumbuhan konsumsi dengan adanya pertumbuhan produksi dapat dilakukan dengan estimasi kebutuhan LPG dilakukan dengan menggunakan *forecast* yang berada di Excel untuk memprediksi angka produksi, konsumsi, ekspor, dan impor pada tahun 2025. Konstruksi pabrik diasumsikan dimulai awal tahun 2022 dan memakan waktu kira-kira 24 bulan, sehingga pabrik akan resmi beroperasi pada tahun 2025. Hasil dari prediksi menggunakan forecast di excel dengan memasukan data jumlah produksi yang terdapat pada tabel diatas dengan mendrek dari tahun 2013-2020 dan jumlah produksi sehingga akan didapatkan jumlah produksi pada tahun 2025, untu data konsumsi, ekspor dan impor dapat menggunakan metode forecast sehingga hasil dari metode forecast dapat dilihat pada Tabel 1.12 sebagai berikut:

Tabel I-13 Prediksi Supply dan Demand LPG di Indonesia pada Tahun 2025

	Ton				
Tahun	Produksi	Konsumsi	Ekspor	Impor	
2000	3451594,3	969.132	657,8	0	
2001	3372748,8	971.360	608,8	0	
2002	3362492,1	1.025.790	923,16	0	
2003	3254710,1	1.028.360	483,968	0	
2004	3119032	1.076.780	690,4744	0	
2005	2931589,6	996.000	654,9955	0	
2006	2937886,8	1.104.306	630,1912	62.655,92	
2007	2905909,4	1,081.000	552,0848	1.021.500,25	
2008	2892236,1	1.843.817	677,0244	1.558.214,99	
2009	2676721,7	2.922.080	566,9267	2.123.302,71	
2010	2520975,7	3.761.086	553,0386	2.589.803,50	
2011	2384931,6	4.347.465	514,8	3.460.205,65	
2012	2231142,8	5.030.547	489,56	2.851.458,21	
2013	2.388.193	5.607.430	589,288	3.299.808,00	
2014	2.380.862	6.093.138	483	3.604.009,00	
2015	2.307.407	6.376.990	392	4.237.499,00	
2016	2.241.567	6.642.633	580	4.475.929,00	
2017	2.027.941	7.190.871	360	5.461.934,00	
2018	2.002.354	7.562.184	434	5.566.572,00	
2019	1.935.172	7.777.990	410,8	5.714.695,00	
2020	1.921.652	8.023.805	402,84	6.396.962,00	
2021	1795838,8	8.583.545,75	346,472	6.837.893,79	
2022	1703275,5	9.139.620,30	373,3576	7.282.764,11	
2023	1625278,9	9.696.973,60	337,8101	7.679.632,18	
2024	1554648,6	10.794.412,18	321,6173	8.107.028,39	
2025	1.327.739	11.884.630	270,955	9.428.321	

Berdasarkan data tabel 1.12 maka kebutuhan LPG yang harus dipenuhi sebagai berikut:

Kebutuhan LPG =
$$(Ekspor + Konsumsi) - (Produksi + Impor)$$

= $(270.955 + 11.884.630) - (1.327.739 + 9.428.321)$
= $1.399.525 \text{ ton/tahun}$

Dengan demikian masih ada kebutuhan DME sebagai pengganti LPG di Indonesia yang perlu dicukupi sebesar 1.399.525 ton. Selain itu, perlu diperhatikan juga kompetitor pabrik DME lain yang telah beroperasi di Indonesia, berikut merupakan daftar pabrik DME di Indonesia:

1. PT. Bumi Tangerang Gas Industri memiliki kapasitas produksi sebesar 3.000 n/tahun (Priyanto, 2011).

2. PT. Pertamina dan KOGAS (Korean Gas Company) akan membangun *plant* DME di Tangerang dengan bahan baku metanol dengan kapasitas produksi 50.000 ton/tahun (Ally, 2019).

Dari peluang kebutuhan DME tahun 2025 sebesar 1.399.525 ton/ tahun kami merencanakan pendirian pabrik untuk memenuhi sekitar 5% saja, karena kapasitas produksi 5% ini setara dengan pabrik DME yang diproduksi komersial di jepang dengan kapasitas 80.000 Ton/Tahun.Dengan demikian jika pabrik beroperasi dengan waktu 330 hari/tahun dan 24 jam/hari maka kapasitas produksi DME sebagai berikut:

Kapasitas produksi pabrik DME $= 5\% \times 1.399.525$

= 70.000 ton/tahun

= 212 ton/hari