T) turnitin Originality Report

Highly efficient degradation of organic pollutant mixtures by a Fe by Shella Santoso

From Similarity check (check paper Jakad SPS)

Processed on 01-Mar-2022 11:46 WIB ID: 1773590848 Word Count: 10383

Similarity by Source Similarity Index Internet Sources: Publications: 6% Student Papers:

N/A 6% N/A

1% match (publications)

1 Valentino Bervia Lunardi, Fransiska Gunawan, Felycia Edi Soetaredjo, Shella Permatasari Santoso et al. "Efficient One-Step Conversion of a Low-Grade Vegetable Oil to Biodiesel over a Zinc Carboxylate Metal-Organic Framework", ACS Omega, 2021

sources:

2 Valentino Bervia Lunardi, Felycia Edi Soetaredjo, Kuncoro Foe, Jindrayani Nyoo Putro et al. "Pesticide elimination through adsorption by metal-organic framework and their modified forms", Environmental Nanotechnology, Monitoring & Management, 2022

1% match (publications)

3 Xinxin Yue, Weilin Guo, Xianghui Li, Xiaomei Gao, Guangyou Zhang, "Preparation of Efficient BiOBr/MIL-88B(Fe) Composites with Enhanced Photocatalytic Activities", Water Environment Research, 2017

< 1% match (publications)

4 Shella Permatasari Santoso, Artik Elisa Angkawijaya, Vania Bundjaja, Alfin Kurniawan et al. "Investigation of the influence of crosslinking activation methods on the physicochemical and Cu(II) adsorption characteristics of cellulose hydrogels", Journal of Environmental Chemical Engineering, 2022

5

6

7

8

< 1% match (publications)

Cong Gao, Yan Su, Xie Quan, Virender K. Sharma, Shuo Chen, Hongtao Yu, Yaobin Zhang, Junfeng Niu. "Electronic modulation of iron-bearing heterogeneous catalysts to accelerate Fe(III)/Fe(II) redox cycle for highly efficient Fenton-like catalysis", Applied Catalysis B: Environmental, 2020

< 1% match (publications)

Shella Permatasari Santoso, Artik Elisa Angkawijaya, Maria Yuliana, Vania Bundjaja et al. 'Saponin-intercalated organoclays for adsorptive removal of β-carotene: Equilibrium, reusability, and phytotoxicity assessment", Journal of the Taiwan Institute of Chemical Engineers, <u>2020</u>

< 1% match (publications)

Xiao, Yuanlong, Xiangyu Guo, Hongliang Huang, Qingyuan Yang, Aisheng Huang, and Chongli Zhong. "Synthesis of MIL-88B(Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity", RSC Advances, 2014.

< 1% match (publications)

Niyaz Mohammad Mahmoodi, Jafar Abdi, Mohsen Taghizadeh, Ali Taghizadeh et al. "Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye

degradation mathematical modeling from wastewater by least squares support vector machine", Journal of Environmental Management, 2019

9

< 1% match (publications)

Xiaojing Hou, Xiaopeng Huang, Falong Jia, Zhihui Ai, Jincai Zhao, Lizhi Zhang. "Hydroxylamine Promoted Goethite Surface Fenton Degradation of Organic Pollutants", Environmental Science & Technology, 2017

< 1% match (publications) 10

Xuning Li, Xiang Huang, Shibo Xi, Shu Miao et al. "Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis", Journal of the American Chemical Society, 2018

< 1% match (publications)

11 Cong Gao, Shuo Chen, Xie Quan, Hongtao Yu, Yaobin Zhang. "Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants", Journal of Catalysis, 2017

< 1% match (publications)

Inderjeet Khatri, Anurag Garg, "Use of heterogeneous activated carbon supported copper catalyst for catalytic wet oxidation of biomethanated spent wash: Reaction kinetics, catalyst stability, catalyst deactivation kinetics and biochemical methane potential", Journal of Water Process Engineering, 2021

< 1% match (publications)

13 Soenjaya, Soegiarto Adi, Nova Handoyo, Felycia Edi Soetaredjo, Artik Elisa Angkawijaya, Yi-Hsu Ju, and Suryadi Ismadji. "Preparation of carbon fiber from water hyacinth liquid tar", International Journal of Industrial Chemistry, 2014.

< 1% match (publications)

Tresia Pangestu, Yosafat Kurniawan, Felycia Edi Soetaredjo, Shella Permatasari Santoso et al. "The synthesis of biodiesel using copper based metal-organic framework as a catalyst", Journal of Environmental Chemical Engineering, 2019

15

16

18

< 1% match (publications)

Carmen M. Dominguez, Nihal Oturan, Arturo Romero, Aurora Santos, Mehmet A. Oturan. "Optimization of electro-Fenton process for effective degradation of organochlorine pesticide lindane", Catalysis Today, 2018

< 1% match (publications)

Dufour, A.. "Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution", International Journal of Hydrogen Energy, 200902

17

< 1% match (publications)

Xuerui Yi, Xiaobo He, Fengxiang Yin, Tong Yang, Biaohua Chen, Guoru Li. "NH2-MIL-88B-Fe for electrocatalytic N2 fixation to NH3 with high Faradaic efficiency under ambient conditions in neutral electrolyte", Journal of Materials Science, 2020

< 1% match (publications)

Choi, Goeun, Jae-Hun Yang, Ga-Young Park, Ajayan Vinu, Ahmad Elzatahry, Chul Hyun Yo, and Jin-Ho Choy. "Intercalative Ion-Exchange Route to Amino Acid Layered Double Hydroxide Nanohybrids and Their Sorption Properties : Intercalative Ion-Exchange Route to Amino Acid LDH Nanohybrids", European Journal of Inorganic Chemistry, 2015.

< 1% match (publications)

Lai Lyu, Lili Zhang, Guangzhi He, Hong He, Chun Hu. " Selective H O conversion to hydroxyl radicals in the electron-rich area of hydroxylated C-g-C N /CuCo–Al O ", Journal of Materials Chemistry A, 2017

< 1% match (publications)

Jia Zeng, Guilin Zhou, Yongmei Ai, Ning Li, Guizhi Zhang. "Catalytic Wet Peroxide Oxidation of Chlorophenol Over a Ce0.86Cu0.14–x O2 Catalyst", International Journal of Chemical Reactor Engineering, 2013

paper text:

20

Journal of Molecular Liquids 347 (2022) 117989 Contents lists available at ScienceDirect Journal of Molecular Liquids journal homepage: www.elsevier.com/locate/molliq Highly efficient degradation of organic pollutant mixtures by a Fe(III)-based MOF-catalyzed Fenton-like process in subcritical water

14Felycia Edi Soetaredjo a,b, ft, Shella Permatasari Santoso a,b, Valentino

Bervia Lunardi a, Alfin Kurniawan a

,c,ît, Hardy Shuwanto d, Jenni Lie b, Kuncoro Foe a,

14Wenny Irawaty a, Maria Yuliana a, Jindrayani Nyoo Putro a

, Artik Elisa Angkawijaya e, Yi-Hsu Ju e, Suryadi Ismadji a,b a Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia b Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 10607, Taiwan c Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan d Department of Materials Science and Engineering, National Taiwan University of Science and Engineering, National Taiwan University of Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 10607, Taiwan C Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 10607, Taiwan e

1Graduate Institute of Applied Science, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 10607, Taiwan

article info Article history: Received 7 July 2021 Revised 25 October 2021 Accepted 26 October 2021 Available online 30 October 2021 Keywords: Fenton-like process Photoresist solvent Monoaromatic compounds Subcritical water Hydroxyl radicals Breathing MOF abstract Propylene glycol monomethyl ether acetate (PGMEA) photoresist solvent and monoaromatics are typical organic pollutants found in the wastewater discharged from semiconductor manufacturing processes. Conventional treatment technologies, however, remain mostly ineffective to eliminate these pollutants from aqueous streams. Herein, we developed a novel strategy for highly efficient degradation of PGMEA and archetypal monoaromatics (i.e., benzene, toluene, xylene, phenol, and cresol) in aqueous solution by heterogeneous Fenton-like process with a flexible Fe-MOF (MIL-88B) under mild subcritical water (SCW) condition (100 °C). The as-synthesized MIL-88B(Fe) microbipyramids possess large pore channels (32 nm) and open iron sites. The results showed that the SCW-mediated heterogeneous Fenton-like process at 100 °C with an optimal catalyst loading of 1 wt% exhibited a remarkable degrada- tion performance toward target organic pollutants in a multicomponent system, affording a 92% total organic carbon (TOC) removal in 60 min. This mineralization efficiency was found to be notably superior to those of traditional homogeneous Fenton (FeSO4/H2O2; 54%) and Fenton-SCW (60%) processes. The practicability of this approach was demonstrated using real world water samples (i.e., river water, fish- pond water, and wastewater) with >80% TOC removal efficiency. This study showed that the heteroge- neous Fenton-like process utilizing an inexpensive, nontoxic, and reusable MIL-88B(Fe) MOF under mild SCW conditions is a promising strategy for treating semiconductor waste effluents and environmen- tal water matrices containing toxic recalcitrant organics in an eco-friendly and efficient manner. Ó 2021 Elsevier B.V. All rights reserved. 1. Introduction Semiconductor manufacturing industries have been a leading figure in the development of advanced microchips that power many portable consumer electronics, such as smartphones, laptops, tablets, and other wearable computing devices. Over the coming half-decade, the global semiconductor market is projected to grow with a compound annual growth rate (CAGR) of 3.4% [37], driven by greater demand for advanced consumer and automotive electronics platforms, alongside the emerging digital technologies \hat{r} Corresponding authors at:

13Department of Chemical Engineering, Widya Man- dala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia. E-mail addresses: felyciae@yahoo.com (F.E

. Soetaredjo), alfin_kur@yahoo.com (A. Kurniawan).

4https://doi.org/10.1016/j.molliq.2021

.117989 0167-7322/Ó 2021 Elsevier B.V. All rights reserved. including artificial intelligence, 5G, and the Internet of Things. Despite its crucial importance to modern electronics, the discharge of wastewater effluents from semiconductor processing operations to freshwater ecosystems poses significant concerns to human health and the environment. In this regard, semiconductor manu-facturing effluents typically consist of a complex mixture of organic solvents, heavy metals, acids, bases, additives, and other compounds that are generated during the surface cleaning and rinsing operations [4,16,15,56]. Among those organic solvents, propylene glycol monomethyl ether acetate (PGMEA) is routinely used as the carrier solvent in the photoresist processing of semi- conductor chips, due to its excellent thermal stability, biodegrad- ability, low surface tension, and high miscibility with water and most organic solvents [47,53]. Despite its low bioconcentration potential and systemic toxicity toward aquatic organisms [40], the release of large amounts of PGMEA and its degradation prod- ucts into the environment may still pose a threat to both human health and the environment. For instance, the repeated exposures of PGMEA to animals and humans via dietary or inhalation can cause depression of the central nervous system and induces hep- atic dysfunction [6] (Huang and Wu, 2019), as well as some disor- ders in the kidney and renal systems for the chronic effect (Huang and Wu, 2019). In addition, the photochemical and thermal decomposition of photoresists during the photolithographic pro- cess can generate toxic and carcinogenic aromatic compounds, such as benzene, toluene, xylene, phenol, and cresol (Huang and Wu 2009) [32]. The presence of these monoaromatic pollutants in water bodies (even at low concentration levels) has been associ- ated with numerous adverse health effects on the aquatic species and humans [28]. Due to the relatively high water solubility of PGMEA (160 g/L [40] and monoaromatic compounds, these organic pollutants are likely to be present in semiconductor effluents and can persist in aquatic environments at high concentrations if left without remediation. Conventional technologies to remove PGMEA and archetypal monoaromatic compounds from water and wastewater, such as coagulation-precipitation, bioremediation, and membrane pro- cesses have several disadvantages including low removal effi- ciency, energy intensive, and the production of large quantities of toxic chemical sludge. On the other hand, the advanced oxidation processes (AOPs) based on Fenton and Fenton-like reactions have shown great promise in the degradation of toxic and refractory contaminants in aqueous waste streams [3,9,39,54] (Yu et al., 2014). The central importance of Fenton and Fenton-like AOPs lies in the efficient generation of highly reactive and strongly oxidizing hydroxyl radicals

(HO) from the decomposition of hydrogen per- oxide (H2O2) mediated by transition metal ions (most notably Fe2+ and Cu+) or solid catalysts. In recent years, numerous hetero- geneous Fenton-like catalysts, ranging from iron oxychloride [51] and supported single Fe atoms [52] to hybrid nanocomposites [24,29,50], have been investigated with respect to their activity and durability toward H2O2 activation to generate HO radicals. Iron-based metal-organic frameworks (Fe-MOFs) are promising platforms for promoting Fentonlike and other catalytic reactions [10,22,42,45,46], due to their high internal surface areas and poros- ity, excellent visible light absorption, robust thermal and chemical stability, and inexpensive, nontoxic, and earthabundant metal source. In addition to these unique characteristics, the abundant and well-distributed metal centers within the porous framework, alongside open pore channels may afford significant benefit for the adsorption of quest species and subsequent reactions on these catalytic active sites with none-to-little mass transport limitations, thus presenting an unique attribute from which most traditional rigid porous catalysts suffer. While there have been several reports of Fe-based MOFs as cat- alysts for Fenton-like catalytic oxidation of aqueous pollutants, most of these studies are limited to the degradation of organic dyes and other simple molecules in the single component system (see SI, Table S1). In fact, study of the MOFcatalyzed Fenton-like degra- dation of organic pollutants in multicomponent aqueous mixtures, which are the more typical scenario in real-world environments, remains so far unexplored. In this study, we demonstrated for the first time that the heterogeneous Fenton-like process using a flexible MIL-88B(Fe) microcrystals (MIL stands for Materials from Institut Lavoisier) in subcritical water (SCW) can lead to a highly efficient degradation of PGMEA and monoaromatic

16compounds (i.e., benzene, toluene, xylene, phenol, and cresol

) from their aque- ous mixtures, leading to an outstanding TOC removal efficiency of >90% within 60 min treatment. The widely tunable physical properties of SCW have enabled its utilization as an environmentally benign solvent and acid/base bifunctional catalyst in many applications, such as waste and biomass valorization [18,19], chemical reduction of nitroarene [41], and size-controlled synthe- sis of nanoparticles [31]. However, its intriguing role in the Fenton- like catalytic oxidation remains largely unexplored. In this context, the unique properties of SCW medium to solubilize nonpolar organic molecules and produce higher amounts of hydronium (H3O+) and hydroxide ions (OH?) in the combination of Fenton- like reaction system for the enhanced production of HO radicals.

7To the best of our knowledge, there has been no available study in the literature

demonstrating highly efficient degradation of organic pollutant mixtures associated with semiconductor manu- facturing discharge using a Fenton-like process with an iron- based breathing MOF under mild SCW conditions. Moreover, the practicability of this approach was demonstrated for the degrada- tion of target organic pollutants from real world water samples. Furthermore, the kinetic and thermodynamic activation parame- ters of Fenton and Fenton-like reactions in SCW, along with the degradation mechanism of model organic pollutants on the surface of MIL-88B(Fe) are evaluated. 2. Experimental 2.1. Materials Iron(II) sulfate heptahydrate (FeSO4 7H2O, ACS reagent, 99%), iron(III) chloride hexahydrate (FeCI3 6H2O, ACS reagent, 97%), H2O2 solution (30 wt% in H2O), terephthalic acid (TPA, C6H4(- COOH)2, 98%), PGMEA (C6H12O3, ReagentPlus, 99.5%), benzene (C6H6, ACS reagent, 99%), toluene (C6H5CH3, anhydrous, 99.8%), o-xylene (C6H4(CH3)2, anhydrous, 97%), phenol (C6H5OH, 99%), p-cresol (CH3C6H4OH, 99%), ethanol (C2H5OH, HPLC grade, 99.8%), and N,N-dimethylformamide (DMF, HPLC grade, 99%) were purchased from Sigma-Aldrich and used as received without additional treatment. Deionized (DI) water with a 18.2 MX cm?1 specific resistivity was produced from a Millipore water purifica- tion system.

82.2. Solvothermal synthesis of MIL-88B(Fe) and materials characterization The MIL-88B(Fe)[DMF] was solvothermally synthesized follow- ing the

reported procedure by Horcajada et al. [14], but without the addition of base. FeCl3 6H2O (2.7 g, 10 mmol) and TPA (1.66 g, 10 mmol) were dissolved in DMF (50 mL) under magnetic stirring and the resultant

3mixture was transferred into a 100 mL Teflon- lined stainless steel autoclave

. The molar ratio of metal:ligand:sol- vent in the reaction mixture was 1:1:646. The sealed vessel was then heated at 150 °C overnight in an oven under static conditions. Afterward, the

3autoclave was left to cool to room temperature and the resulting precipitate was collected

via vacuum filtration, fol- lowed by a multiple washing step with DI water and ethanol to remove unreacted precursors and DMF solvent molecules from the pores. The washed powders were dried in an oven at 80 °C for at least 2 h to afford an orange MIL-88B(Fe) solid. Textural characteristics of

8the as-synthesized MIL-88B(Fe) were examined by

6nitrogen physisorption isotherms at 77 K, on a Micromeritics ASAP 2010 volumetric sorption

1analyzer. Prior to sorption measurements, the sample was degassed under vacuum at 150 °C for 12 h. The

specific surface area was deter- mined from the adsorption branch of the isotherm

20using the standard Brunauer-Emmett-Teller (BET) method applied in the relative pressure range (P/P0) from 0.05 to 0

.3. The pore size dis- tribution (PSD) was analyzed by the Barrett–Joyner–Halenda the- ory (BJH) model applied to the desorption isotherm. Powder X- ray diffraction (PXRD) pattern was collected at room temperature using a Bruker D2 Phaser tabletop diffractometer equipped with a Cu Ka X-ray source (

1840 kV and 30 mA). Fourier transform infrared (FTIR) spectra were collected on a JASCO FT/IR

4100 spectrometer over the 4000–400 cm?1 region using the KBr pellet method. The morphology of the sample was examined using a FEI Inspect F50

6field-emission scanning electron micro- scope (SEM) operating at 10 kV

. 2.3. SCW-mediated Fenton and Fenton-like degradation experiments The

5catalytic performance of MIL-88B(Fe) was tested in the Fenton-like degradation of

PGMEA and several benzene derived compounds under mild SCW conditions. An aqueous mixture comprising PGMEA (500

19mg L?1), benzene (250 mg L?1), toluene (250 mg L?1), o-xylene (250 mg L?1), phenol (250 mg L?1)

), and cre- sol (250 mg L?1) was employed as the model semiconductor wastewater. Note here that the concentrations of all model pollu- tants are well below their water solubility limits except for the o-xylene (see SI, Table S2), thus ensuring the single-phase system. The pH of the synthetic wastewater solution was adjusted to 3 using an aqueous H2SO4 solution. In a typical experiment, the syn- thetic wastewater solution (100 mL) and a certain amount of cata- lyst powder (0.5–1.5 wt%) were mixed in a 150 mL borosilicate glass vial and

10**stirred for 30 min to establish the adsorption**–des- orption **equilibrium. The** mixture **was** subsequently placed in **a**

high-pressure stainless steel batch reactor equipped with Swage- lok tube fittings and tightly sealed with its closure head by M8 screws. The details of the reactor setup can be found elsewhere [11,19]. The reactor was initially pressurized to 300 psi with O2 (99.9995% purity) to maintain the liquid phase condition during the process. Subsequently, the reactor was heated to the target temperatures (i.e., 100, 120, 160, 200, and 240 °C) and held for 5 min to ensure a stable temperature. Then, 0.2 mL of H2O2 solu- tion (30%) was fed into the reactor and the reaction was main- tained for 60, 90, and 120 min. After a predetermined reaction time, the heating element was turned off and the reaction was sub- sequently quenched by immersion in a water bath. The catalyst powder was collected by filtration, washed with ethanol and water several times, and dried in an oven for further analysis. The con- centrations of total organic carbon (TOC) in the

15initial and treated wastewater solutions were measured using a Shimadzu TOC

-L ana- lyzer. Homogeneous Fenton-SCW degradation experiments were performed under the same reaction conditions using conventional Fenton reagent (1 mL) composed of FeSO4 7H2O (0.139 g, 0.5 mmol), H2O2 (0.6 mL), and DI water (9.4 mL). Note that the Fen- ton reagent solution was freshly prepared each time just before the system temperature reached a stable state and then quickly intro- duced into the reactor. Control experiments were also conducted without the addition of iron source and H2O2 to evaluate the extent of mineralization of PGMEA and model monoaromatic compounds under the SCW conditions.

73. Results and discussions 3.1. Characterizations of MIL-88B(Fe) MIL-88B(Fe

), which has a chemical formula of Fe3O[O2C-C6H4- CO2]3X nH2O (X = CI, OH), represents an archetypal metal tereph- thalate MOF with dynamic pore structure that readily undergoes an extensive and reversible structural swelling without losing either porosity or crystalline order upon the introduction of guest molecules [14,38]. In the liquid-phase adsorption, such the frame- work breathing behavior plays a crucial role in modulating both the adsorption capacity and selectivity toward a particular adsor- bate through specific guest–framework and guest–guest interac- tions. In addition, the enhancement of the catalytic activity of flexible MIL-type MOF structures can be realized through the expansion of the unit cell volume, which allows more efficient transport of the reactant molecules to the catalytic sites. For exam- ple, Gao and co-workers (2013) reported higher Fenton-like cat- alytic activity of flexible

11MIL-88B(Fe) than the rigid MIL-101(Fe

) for phenol degradation, which could be attributed to the greater accessibility of coordinatively unsaturated iron sites to H2O2 mole- cules. Nivetha et al. [30] showed that the hydrated MIL-53(Fe) with an enlarged pore size and higher BET surface area exhibits superior catalytic performance toward electrocatalytic H2 evolution and vis- ible light photodegradation, implying that the MIL-53(Fe) with an open pore structure is required for the enhanced performance in adsorption and catalysis. The N2 adsorption–desorption curves at 77 K

11 of the as- synthesized MIL-88B(Fe

) are shown in Fig. 1a, which resemble a type II isotherm shape following IUPAC classification [43]. As can be seen in the isotherm curve, the insignificant N2 uptake at low relative pressure (P/P0 < 0.01), together with the absence of an inflection point at P/P0 0.1 indicates the restricted adsorption of N2 molecules in very narrow micropores, in agreement with the closed pore configuration of the dehydrated MIL-88B(Fe) after activation by vacuum degassing [14,38]. The gradual rise of the iso- therm curve over the range 0.05 < P/P0 < 0.8 could be attributed to the multilayer adsorption in small mesopores. Furthermore, a sig- nificant N2 uptake without reaching the saturation point at high P/ P0 (0.8–1.0), along with the

10inflection "knee" at 0.45-0.50P/P0 in the desorption

curve, suggests the existence of large mesopores and/or macropores within the MIL-88B(Fe) structure [35]. The pre- dominant mesoporous nature of the as-synthesized MOF material is further confirmed by the BJH PSD curve (Fig. 1a, inset), which reveals a bimodal pore size distribution centered at 3.8 and 32.5 nm. The BET specific surface area and total pore volume (mea- sured at P/P0 0.994) of the MIL-88B(Fe) are calculated to be 22.1

1m2 g ?1 and 0.08 cm3 g?1, respectively

, which correspond well with lit- erature reported values for dry closed pore form of this material [14]. The PXRD pattern of the resultant MIL-88B(Fe) is depicted in Fig. 1b, showing the highly crystalline nature of the sample. An excellent match in the Bragg reflection positions between the experimental and simulation from the single crystal data [25] implies the successful formation of the

3MIL-88B(Fe) phase in the MOF product. The

intense Bragg reflections located at 2h = 9.69°, 12.86°, 19.11°, 22.23°, and 28.17° can be assigned to the lattice ? spacings of the hexagonal space group (P 6 2c) of MIL-88B(Fe),

1which is in good agreement with previous studies [25,38]. The SEM images of

MIL-88B(Fe) microcrystals

4are displayed in Fig. 1c. As can be seen in this figure, the

resultant MOF material exhibits a truncated octahedral bipyramidal morphology with well-defined edges, tips, and a relatively smooth surface. The aspect ratio (i.e., length-to-width) of the resultant

3MIL-88B(Fe) bipyramids is calculated to be 1

.92 ± 0.11, while the measured par- ticle sizes range between 5 and 9 lm in length, showing a quite monodisperse size distribution (Fig. 1d). The corresponding energy dispersive X-ray spectroscopic (EDS) analysis of MIL-88B(Fe) bipyramidal microcrystals (Fig. 1c right side and Figure S1) con- firmed the presence of Fe, O, and C elements, along with a small quantity of chloride (3.3 at%) as the coordinating counterion in the octahedral iron trimer. The successful formation of MIL-88B (Fe) was also evidenced by FTIR spectroscopy (see SI, Figure S2), showing the vibrational features of asymmetric (vas) and symmetric (vs) COO stretching modes at 1600 and 1392 cm?1, respectively and the Fe–O stretching vibration of FeO6 octahedra at 548 cm?1.

4These assignments are in good agreement with the

literature data [12]. Fig. 1. Characterizations of the as-synthesized MIL-88B(Fe) MOF. (a) Nitrogen adsorption (black

and the corresponding BJH pore size distribution curve from the desorption isotherm (inset). (b) Experimental PXRD pattern and comparison with the positions of the Bragg reflections in the calculated patterns, where red, blue, and green tick marks represent MIL-88B(Fe), MIL-53(Fe), and MIL-101(Fe) phases, respectively. Inset: XRD pattern of ditopic TPA linker. (c) SEM image of MIL-88B(Fe) bipyramids and the inset shows a magnified view of individual particles (scale bar: 1 lm). Right: the corresponding EDS elemental maps of Fe, O, and C. (d) histogram showing the size distribution of MIL-88B(Fe) bipyramidal particles determined from Fiji-ImageJ software. Inset is the corresponding geometric model. The measured particle size (7.6 ± 0.8 lm) corresponds to the average length (L) of bipyramids and the solid blue line represents the best fit with a Gaussian model (R2 = 0.96). 3.2. Catalytic degradation performance 3.2.1. Conventional Fenton process The conventional Fenton reaction between Fe2+ and H2O2 remains one of the most important catalytic oxidation reactions in AOPs, due to its universal applicability to eliminate various toxic recalcitrant organic substances in a simpe and efficient manner. To achieve maximum degradation

efficiency, a set of operating parameters needs to be carefully considered, such as pH condition, the concentrations of Fenton's reagent (Fe2+ and H2O2) and dis- solved oxygen, and temperature [8] (Zazo et al., 2011). The adjusted

15pH of the synthetic wastewater solution was adjusted to 3

where maximum HO radical formation occurred [51] and the reaction was performed under aerial O2 saturation conditions. In addition, low pH conditions also mimic the actual condition of semiconductor wastewater [2]. The treatment performance of conventional Fenton process at various temperatures toward oxidative degradation of PGMEA and model monoaromatic compounds, as measured in terms of TOC removal, is presented in Fig. 2a. The results demonstrate that the TOC removal rate is fairly rapid over the first 60 min, after which it slows down and eventually plateaued after 120 min, regardless of the reaction temperature. Within 60 min, the TOC removal efficiency reached 54.7%, 60.4%, and 62.3% at 30, 35, and 40 °C, respectively. Further prolonging the reaction time to 120 min led to only a marginal increase in the TOC removal to 62.3%, 66.9%, and 68.9%. This two-stage degradation behavior implies that the formation of HO radicals from catalytic decompo- sition of H2O2 (ferrous step, see Eq. (1)) predominant takes place within 60 min until both the Fe2+ and H2O2 concentrations in the solution became depleted, thus retarding the HO generation rate. In the second stage, the degradation rate is mainly governed by the regeneration of Fe2+ from Fe3+ (Eq. (2)), which proved to be a much slower reaction with a second-order rate constant 4 orders of magnitude smaller than that of kinetically fast ferrous step (Duesterberg and Mylon, 2008). Fe2b + H2O2 ! Fe3b + HO + OH? õ1b Fe3b + H2O2 ! Fe2b + HOO /O2 + Hb? õ2b The first- and second-order kinetic models are employed to describe the TOC removal kinetics of the Fenton process, as shown in Figure S3. Judged by the R-squared (R2) values, the second-order model provides a better fit of the kinetic data, where the rate con- stant (k2) increases from 1.4 10?2

9M?1 min?1 at 30 °C

to 2.3 10?2

9M?1 min?1 at 40 °C

(see SI, Table S3). This result demon- strates that the formation of HO radicals from Fe(II)-catalyzed decomposition of H2O2 is more favorable at elevated temperatures, indicating the endothermic nature of the reaction. 3.2.2. Fenton-SCW system To date, a comprehensive study on the degradation of organic pollutants by Fenton reaction under SCW conditions remains very scarce. In the present study, the mild SCW reaction environments are generated at 100, 120, 160, 200, and 240 °C under an initial 300 psi O2 to maintain the liquid state of hot water throughout the reaction. As shown in Figure S4a, the degradation efficiency Fig. 2. Kinetic profiles of the TOC removal in the synthetic wastewater solution at pH 3 by (a) conventional homogeneous Fenton, (b) homogeneous Fenton-SCW, and (c) heterogeneous Fenton-like process with MIL-88B(Fe) at a SCW temperature of 100 °C. The corresponding 2D kinetic data plots are presented in Figures S3 and S5. (d) Performance comparison of Fenton-based processes investigated in this study in terms of the TOC removal efficiency for a 60 min treatment. The concentrations of the Fe2+ and H2O2 in the homogeneous Fenton and Fenton-SCW processes are 500 IM and 5.88 mM, respectively. The synthetic wastewater solution consists of PGMEA (C0 = 500 mg L?1) and monoaromatic

16compounds (i.e., benzene, toluene, o-xylene, phenol, and cresol

; C0 = 250 mg L?1), of PGMEA and monoaromatics in the synthetic wastewater solu- tion was <60% after SCW treatment at 240 °C for 1 h. This mineral- ization efficiency was found to be comparable to that of conventional Fenton reaction performed at ambient temperature for 2 h (see the red spheres in Fig. 2a). thus suggesting the potential of SCW as a green and sustainable medium for the degradation of recalcitrant organic pollutants. The addition of Fenton's reagent (500 IM Fe2+ and 5.88 mM H2O2) into the greatly enhances the degradation efficiency with nearly 90% reduction in TOC after 60 min. As shown in Figure S4b, longer treatment times of 90 and 120 min afford only a slight enhancement (<5%) in the TOC removal. Thus, 60 min was considered the optimal treatment time for the SCW-mediated homogeneous Fenton and heterogeneous Fenton-like degradation systems in this work. The TOC removal profiles of homogeneous Fenton-SCW system (Fig. 2b) exhibits a distinctly different time-dependent behavior from low temperature Fenton process shown in Fig. 2a. In the for- mer case, the TOC reduction proceeds rapidly within the first 10 min of the reaction, affording TOC removal efficiencies of 52.4%, 60.1%, and 73.4% at 160, 200, and 240 °C, respectively. How- ever, after 10 min of treatment, the TOC removal rate increased slowly until reaching a plateau around 50-60 min. These results indicate that the Fenton oxidation process, i.e., the ferrous step (Eq. (1)) takes place the dominant at early reaction times before leveling off due to the consumption of Fe2+ and H2O2. The kinetic fitting results of the first-order, second-order, and the Behnajady- Modirshahla-Ghanbary (BMG) models [5] toward the TOC removal kinetics are presented in Figure S5. As shown in this figure, the TOC removal profiles of Fenton-SCW at various temperatures do not fol- low first-order kinetics, as reflected by a poor fit quality with R2 values of 0.702-0.896 (Table 1). On the other hand, satisfactory correlation results are obtained with second-order (R2 = 0.915-0. 988) and the BMG (R2 = 0.998-0.999) kinetic models where the lat- ter provides the best fit to the data. From the BMG model fit, the nonlinear kinetic characteristic of the homogeneous Fenton-SCW system can be interpreted in terms of the physical meaning of the fitted parameters. The kinetic parameter 1/m, which is associ- ated with the initial removal rate [5], increases from 0.044 to 0.343 min?1 with increasing SCW temperature from 100 to 240 °C. This suggests that the SCW temperature plays an important role in promoting the production rate of radicals, which is consis- tent with the observation in Fenton system. The reciprocal values Table 1 Fitted kinetic parameters of the first-order, second-order, and BMG models for the TOC removal kinetics in homogeneous Fenton-SCW process at various temperatures. Modely Parametersy Temperature (°C) 100 120 160 200 240 First-order kinetics Ct ¼ C0expð?k1tÞ Second-order kinetics1 ? CC0t ¼ 1bk2kt2t BMG 1 ? CC0t mbnt k1 (min?1) R2 k2 (M?1 min?1) R 2 m (min) n kinit (min?1) MOCcal (%)à MOCexp (%)§ R2 0.019 0.023 0.882 0.814 0.030 0.038 0.972 0.948 22.883 14.827 1.304 1.342 0.044 0.067 76.7 74.5 59.6 63.6 0.998 0.998 0.034 0.702 0.068 0.915 6.013 1.313 0.166 76.2 71.5 0.999 0.047 0.745 0.099 0.943 4.393 1.225 0.228 81.6 77.8 0.999 0.094 0.896 0.214 0.988 2.912 1.082 0.343 92.4 89.5 0.999 y Obtained by nonlinear leastsquares fitting using SigmaPlot program. à Theoretical maximum oxidation capacity, which is equal to 1/n. § TOC removal efficiency at 60 min. of constant n corresponding to the theoretical maximum oxidation capacity (MOC) follow the same trend as reaction temperature increases from 160 to 240 °C. This can be explained by the increased ion product (KW) of water and consequently the oxidiz- ing capacity. Moreover, the MOCcal values are in good agreement with the experimental ones, indicating the suitability of the BMG kinetic model to describe the TOC disappearance kinetics of model pollutants in the homogeneous Fenton-SCW process. Compared to the homogeneous Fenton process at low tempera- tures, the enhanced

9degradation of model organic pollutants in SCW-mediated Fenton system can be ascribed to the

following fac- tors: (i) unimolecular dissociation of H2O2 under pressurized O2 atmosphere to produce HO radicals (H2O2 ? 2 HO), (ii) favorable in situ generation of H3O+ and OH? ions, (iii) the increased solubil- ity of model organic pollutants in the SCW, and (iv) higher intrinsic reaction rates provided by SCW environment. Since the H2O2 decomposition below the critical temperature of water follows Arrhenius behavior [7], increasing the SCW temperature from 100 to 240 °C leads to a faster HO generation rate and conse- quently a more efficient and higher TOC removal. In addition to the hydroxyl radical, the peroxy

radicals (HOO) could be formed via the reaction between H2O2 and dissolved oxygen [2]. As mentioned in the point (ii) above, the in situ generation of H3O+ and OH? species occurs more favorably under SCW condi- tions due to the weakening of the hydrogen bond network [36]. As a consequence, the density, dielectric constant, and the KW of liquid H2O in the temperature range of 100-240 °C are lower com- pared to those at ambient conditions (see SI, Figure S6), in which the first two properties contribute to the greater solubilizing power toward organic compounds (point (iii)). With regard to point (ii), the in situ formed hydroxide anions can react with monoaromatics via heterolytic hydroxylation [17], which results in the destabilization of the ring structure leading to the ring- opening reactions. Other possible reactions involving hydronium (H3O+) ions are the dealkylation and substitution by the carbonium mechanism [17], causing the transformation of aromatics into sim- pler molecules. These complex parallel reactions, together with H2O2mediated free radical reactions may contribute to the rapid and efficient destruction of organic pollutants in the homogeneous SCW-Fenton process. As expected, the degradation performance (%TOC removal) of only SCW treatment is worse than that of Fenton-SCW under the same conditions, which could be ascribed to the absence of H2O2 free radical mechanisms. The oxidative degradation of substituted benzene molecules during SCW treatment might proceed via a het- erolytic ring-opening pathway involving electrophilic aromatic substitution of the hydroxyl group and followed by an oxygen attack (HO2) radicals [17]. Since the concentration of OH? species in SCW is greater at higher temperatures, the rate and extent of aromatic hydroxylation reaction are enhanced. The thermody- namic activation parameters (i.e., DHà, DSà, and Ea) for the Fenton-SCW reactions obtained from the Arrhenius and Eyring temperature-rate expressions are presented in Table 2 and the cor- responding plots are given in Figure S7. The results indicate that the Fenton-SCW reaction exhibits a lower activation energy (Ea), demonstrating that the decomposition of organic pollutants into simpler products is thermodynamically favored at high temperatures. The decreased Ea may also correlate with the enhanced degradation rate constant in SC. 3.3. Heterogeneous SCW-mediated degradation with

11MIL-88B(Fe) The TOC removal efficiency of SCW treatment was

further investigated in the presence of MIL-88B(Fe) to examine the Fenton-like activity of MOF catalyst in the presence of in situ gen- erated OH? ions. Due to the strong coordination bonding interac- tions between Fe(III) and carboxylate linkers based on the Pearson's HSAB principle [34],

17it is expected that the framework structure of MIL-88B(Fe

) possesses high chemical stability in aque- ous solutions. As shown in Figure S8, the as-synthesized MOF sam- ple remained stable after soaking in water (pH 6.8) and acid aqueous solution (pH 3) at room temperature overnight without appreciable loss of crystallinity. However, the robustness of MOF catalyst needs to be further assessed under varying temperature conditions of Fenton-SCW process explored in this work, as dis- cussed below. Prior to the SCW degradation experiments of synthetic wastew- ater solution, the chemical stability of MIL-88B(Fe) post-SCW treatment for 1 h at temperatures between 100 and 240 °C was examined by XRD analysis. The results demonstrated that the framework integrity of the pristine MOF remained relatively intact following SCW treatment at 100 and 120 °C, where the critical Bragg peaks at 2h = 9.6°, 16.4°, and 22.2° were maintained (Fig. 3a). In the latter case, however, a slightly decreased crystallinity of the treated sample was observed, along with the pres- ence of an impurity phase at 2h = 11.2°. On the other hand, the PXRD patterns of the SCW-treated samples at 160, 200, and 240 °C show distinctly different features with the dominant reflec- tions from TPA ligand (2h = 17.5°, 25.3°, and 28.2°) and hematite phase (a-Fe2O3, 2h = 24.3°, 33.4°, 35.8°, and 49.8°), suggesting sev- ere or complete structural degradation of the MOF material. The formation of the hematite-rich phase in the SCW-treated samples at higher temperatures also corresponds well to the observed color change of the resultant solid powder from light brown to a reddish brown (see digital photos in Fig. 3c). SEM analysis revealed that the MIL-88B(Fe)

particles hydrothermally treated at 100 and 120 °C Table 2 Thermodynamic activation parameters of homogeneous Fenton and Fenton-SCW reactions. System T, K Ea, kJ mol?1 DHà, kJ mol?1 DSà, J mol?1 K?1 Fenton 303.2 308.2 313.2 Fenton-SCW 373.2 393.2 433.2 473.2 513.2 39.2 36.6 ?159.7 21.4 17.8 ? 228.9 Fig. 3. (a) PXRD patterns of the as-synthesized and SCW-treated MIL-88B(Fe) at various temperatures for 1 h. (b) ICP ? OES analysis of Fe leaching from MOF catalyst after immersion in water at pH 3 and 7 for 24 h and SCW treatment at various temperatures for 1 h. Reported values are averages of triplicate measurements. (c) Photographs of the pristine crystalline powder of MIL-88B(Fe) and after SCW treatment at various temperatures for 1 h (top row) and their corresponding SEM images (bottom row). The region marked by the orange dashed line represents TPA crystals and the inset shows a magnified image of the yellow-squared area (scale bar: 500 nm). The scale bars correspond to (from left to right) 10 lm, 5 lm, 5 lm, 10 lm, and 10 lm. maintained their bipyramidal morphology (Fig. 3c, bottom), while those treated at the elevated temperatures (160–240 °C) exhibited slab-like morphology characteristic of TPA crystals with clusters of Fe2O3 nanoparticles deposited on the surface (see inset in the SEM image). Based on the structural stability evaluation above, we chose 100 °C as the proper reaction temperature for further investigation of

5Fenton-like catalytic performance of MIL-88B(Fe) in

SCW. The result showed that the TOC removal improved slightly from 33.2% in the case of SCW treatment at 100 °C for 60 min to 38.4%

3in the presence of 1.5 wt% MIL-88B(Fe). The

slightly higher TOC removal in the

17MIL-88B(Fe)-SCW system can be mainly attributed to the adsorption of

model pollutants onto the MOF surface. Thus,

3it can be implied that the MIL-88B(Fe

) shows negligible Fenton-like activity in the SCW medium without the presence of H2O2. Fur- ther, we analyzed the aqueous solutions post-SCW treatment after removal of MOF particles for Fe leaching by ICP ? OES measure- ment (Fig. 3b). The results showed that the concentrations of dis- solved Fe during SCW treatment at 100 and 120 °C for 1 h were determined to be 0.37 ± 0.03 and 0.67 ± 0.08 mg L?1, respectively, which correspond to the <0.1 and 0.5% leaching of Fe from the catalyst. These leaching concentrations of Fe ions satisfy drinkable water guideline value of 1-3 mg L?1 recommended by WHO. Sim- ilarly, the leaching concentrations of Fe ions after 24 h of soaking at room temperature are found to be 0.65 ± 0.05 at pH 3 and 0.24 ± 0.03 mg L?1 at pH 7, which are also well below the regulatory stan- dard. An increase in the leaching extent of iron under harsher SCW conditions could be attributed to the more severe hydrolysis reac- tion that breaks the metal-ligand coordination bonds in MIL-88B (Fe). 3.4. SCW-mediated heterogeneous Fenton-like degradation with MIL- 88B(Fe) The treatment performance of heterogeneous Fenton-like pro- cess with various MIL-88B(Fe) loadings at a SCW temperature of 100 °C is shown in Fig. 2c. A significant improvement in the degra- dation efficiency was observed, where the TOC removal percentage reached 92% within 60 min treatment in the presence of 1 wt% cat- alyst and 9.8 mM H2O2. This result indicates that the presence of both MIL-88B(Fe) catalyst and H2O2 plays a pivotal role in the highly efficient pollutant degradation by the Fenton-like reaction. Increasing the catalyst loading to 1.5 wt%

led to only a marginal enhancement in the TOC removal efficiency (95%), while lower dosage of catalyst (0.5 wt%) showed an appreciable decrease in the mineralization efficiency (83% TOC removal). Thus, the optimum catalyst loading was determined to be 1 wt%. It should be noted that no appreciable Fe leaching (0.2%) from the MOF cata- lyst was observed during the Fenton-like process under conditions, and thus the contribution of homogeneous Fenton reaction to model organic pollutant degradation caused by leached Fe can be neglected. As shown in Figure S9, an insignificant TOC removal effi- ciency (<6%) was observed after Fenton-SCW treatment of syn- thetic wastewater solution at 100 °C for 60 min in the presence of 0.75 mg/L Fe3+ (simulating Fe leaching) and 9.8 mM H2O2, showing good agreement with the above statement. The

5**MIL-88B (Fe)** catalyzed **Fenton-like** SCW **system** demonstrated superior **degradation**

performance compared to the homogeneous Fenton at room temperature and Fenton-SCW process at elevated temper- atures (100–240 °C), as shown in Fig. 2d. Furthermore, as depicted in Figure S10, the residual concentrations of all monoaromatic compounds in the treated wastewater solution that are of concern from a drinking water perspective meet the maximum contami- nant level (MCL) established by the U.S. Environmental Protection Agency [44] and the WHO guideline values [48]. To demonstrate the practical feasibility of heterogeneous SCW Fenton-like process, the treatment performance was tested using real environmental samples. In this regard, the real world water samples (i.e., river water, fishpond water, and a wastewater sample collected from a municipal treatment plant, see Text S1 and Table S4 for the characteristics of water samples and details of the pretreatment step) were spiked with PGMEA and monoaro- matic compounds at concentrations identical to those in the syn- thetic wastewater solution and the Fenton-like process was conducted at 100 °C for 60 min

5in the presence of 1 wt% MIL-88B (Fe) and

19.6 mM H2O2. As shown in Fig. 4a, the TOC removal efficiencies higher than 80% were observed in all spiked real world water samples, demonstrating the great potential of the present approach in practical water and wastewater treatment. It should be noted that the Fenton-like catalytic tests performed in real wastewater matrices indicate a greater degree of catalyst deactiva- tion caused by the blockage of the active sites by dissolved natural organic matter, such as humic acid, thus resulting in decreased degradation efficiency. In this regard, humic acid can bind strongly to Fe(III) surfaces, which would hinder the adsorption of H2O2 molecules and their decomposition to produce HO radicals. This explanation is

4in good agreement with the results of Lindsey and

Tarr [21] and Liu et al. [23]. Higher TOC removal efficiencies of 85.2 ± 5.8% and 82.8 ± 7.2% for the spiked fishpond water and river water, respectively, could be ascribed to lower humic acid concen- trations in water samples (see SI, Table S4), which only marginally affect the decomposition efficiency of H2O2. The role of dissolved metal ions (e.g., Fe, Cu, and Cr) in the homogeneous Fenton reac- tion was also investigated (see SI, Figure S9), revealing no apprecia- ble contribution to the overall TOC removal. The reusability of the MOF catalyst in the multiple Fenton-like cycles was evaluated in terms of TOC removal efficiency and chemical stability. Over the course of three consecutive catalytic runs, the TOC removal effi- ciency slightly decreased from 91.8% to 89.2% (Fig. 4b), thus man- ifesting good performance of the MOF catalyst for extended operation. The Fenton-like MIL-88B(Fe)-SCW system also shows greater performance degradation than previously reported O3/ H2O2 and O3/UV AOPs [49], as well as catalytic wet oxidation pro- cess [26] for treating synthetic wastewater containing PGMEA or monoaromatic compounds (Fig. 4c),

thus indicating the great potential of the present approach for an efficient and environmen- tally benign remediation technology from semiconductor manu- facturing effluent. The TOC removal kinetic profiles of Fenton-like SCW system with MIL-88B(Fe) show a similar trend to that of homogeneous Fenton-SCW system (Fig. 2b). A rapid TOC removal (>60%) occurred in the first 30 min of the reaction for 1 wt% catalyst, which could be ascribed to the highly efficient generation of HO radicals from the reaction of H2O2 with open iron coordination sites in MIL-88B(Fe). The kinetic fitting results of the TOC removal efficiency in Figure S5 and Table 3 indicate that all the applied models are able to satisfac- torily describe the observed data, where the best fit was obtained with the BMG kinetic model (R2 = 0.995-0.999). The first- and secondorder degradation rate constants (i.e., k1 and k2) both increased with increasing catalyst loading, which is associated with the higher availability of catalytic active sites for HO radical formation. The same trend is observed for the initial rate constant (kinit) of Fenton-like reaction from the BMG model fit. Compared to the homogeneous Fenton-SCW reaction catalyzed by the dissolved Fe2+ ions (kinit = 0.343 min?1 at 240 °C), the lower kinit values (kinit = 0.122-0.296 min?1) in the Fenton-like SCW process can be ascribed to the slow rate of hydroxyl radical production through Fe(III)-catalyzed H2O2 decomposition. The overall degradation rate constants of heterogeneous Fenton-like SCW according to second- order kinetics are at least 1.5 times faster than its homogeneous Fenton-SCW counterpart, reflecting the superior catalytic activity of MIL-88B(Fe). Moreover, the theoretical MOC values range between 114 and 120%, which are higher than that obtained in homogeneous Fenton-SCW at 100 °C (MOCcal = 76.7%) under simi- lar conditions. A proposed mechanism for the Fenton-like catalytic oxidation over MIL-88B(Fe) catalyst is illustrated in Fig. 4d. Surface adsorp- tion of organic pollutants on the bridging linkers of MIL-88B(Fe) takes place before the hydroxyl radical-induced decomposition. In this regard, PGMEA and monoaromatic molecules are adsorbed onto the pore walls of the MIL-88B(Fe) through the carbonyl-aro- matic (CO-p) [20] and the p-p stacking interactions with a Fig. 4. (a) TOC removal efficiency of the heterogeneous Fenton-like treatment of environmental water samples spiked with PGMEA and monoaromatics under SCW conditions of 100 °C for 60 min with 1 wt% MIL-88B(Fe). (b) TOC removal efficiency over three cycles of Fenton-like process in SCW with reused MIL-88B(Fe) catalyst. (c) Comparison of the mineralization efficiency of Fentonlike MIL-88B(Fe)-SCW process with other AOPs, such as ozonation, UV/ozone, and catalytic wet oxidation for the degradation of PGMEA and/or monoaromatic compounds in synthetic wastewater. (d) Proposed Fenton-like reaction mechanism on MIL-88B(Fe) catalyst for oxidative degradation of PGMEA and monoaromatic pollutants. benzene ring moiety of TPA ligand [33], respectively. In the former case, the CO-p aromatic interaction belongs to the attractive ones, due to the electron-withdrawing effect of the carboxyl groups. Meanwhile, the Lewis acidic Fe3+ centers with exposed coordination unsaturated sites can readily react with an incoming H2O2 molecule (a strong Lewis base) given their strong affinity for Table 3 Fitted kinetic parameters of the first-order, second-order, and BMG models for the TOC removal kinetics in heterogeneous Fenton-like process catalyzed by MIL-88B(Fe) under SCW condition of 100 °C. Modely Parametersy Catalyst loading (wt%) 0.5 1.0 1.5 First-order kinetics Second-order kinetics BMG k1 (min?1) R2 k2 (M?1 min?1) R2 m (min) n kinit (min?1) MOCcal (%)à MOCexp (%)§ R2 0.034 0.976 0.061 0.988 20.204 0.881 0.049 113.5 83.5 0.995 0.045 0.985 0.092 0.981 15.298 0.848 0.065 117.9 91.8 0.998 0.055 0.992 0.119 0.975 12.912 0.834 0.077 119.9 95.3 0.999 y,à,§ See footnotes in Table 1. each other [42,51], leading to the formation of iron(III)-H2O2 complex (Eq. (3)). Since the oxidation potential of H2O2 species is larger than the FeIII/FeII reduction potential, a facile intermolecular electron transfer occurs between these two species (from H2O2 to the FeIII center), leading to the formation of surface Fe(II) species and hydroperoxide radicals (Eq. (4)). The generated surface Fe(II) species subsequently react with H2O2 to generate HO radicals (Eq. (5)), which proceed via a mechanism analogous to that of fer- rous step in the classical Fenton system. Since the adsorbed organic pollutants are located in close vicinity to the FexIIFe1xIII metal cen- ters, the HO radicals can directly attack and oxidize the nearby pollutants, resulting in enhanced mineralization efficiency. The surface Fe(III) species formed during the Fenton-like reaction could further react with hydroperoxide radicals (Eq. (6)) and regenerate surface Fe(II) via a mechanism analogous to that shown in Eq. (2). FeIII3O6L3 + H2O2 ! H2O2—FeIII3O6L3 where L denotes the TPA bridging ligand {O2C-C6H4-CO2} H2O2-FeIII3O6L3 ! FexIIFe1-xIIIOL3 + HOO + Hb FeIIOL3 + H2O2 ! FeIIIOL3 + HO + OH? FeIIIOL3 + HOO !FeIIOL3 + O2 + Hb ð3Þ ð4Þ ð5Þ ð6Þ Several reaction pathways might exist

simultaneously during the oxidative degradation of benzene and its substituted deriva- tives by HO radicals. which mainly involve electrophilic radical ring addition and radical oxidation of the substituents [1,55]. A recent study by Hara [13] demonstrated that the mineralization of benzene rings into CO2 in an aqueous system containing H2O2 proceeded via direct oxidation to organic acids, such as glyoxylic (C2H2O3) or oxalic acids (C2H2O4) in a thermodynamically favour- able manner. In this regard, the HO radicals rapidly attack benzene rings and its various intermediates that lead to the benzene-rings excitation and produce CO2 and H2O as the final products (see SI, Figure S11; R1). The addition of HO radicals to the open ring of benzene yields phenol as the intermediate product, which is fur- ther oxidized into pyrocatechol and pbenzoquinone (Figure S11; R2). In addition, the HO radicals can induce dehydrogenate and cleavage of benzene rings to produce unsaturated hydrocarbons, followed by subsequent oxidation to simple organic acids (R3, R4, and R5). Some of these organic acids are further decomposed into CO2 and H2O through a Fenton-like process and the rest was decomposed at high temperature through the SCW reaction. The oxidative decomposition of phenol is begun with the hydroxylation of the aromatic phenol ring by HO radicals that pro-duce hydroquinone, catechol, and resorcinol [27]. Subsequently, all these intermediate compounds are further oxidized by HO radicals to maleic acid and finally to simple organic acids, such as oxalic, formic, and acetic acids. Some of these organic acids can readily undergo complete mineralization during the SCW process. The proposed mechanism for the demineralization of phenol is schematically illustrated in Figure S12. The degradation of xylene, cresol, toluene, and PGMEA also produced simple organic acids, which could degrade quickly in Fenton-like conditions and in the SCW process. 4. Conclusions In summary, we have demonstrated highly efficient degrada- tion of photoresist casting solvent (PGMEA) and monoaromatic compounds in aqueous solution by heterogeneous Fenton-like pro- cess using a flexible MIL-88B(Fe) under mild SCW conditions (100 °C; 60 min). The resulting bipyramidal MOF microcrystals exhibit mesoporous structure, as well as good framework stability upon SCW treatment at 100 °C. The incorporation of MIL-88B(Fe) into the Fenton-like SCW system can achieve high-efficiency min- eralization of synthetic wastewater solution with 92% TOC removal efficiency, which shows superior performance compared to the homogeneous Fenton and Fenton-SCW processes with 54% and 60% removal efficiency, respectively. The TOC removal kinetic profiles in the SCW-mediated homogeneous Fenton and heteroge- neous Fenton-like systems are found to be well-fitted to the BMG model. Furthermore, the practical feasibility of this approach has been demonstrated to degrade the target contaminants in various real world water samples with satisfactory mineralization effi- ciency. Overall, the heterogeneous Fenton-like process employing a reusable Fe-based breathing MOF catalyst under mild SCW con- ditions represents an attractive environmentally friendly strategy for highly efficient degradation of recalcitrant organic pollutants in semiconductor manufacturing effluents and other complex wastewater matrices. CRediT authorship contribution statement Felycia Edi Soetaredio: Conceptualization, Supervision, Fund- ing acquisition. Shella Permatasari Santoso: Methodology, Super-vision, Formal analysis. Valentino Bervia Lunardi: Investigation, Data curation, Writing - original draft. Alfin Kurniawan: Concep- tualization, Visualization, Writing - review & editing. Hardy Shuwanto: Investigation, Validation. Jenni Lie: Investigation, Validation. Kuncoro Foe: Project administration. Wenny Irawaty: Formal analysis. Maria Yuliana: Formal analysis, Data curation. Jindrayani Nyoo Putro: Formal analysis, Validation. Artik Elisa Angkawijaya: Resources. Yi-Hsu Ju: Resources. Suryadi Ismadji: Resources, Project administration, Writing – original draft.

2Declaration of Competing Interest The authors declare that they have no known competing finan- cial interests or personal relationships that could have appeared to influence the work reported in this paper. Acknowledgements This work was financially supported by the Directorate of Research and Community Service, Deputy for Research and Devel- opment Strengthening, Ministry of Research and Technology/ National Agency for Research and Innovation

1Republic of Indone- sia, through contract number 150A/WM01.5/N

/2021.

12Appendix A. Supplementary material Supplementary data to this article can be found online at https://doi.org/10.1016/j.molliq.2021.117989. References

[1] M. Anbar, D. Meyerstein, P. Neta, The reactivity of aromatic compounds toward hydroxyl radicals, J. Phys. Chem. 70 (1966) 2660–2662. [2] M.G. Antoniou, C. Zhao, K.E. O'Shea, G. Zhang, D.D. Dionysiou, C. Zhao, C. Han, M.N. Nadagouda, H. Choi, T. Fotiou, T.M. Triantis, A. Hiskia, Photocatalytic degradation of organic contaminants in water: Process optimization and degradation pathways, in: D.D. Dionysiou, G.L. Puma, J. Ye, J. Schneider, D. Bahnemann (Eds.), Photocatalysis: Applications, Royal Society of Chemistry, 2016, pp. 1–34. [3] A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo- electro-Fenton processes, Chem. Eng. J. 183 (2012) 1–9. [4] L.L.E. Bayon, F.C. Ballesteros Jr., S. Garcia-Segura, M.-C. Lu, Water reuse nexus with resource recovery: On the fluidized-bed homogeneous crystallization of copper and phosphate from semiconductor wastewater, J. Clean. Prod. 236 (2019) 117705. [5] M.A. Behnajady, N. Modirshahla, F. Ghanbary, A kinetic model for the decolorization of C.I. acid yellow 23 by Fenton process, J. Hazard. Mater. 148 (2007) 98–102. [6] R. Chepesiuk, Where the chips fall: environmental health in the semiconductor industry, Environ. Health Perspect. 107 (1999) A452-A457. [7] E. Croiset, S.F. Rice, R.G. Hanush, Hydrogen peroxide decomposition in supercritical water, AIChE J. 43 (1997) 2343-2352. [8] C.K. Duesterberg, S.E. Mylon, T.D. Waite, pH effects on iron-catalyzed oxidation using Fenton's reagent, Environ. Sci. Technol. 42 (2008) 8522–8527. [9] A. El-Ghenymy, J.A. Garrido, F. Centellas, C. Arias, P.L. Cabot, R.M. Rodríguez, E. Brillas, Electro-Fenton and photoelectron-Fenton degradation of sulfanilic acid using a borondoped diamond anode and an air diffusion cathode, J. Phys. Chem. A 116 (2012) 3404-3412. [10] C. Gao, S. Chen, X. Quan, H. Yu, Y. Zhang, Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants, J. Catal. 356 (2017) 125-132. [11] F. Gunawan, A. Kurniawan, I. Gunawan, Y.-H. Ju, A. Ayucitra, F.E. Soetaredjo, S. Ismadji, Synthesis of biodiesel from vegetable oils wastewater sludge by in- situ subcritical methanol transesterification: Process evaluation and optimization, Biomass Bioenergy 69 (2014) 28–38. [12] K.I. Hadjiivanov, D.A. Panayotov, M.H. Mihaylov, E.Z. Ivanova, K.K. Chakarova, S.M. Andonova, N.L. Drenchev, Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules, Chem. Rev. 121 (2021) 1286–1424. [13] J. Hara, Oxidative degradation of benzene rings using iron sulfide activated by hydrogen peroxide/ozone, Chemosphere 189 (2017) 382–389. [14] P. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, N. Stock, Y. Filinchuk, D. Popov, C. Riekel, G. Férey, C. Serre, How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88, J. Am. Chem. Soc. 133 (2011) 17839–17847. [15] L.-C. Hsu, C.-Y. Huang, Y.-H. Chuang, H.-W. Chen, Y.-T. Chan, H.Y. Teah, T.-Y. Chen, C.-F. Chang, Y.-T. Liu, Y.-M. Tzou, Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries, Sci. Rep. 6 (2016) 34250. [16] S.-C. Hsu, H.-L. Hsieh, C.-P. Chen, C.-M. Tseng, S.-C. Huang, C.-H. Huang, Y.-T. Huang, V. Radashevsky, S.-H. Lin, Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing. J. Hazard. Mater. 189, 193–202. Huang, S.-Z., Wu, K.-Y., 2019. Health risk assessment of photoresists used in an optoelectronic semiconductor factory, Risk Anal. 39 (2011) 2625–2639. [17] Y.-L. Kim, J.-D. Kim, J.S. Lim, Y.-W. Lee, S.-C. Yi, Reaction pathway and kinetics for uncatalyzed partial oxidation of p-xylene in sub- and supercritical water, Ind. Eng. Chem. Res. 41 (2002) 5576–5583. [18] A. Kruse, A. Gawlik, Biomass conversion in water at 330-410 °C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction

pathways, Ind. Eng. Chem. Res. 42 (2003) 267–279. [19] A. Kurniawan, C. Effendi, L.K. Ong, Y.-H. Ju, C.X. Lin, S. Ismadii, Novel, integrated biorefinery approach of Ceiba pentandra (kapok) seed and its secondary waste, ACS Sustain. Chem. Eng. 1 (2013) 473-480. [20] P. Li, E.C. Vik, J.M. Maier, I. Karki, S.M.S. Strickland, J.M. Umana, M.D. Smith, P.J. Pellechia, K.D. Shimizu, Electrostatically driven CO-p aromatic interactions, J. Am. Chem. Soc. 141 (2019) 12513–12517. [21] M.E. Lindsey, M.A. Tarr, Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter, Environ. Sci. Technol. 34 (2000) 444-449. [22] Z. Lionet, T.-H. Kim, Y. Horiuchi, S.W. Lee, M. Matsuoka, Linker engineering of iron-based MOFs for efficient visible-light-driven water oxidation reaction, J. Phys. Chem. C 123 (2019) 27501-27508. [23] B. Liu, Z. Liu, P. Yu, S. Pan, Y. Xu, Y. Sun, S.-Y. Pan, Y. Yu, H. Zheng, Enhanced removal of tris(2-chloroethyl) phosphate using a resin-based nanocomposite hydrated iron oxide through a Fenton-like process; Capacity evaluation and pathways, Water Res. 175 (2020) 115655. [24] H. Lu, Z. Zhu, H. Zhang, J. Zhu, Y. Qiu, L. Zhu, S. Kuppers, Fenton-like catalysis and oxidation/adsorption performances of acetaminophen and arsenic pollutants in water on a multimetal Cu-Zn-Fe-LDH, ACS Appl. Mater. Interfaces 8 (2016) 25343-25352. [25] M. Ma, A. Bétard, I. Weber, N.S. Al-Hokbany, R.A. Fischer, N. Metzler-Nolte, Iron-based metalorganic frameworks MIL-88B and NH2-MIL-88B: High quality microwave synthesis and solvent-induced lattice "breathing", Cryst. Growth Des. 13 (2013) 2286–2291. [26] R. Mohite, A. Garg, Performance of supported copper catalysts for oxidative degradation of phenolics in aqueous medium: Optimization of reaction conditions, kinetics, catalyst stability, characterization, and reusability, Ind. Eng. Chem. Res. 59 (2020) 12986–12998. [27] E. Mousset, L. Frunzo, G. Esposito, E.D. van Hullebusch, N. Oturan, M.A. Oturan, A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study, Appl. Catal. B-Environ. 180 (2016) 189–198. [28] M.K.S. Nascimento, S. Loureiro, M.R. dos Reis Souza, M. da Rosa Alexandre, J. Nilin, Toxicity of a mixture of monoaromatic hydrocarbons (BTX) to a tropical marine microcrustacean, Mar. Pollut. Bull. 156 (2020) 111272. [29] S. Navalon, M. de Miguel, R. Martin, M. Alvaro, H. Garcia, Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light, J. Am. Chem. Soc. 133 (2011) 2218–2226. [30] R. Nivetha, P. Kollu, K. Chandar, S. Pitchaimuthu, S.K. Jeong, A.N. Grace, Role of MIL-53 (Fe)/hydrated-dehydrated MOF catalyst for electrochemical hydrogen evolution reaction (HER) in alkaline medium and photocatalysis, RSC Adv. 9 (2019) 3215–3223. [31] Y. Orita, M. Akizuki, Y. Oshima, Dual-stage method using supercritical and subcritical water for precise control of size and distribution of CeO2 nanoparticles, Ind. Eng. Chem. Res. 59 (2020) 3035–3043. [32] S.-H. Park, J.-A. Shin, H.-H. Park, G.Y. Yi, K.-J. Chung, H.-D. Park, K.-B. Kim, I.-S. Lee, Exposure to volatile organic compounds and possibility of exposure to by- product volatile organic compounds in photolithography processes in semiconductor manufacturing factories, Safety Health Work 2 (2011) 210– 217. [33] D.V. Patil, P.B.S. Rallapalli, G.P. Dangi, R.J. Tayade, R.S. Somani, H.C. Bajaj, MIL-53(AI): An efficient adsorbent for the removal of nitrobenzene from aqueous solutions, Ind. Eng. Chem. Res. 50 (2011) 10516–10524. [34] R.G. Pearson, Hard and soft acids and bases, HSAB, part 1: Fundamental principles, J. Chem. Educ. 45 (1968) 581. [35] L. Peng, C.-T. Hung, S. Wang, X. Zhang, X. Zhu, Z. Zhao, C. Wang, Y. Tang, W. Li, D. Zhao, Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures, J. Am. Chem. Soc. 141 (2019) 7073-7080. [36] P.E. Savage, Organic chemical reactions in supercritical water, Chem. Rev. 99 (1999) 603-621. [37] Semiconductor Market Report: Trends, Forecast and Competitive Analysis. https://www.lucintel.com/semiconductor-market.aspx (accessed 11 January 2021). [38] C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Role of solvent-host interactions that lead to very large swelling of hybrid frameworks, Science 315 (2007) 1828–1831. [39] Y. Shinozawa, D. Heggo, S. Ookawara, S. Yoshikawa, Photo-Fenton degradation of carbofuran in helical tube microreactor and kinetic modeling, Ind. Eng. Chem. Res. 59 (2020) 3811-3819. [40] C.A. Staples, J.W. Davis, An examination of the physical properties, fate, ecotoxicity and potential environmental risks for a series of propylene glycol ethers, Chemosphere 49 (2002) 61–73. [41] S. Tadrent, D. Luart, O. Bals, A. Khelfa, R. Luque, C. Len, Metal-free reduction of nitrobenzene to aniline in subcritical water, J. Org. Chem. 83 (2018) 7431-7437. [42] J. Tang, J. Wang, Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine, Environ. Sci. Technol. 52 (2018) 5367-5377. [43] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouguerol, K.S.W. Sing, Physisorption of

gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. [44] U.S. EPA, 2018 Edition of the Drinking Water Standards and Health Advisories, U.S. Environmental Protection Agency Report EPA 822-F-18-001, Office of Water, Washington, DC, 2018. [45] D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways, ACS Catal. 4 (2014) 4254–4260. [46] D. Wang, M. Wang, Z. Li, Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol, ACS Catal. 5 (2015) 6852-6857. [47] X. Wang, Q. Wang, C. Ye, X. Dong, T. Qiu, Feasibility study of reactive distillation for the production of propylene glycol monomethyl ether acetate through transesterification, Ind. Eng. Chem. Res. 56 (2017) 7149-7159. [48] World Health Organization, Guidelines for Drinking-water Quality, fourth ed, incorporating the first addendum, Geneva, Switzerland, 2017. [49] J.J. Wu, M. Muruganandham, L.T. Chang, S.H. Chen, Oxidation of propylene glycol methyl ether acetate using ozone-based advanced oxidation processes, Ozone. Sci. Eng. 30 (2008) 332-338. [50] L. Xu, J. Wang, Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol, Environ. Sci. Technol. 46 (2012) 10145–10153. [51] X.-J. Yang, X.-M. Xu, J. Xu, Y.-F. Han, Iron oxychloride (FeOCI): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants, J. Am. Chem. Soc. 135 (2013) 16058–16061. [52] Y. Yin, L. Shi, W. Li, X. Li, H. Wu, Z. Ao, W. Tian, S. Liu, S. Wang, H. Sun, Boosting Fenton-like reactions via single atom Fe catalysis, Environ. Sci. Technol 53 (2019) 11391–11400. [53] E.T. Zellers, R. Sulewski, Glove permeation by propylene glycol monomethyl ether acetate – A photoresist solvent used in semiconductor device processing, Appl. Occup. Environ. Hyg. 7 (1992) 392–397. [54] M. Zhang, Z. Zhang, S. Liu, Y. Peng, J. Chen, S.Y. Ki, Ultrasound-assisted electrochemical treatment for phenolic wastewater, Ultrason. Sonochem. 65 (2020) 105058. [55] N. Zhang, I. Geronimo, P. Paneth, J. Schindelka, T. Schaefer, H. Herrmann, C. Vogt, H.H. Richnow, Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis (d13C and d2H), Sci. Total. Environ. 542 (2016) 484–494. [56] S.-W. Zou, C.-W. How, J.P. Chen, Photocatalytic treatment of wastewater contaminated with organic waste and copper ions from the semiconductor industry, Ind. Eng. Chem. Res. 46 (2007) 6566-6571.

1Felycia Edi Soetaredjo, Shella Permatasari Santoso

, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 Felycia Edi Soetaredjo, Shella Permatasari Santoso, Valentino Bervia Lunardi et al. Journal of Molecular Liquids 347 (2022) 117989 2 3 4 5 6 7 8 9 10 11