turnitin Originality Report

Double-shelled hollow mesoporous silica incorporated copper by Shella Santoso

From Similarity check (check paper Jakad SPS)

Processed on 01-Mar-2022 11:48 WIB ID: 1773593310 Word Count: 10116

sources:

8% match (publications)

1 Stefanus Kevin Suryajaya, Yohanes Ricky Mulyono, Shella Permatasari Santoso, Maria Yuliana et al. "Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-guality oil to methyl esters", Renewable Energy, 2021

2% match (publications) 2

Felix Harijaya Santosa, Livy Laysandra, Felycia Edi Soetaredjo, Shella Permatasari Santoso, Suryadi Ismadji, Maria Yuliana. "A facile noncatalytic methyl ester production from waste chicken tallow using single step subcritical methanol: Optimization study", International Journal of Energy Research, 2019

2% match (publications)

Maria Yuliana, Shella Permatasari Santoso, Felycia Edi Soetaredjo, Suryadi Ismadji et al. "A one-pot synthesis of biodiesel from leather tanning waste using supercritical ethanol: Process optimization". Biomass and Bioenergy, 2020

1% match (publications)

4 Maria Yuliana, Shella Permatasari Santoso, Felycia Edi Soetaredjo, Suryadi Ismadji et al. "Efficient conversion of leather tanning waste to biodiesel using crab shell-based catalyst: WASTE-TO-ENERGY approach", Biomass and Bioenergy, 2021

6

7

8

3

1% match (publications)

Hang Liu, Jinzhu Chen, Limin Chen, Yisheng Xu, Xuhong Guo, Dingye Fang. "Carbon Nanotube-Based Solid Sulfonic Acids as Catalysts for Production of Fatty Acid Methyl Ester via Transesterification and Esterification", ACS Sustainable Chemistry & Engineering, 2016

1% match (publications)

Maria Yuliana, Shella Permatasari Santoso, Felycia Edi Soetaredjo, Suryadi Ismadji et al. "Utilization of waste capiz shell - Based catalyst for the conversion of leather tanning waste into biodiesel", Journal of Environmental Chemical Engineering, 2020

1% match (publications)

Valentino Bervia Lunardi, Fransiska Gunawan, Felycia Edi Soetaredjo, Shella Permatasari Santoso et al. "Efficient One-Step Conversion of a Low-Grade Vegetable Oil to Biodiesel over a Zinc Carboxylate Metal-Organic Framework", ACS Omega, 2021

< 1% match (publications)

Roschat, Wuttichai, Theeranun Siritanon, Boonyawan Yoosuk, and Vinich Promarak. "Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst", Energy Conversion and Management, 2016.

Similarity by Source Similarity Index Internet Sources: Publications: 21% Student Papers:

N/A 21% N/A

9

10

< 1% match (publications)

Biswajit Nath, Pranjal Kalita, Bipul Das, Sanjay Basumatary. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel", Renewable Energy, 2020

< 1% match (publications)

Maria Yuliana, Revano J. Sutrisno, Stefanus Hermanto, Survadi Ismadji et al. "Hydrophobic Cetyltrimethylammonium Bromide-Pillared Bentonite as an Effective Palm Oil Bleaching Agent", ACS Omega, 2020

< 1% match (publications)

11 Kurniawan, Alfin, Chintya Effendi, Lu Ki Ong, Yi-Hsu Ju, Chun Xiang Lin, and Suryadi Ismadji. "Novel, Integrated Biorefinery Approach of Ceiba pentandra (Kapok) Seed and Its Secondary Waste", ACS Sustainable Chemistry & Engineering, 2013.

< 1% match (publications)

Gunawan, Farrel, Alfin Kurniawan, Iwan Gunawan, Yi-Hsu Ju, Aning Ayucitra, Felycia E. Soetaredjo, and Suryadi Ismadji. "Synthesis of biodiesel from vegetable oils wastewater sludge by in-situ subcritical methanol transesterification: Process evaluation and optimization", Biomass and Bioenergy, 2014.

< 1% match (publications)

Liangna Widdyaningsih, Albert Setiawan, Shella Permatasari Santoso, Felycia Edi Soetaredjo et al. "Feasibility study of nanocrystalline cellulose as adsorbent of steryl glucosides from palm-based biodiesel", Renewable Energy, 2020

17

18

< 1% match (publications)

Ha Huu Do, Quyet Van Le, Tuan Van Nguyen, Kim Anh Huynh et al. " Synthesis of /Ni-metalorganic framework-74 composites as efficient electrocatalysts for hydrogen evolution reactions ", International Journal of Energy Research, 2021

< 1% match (publications) 15

Chunzi You, Chungi Yu, Xiaohui Yang, Yudong Li, Hang Huo, Zhe Wang, Yangiu Jiang, Xianzhu Xu, Kaifeng Lin. "Double-shelled hollow mesoporous silica nanospheres as an acidbase bifunctional catalyst for cascade reactions", New Journal of Chemistry, 2018

< 1% match (publications)

16 Eslam G. Al-Sakkari, Omar M. Abdeldayem, S.T. El-Sheltawy, Magdi F. Abadir, Ahmed Soliman, Eldon R. Rene, Ibrahim Ismail. "Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study", Fuel, 2020

< 1% match (publications)

Maedeh Galehdar. "Optimization of a Photo-assisted Fenton Oxidation Process: A Statistical Model for MDF Effluent Treatment", CLEAN - Soil Air Water, 08/2009

< 1% match (publications)

Farrukh Jamil, Mohammed Al-Riyami, Lamya Al-Haj, Ala'a H. Al-Muhtaseb, Myo T. Z. Myint, Mahad Baawain, Mohammed Al-Abri. " Waste seed oil as a potential source for biodiesel production in the presence of a novel mixed metallic oxide catalyst ", International Journal of Energy Research, 2020

< 1% match (publications)

Quan Wang, Wenlei Xie, Lihong Guo. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one-pot biodiesel production from simulated lowquality oils", Renewable Energy, 2022

< 1% match (publications)</pre>

Liao Peiran, Liu Ying, Zhao Mingzhuo, Yang Ye, Cui Xiuming. " The development of a medicinal liquor processing technology using the response surface method and a study of its antioxidant activity and its effects on mouse melanoma B16 cells ", Food & Function, 2017

< 1% match (publications)</pre>

Abdelrahman B. Fadhil, Emaad T.B. Al-Tikrity, Mohammed A. Albadree. "Biodiesel production from mixed non-edible oils, castor seed oil and waste fish oil", Fuel, 2017

21

< 1% match (publications)

<u>Alexis Munyentwali, He Li, Qihua Yang. "Review of advances in bifunctional solid acid/base</u> <u>catalysts for sustainable biodiesel production", Applied Catalysis A: General, 2022</u>

< 1% match (publications)

Hoang Chinh Nguyen, Jing-Wei Pan, Chia-Hung Su, Hwai Chyuan Ong, Jia-Ming Chern, Jeng-Yu Lin. "Sol-gel synthesized lithium orthosilicate as a reusable solid catalyst for biodiesel production", International Journal of Energy Research, 2020

24 < 1% match (publications)</pre>

<u>Noor Yahida Yahya, Norzita Ngadi, Mazura Jusoh, Noor Amirah Abdul Halim.</u> <u>"Characterization and parametric study of mesoporous calcium titanate catalyst for</u> <u>transesterification of waste cooking oil into biodiesel", Energy Conversion and Management, 2016</u>

25

< 1% match (publications)

"Integrated Natural Resources Research", Springer Science and Business Media LLC, 2021

< 1% match (publications)

Jung, S.M.. "Characterization and reactivity of pure TiO"2-SO"4^2^- SCR catalyst: influence of SO"4^2^- content", Catalysis Today, 20000625

27

< 1% match (publications)

Wen, Guodong, Shuchang Wu, Bo Li, Chunli Dai, and Dang Sheng Su. "Active Sites and Mechanisms for Direct Oxidation of Benzene to Phenol over Carbon Catalysts", Angewandte Chemie International Edition, 2015.

paper text:

Received: 1 April 2021 Revised: 5 July 2021 Accepted: 6 July 2021 DOI: 10.1002/er.7064 RESEARCH ARTICLE

5Double-shelled hollow mesoporous silica incorporated copper (II) (Cu/DS-HMS-NH2) as a catalyst to promote in-situ esterification/transesterification of low-quality palm oil 5Antonius Nova Rahadi1 Jeremia Jonathan Martinus1 || Shella Permatasari Santoso1,2 Maria Yuliana1 || Alfin Kurniawan3 | Chintya Gunarto2 Sandy Budi Hartono1 Felycia Edi Soetaredjo1,2 || | Suryadi

Ismadji1,2 1Department of

7Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia 2Department of Chemical Engineering, National Taiwan University of Science and Technology

, Taipei, Taiwan 3Department of

1Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan

Correspondence

2**Maria Yuliana, Department of Chemical Engineering, Widya Mandala** Surabaya **Catholic University, Kalijudan 37, Surabaya 60114, Indonesia. Email**

: mariayuliana@ukwms.ac.id Funding information Widya Mandala Surabaya Catholic University, Grant/Award Number: 2263/ WM01/N/2020; National Taiwan University of Science and Technology; National Sun Yat-Sen University Summary To encourage the utilization of low-quality palm oil with high free fatty acid and moisture content (>0.1 wt%), a novel catalyst with

1two spatial shells and different active sites

5double-shelled hollow mesoporous silica incorporated copper (II) (Cu/DS-HMS

1NH2), is fabricated via the two-stage hydrolysis and condensation technique. The

influence of four parameters (eg, catalyst loading, temperature,

1reaction time, and the mass ratio of methanol to degummed palm oil

(DPO)) on the yield of fatty acid methyl ester (FAME) are monitored and optimized

4using a combination of response surface methodology (RSM) and

1face centered-central composite experimental design (CCF-CCD

). The optimized FAME yield is predicted at 86.63 wt% and experimentally obtained at 87.14 \pm 0.11 wt% (FAME

4purity of 98.45 ± 0.67 wt%) under the following optimum condition

: 55.3 C, 5 h,

12methanol to DPO mass ratio of 5.3:1

, and 5 wt% catalyst loading. The experimental and

2predicted values are proportional and in direct agreement with an error of 0.51%. The goodness of fit

analysis also indicates conformity between the mathematical model and the experimental results. The reusability study shows that Cu/DS-HMS-NH2 is stable until the fifth run, evident from the yield of FAME which stays above 80%. These results prove the potential utility of Cu/DS-HMS-NH2

19for the direct conversion of low-quality vegetable oils to biodiesel

without any pre-treatment.

1KEYWORDS bifunctional catalyst, biodiesel, double-shelled, mesoporous silica

, optimization study Abbreviations: CPO, crude palm oil; DPO, degummed palm oil; FAME, fatty acid methyl esters; FFA, free fatty acids; MSN, mesoporous silica nanoparticles; S-

1HMS-NH2, single-shelled hollow mesoporous silica

. Antonius Nova Rahadi and Jeremia Jonathan Martinus

1contributed equally to this work. 1 | INTRODUCTION The

ever-increasing dependency on fossil fuel as an energy source may endanger its sustainability. At the same time, the long-term use of this fuel also raises an environmental concern because it's flue gas emission Int J Energy Res. 2021;1–18. wileyonlinelibrary.com/journal/er ©

142021 John Wiley & Sons Ltd. 1

contains various greenhouse gases (ie, CO2, CH4, N2O, and O3).1 The development of sustainable and environ- mentally benign alternative fuels is, therefore, urgently required. Among the available alternative fuels, biodiesel is known to be environmentally friendly as it possesses a high oxygen content, which can increase the fuel com- bustion rate, and reduce carbon monoxide production.2,3 Currently, the mass production of biodiesel uses the con- ventional base catalysts, such as sodium methylate and potassium hydroxide, since they provide a high reaction rate and satisfactory yields. However, these homogenous catalysts require several additional post-separation steps (eg, acid washing, separation, and refining) for biodiesel purification, exhibit poor tolerance to contaminants (free fatty acids [FFA] and moisture),4 and are not reusable.5 Hence, the use of this type of catalyst limits the selection of feedstock materials and increases the overall production cost. On the other hand, heterogeneous catalysts offer sev- eral advantages over their homogeneous counterparts due to their reusability, insensitivity to impurities in the feedstock, and easier separation from the reaction prod- uct.6 Many studies have reported the synthesis of biodie- sel using heterogeneous acid or base solid catalysts for producing biodiesel,6,7 such as metal-organic frame- works8,9 and functionalized mesoporous silicas.5,10 A wide variety of solid catalyst, for example, alkaline- modified zirconia,11 polyoxometalate (POM)-

5based sulfonated ionic liquid immobilized-UiO-66-2COOH

,12 Amberlyst?15 and its modified form,13

5carbon nanotube- based solid sulfonic acids

,14 sulfated niobium oxide,15 and solid superacid catalyst (SO42+/ZrO2-TiO2/La3+),16 has been studied. However, despite their insensitivity to impurities and ability to perform simultaneous reactions, these catalysts require extreme reaction conditions, with the

16temperature range between 100 and 250 C. Amberlyst?15 and

POM-

16based sulfonated ionic liquid immobilized-UiO-66-2COOH

also require a long reaction time (up to 9 h)13 and high catalyst loading (up to 10 wt%),12 respectively. In recent years, mesoporous silica nanoparticles (MSN) have gained extensive attention in many applications, due to their low cost, facile synthesis, ease of sur- face modification, considerable pore capacity, various particle frameworks, and tunable textural properties.17-19 García-Sancho et al (2011)20 reported the use of niobium- containing MCM-41

8to produce biodiesel from edible sunflower oil, while Xie et al

(2015)7 studied the perfor- mance of

23SBA-15 immobilized with 1,3-dicyclohexyl- 2-octylguanidine

, to prepare commercial soybean oil-based FAME. While both MCM-41 and SBA15 possess excellent textural properties, for example, high surface area and good porosity, it requires complicated synthesis procedures to design two spatial shells with different active sites within a particle of the two materials, as both have rod-like structure. This hinders the impregnation of two active components on the surface of MSN, and therefore, limits its use

1 in the synthesis of biodiesel from low-quality oils. In this study, we design a

1new class of catalyst, the copper-incorporated double-shelled hollow mesoporous silica

(Cu/DS-HMS-NH2), with distinct functionalities that can facilitate both esterification and trans- esterification reactions simultaneously in one simple pro- cess with mild reaction conditions. While the inner layer is purposedly

1designed to promote the transesterification reaction by adding -NH2 as the basic site in the

fabrica-tion,

1while the outer layer is impregnated with

copper (Cu (II)) to induce the esterification reaction. The copper metal is mainly used as an active site for the ester- ification reaction due to its availability and high reactiv- ity to various types of reactions. The incorporation of copper to the DS-HMS-NH2 surface also increases the thermal stability of the catalyst and improves the esterifi- cation efficiency in converting the FFA to fatty acid methyl ester (FAME).8,21 Therefore, it is certainly of great interest to study the catalytic performance of Cu/DS- HMS-NH2, as this bifunctional catalyst improves the chance of low-quality oil to be widely utilized

6as the raw material for biodiesel production

, and at the same time, offers an ability to

22promote the concurrent esterification/ transesterification reaction in a onepot synthesis. The utilization of low-quality oils for biodiesel pro- duction has attracted public attention, as it may sustain the supply chain of the food sector. Various feedstocks, for example, animal fats,22,23 waste cooking oil,24 leather tanning waste,25 and jatropha (Jatropha curcas L.) oil,26 have been developed to prepare commercial-grade biodie- sel. The present research tests the catalytic ability of Cu/DS-HMS-NH2 to produce biodiesel from degummed palm oil (DPO) in several operating variations (catalyst loading (wt%), temperature (C), the mass ratio of metha- nol to DPO, and reaction time (h)). With the high amount of FFA and moisture, DPO is regarded as a low- quality oil;

1therefore, it is considered as a suitable raw material to determine the viability of Cu/DS-HMS-NH2

22for the conversion of both FFA and triglycerides in DPO into biodiesel

. The selection of DPO is also to avoid food shortages, simplify the process and lower the operational cost. The process evaluation and optimization are deter- mined using a response surface methodology (RSM) approach combined with face centered-central composite experimental design (CCF-CCD). The reusability of Cu/DS-HMS-NH2 is then investigated at the optimum operating condition. Moreover, the catalytic

1reaction mechanism of the in-situ esterification/transesterification during the conversion of DPO to biodiesel using Cu/DS- HMS-NH2

is also discussed. 2 | MATERIALS AND METHODS 2.1 | Materials All chemicals used in this study were of reagent grade and purchased from Sigma-Aldrich (Germany). There- fore, they were used without further purification. Mean- while, the raw lipid material, crude palm oil (CPO), was obtained from PT. Batara Elok Semesta Terpadu, a local palm oil manufacturer in Indonesia. Prior use, CPO was subjected to the degumming process: CPO and phospho- ric acid (PA) with a ratio of 100:1 (v/v) were mixed and heated to 80 C, where the temperature of the system was maintained isothermally for 15 min. The mixture was then cooled down to room temperature and subse- quently subjected to centrifugation at 4900

13rpm for 10 min to remove the gum soluble in the

PA-rich phase. To ensure the remnants of gum in CPO were completely removed, a 2-portion of hot water was added to one- portion of CPO. The mixture was vigorously mixed using a high-speed agitation system before subjected to another centrifugation process (4900 rpm, 10 min) to obtain the DPO. Both CPO and DPO were analyzed for their FFA,

1acid value, saponification value, and moisture content

using the

1standard method of AOCS Ca 5a-40, Cd 3d-63, Cd 3d-25, and Ca 2e-84, respectively

. The fatty acid pro- file in DPO was also observed using

3GC-2014 (Shimadzu Ltd., Japan) equipped with Restek Rtx-65TG

(

2130 m 0.25 mm ID 0.10 μm film thickness, Restek) and a flame ionization detector (FID). The average molar weight of

CPO and DPO (MPO) was calculated by Equa- tion (1), where SV and AV are corresponding to the saponification value (mg KOH/g oil) and acid value (mg KOH/g oil) of the oil. MPO 1/4 56:ð1SV ?10A0V0Þ 3 : ð1Þ 2.2 | Synthesis of Cu/DS-

1HMS-NH2 The single-shelled hollow mesoporous silica (S-HMS- NH2

) was prepared

9in accordance with the procedures reported by Wang et al (2015),27 where a mixture of

CTAB (0.14 g), ethanol (20 mL), deionized water (50 mL), and ammonia solution 25% (1 mL) was introduced into a beaker and stirred for 15 min at room tem- perature. One milliliter of tetraethyl orthosilicate (

1TEOS) was then slowly added to the mixture and kept stirring for 24 h. The

pH during the synthesis was monitored at 10-11. The white precipitates were separated via centrifu- gation

1at 4500 rpm for 30 min, ethanol washing, and dry- ing at 120 C overnight. The

resulting dried solid

1was calcined at 550 C for 6 h to obtain

S-HMS-NH2. Meanwhile, the fabrication of the second shell was conducted using the modified methods of You et al (2018)28:0.5 g CTAB was dissolved in

1518 mL deionized water and 50 mL ethanol. Then, 4 mL deionized water

, 0.063 g S-HMS-NH2, and 8.5 mL 25% ammonia solution were added into the solution. A 100 µL

15of TEOS and 21 µL of APTES were subsequently added to

the above solution at room temperature to induce the condensation of silica. The reaction system was maintained homoge- nous for 24 h under continuous agitation; the same pH range (pH = 10-11) was observed. After the reaction was completed, the mixture

13was centrifuged at 4500 rpm for 10 min to obtain the

solid phase,

1which was repeatedly washed with ethanol

. The sample was dried at 100 C overnight to remove the solvent. To eliminate the surfac- tant from mesoporous material, the sample

1was calcined at 550 C for 6 h to obtain

1DS-HMS-NH2 particles. The impregnation of

Cu (II) to DS-HMS-NH2 particles was carried out using the traditional wet impregnation method studied by Zaidi and Pant (2008)29 with few mod- ifications. A 0.1 g DS-HMS-NH2 was dissolved into 0.001 M CuSO4 solution and reacted for 12 h at constant pH (5.0). The solid phase was

1separated by centrifugation at 4500 rpm for 10 min

, oven-

26dried for 12 h at 100 C, and calcined for 5 h at 550 C to

yield Cu/DS-HMS-NH2 parti- cles with 1 wt% of impregnated Cu (II). 2.3 | Experimental design and process optimization The biodiesel synthesis through an in-situ esterification/ transesterification reaction between methanol and DPO using the heterogeneous catalyst of Cu/DS-HMS-NH2 was conducted in various conditions, namely reaction temperature, time, and the mass ratio of DPO to metha- nol. These experiments were conducted at a constant cat- alyst loading that gives the highest amount of FAME yield. These independent factors were selected based on their relevance to the process efficiency and economic applicability. A

3design of experiment (DOE), combined with the

standard design tools, face-centered central com- posite design (CCF-CCD), and RSM,

3was employed to determine the optimum operating condition for the synthesis of biodiesel with the

FAME yield selected as the response. The three optimized variables were divided into the following coded level: low (?1), middle (0), and high (+1), as presented in Table 1. The designed matrix between the encoded variables, the predicted and experimental responses are presented in Table 2. Triplicated experiments were carried out for every set of the input parameter to generate a good response reproducibility. Seven experimental data at the center point (0,0,0) were presented individually for every run. The responses were fitted into a second-order poly- nomial

2model, developed using a 3-way analysis of vari- ance (ANOVA

) with a

295% confidence level. The goodness-of-fit of the mathematical model was evaluated by various parameters, including the

coefficient of deter- mination (R2), the

2lack-of-fit sum of squares

, coefficient of variations (C.V.), and adequate precision. The surface plots between the two inter-correlated variables were developed using the regressed experimental results by maintaining

3one variable constant in the middle point while changing the other two variables. The correlation between the predicted response (yield of FAME, wt%) and the independent variables are expressed by Equation (2), where Y is the predicted FAME yield

(wt%);

10k0, ki, kii, kij are the regression coeffi- cients for the intercept, linear, quadratic, and interactions of the independent variables, respectively; Xi and Xj are the coded factors (A, B, C

). X3 X3 X3X3 Y ¼ k0 þ kiXi þ i¼1 i¼1 kiiX2i þ kijX iX j: ð2Þ i¼1 j¼1 Reaction parameter Temperature (

1C) Reaction time (h) Mass ratio of methanol to DPO

Coded factor A B C Factor level ?1 0 45 55 1 3 2:1 4:1 +1 65 5 6:1 T A B L E

21 The coded parameters with their actual values in the design

1of biodiesel using Cu/DS-HMS-NH2

as a heterogeneous catalyst The

27**reaction was carried out in a flask, equipped with a** heating mantle, and **reflux condenser, under atmospheric pressure**

. Methanol and DPO were initially introduced into the flask in various mass ratios (2:1, 4:1, and 6:1). The mixture was stirred and

7heated to the desired tem- perature (45, 55, and 65 C

) before the addition of Cu/DS- HMS-NH2 to the system (1, 3, 5, and 7 wt% of the DPO). The system was maintained homogenous under constant agitation (250 rpm) throughout the reaction (1, 3, and 5 h). Once the reaction reached completion, Cu/DS- HMS-NH2 was removed from the mixture by filtration to obtain the two-layered product, which was subsequently subjected to an overnight liquid-liquid separation using n-hexane. The light phase

2contains n-hexane and FAMEs, while the heavy phase was rich in glycerol, excess methanol, and other by-products. The bottom layer was

repeatedly washed by

2n-hexane to ensure that all FAME has been extracted. The obtained FAME-rich phase was

then subjected to a solvent removal using an IKA RV 10B vacuum evaporator to obtain a purified final product. The yield of FAME can be expressed by the fol- lowing equation: Yield of FAME ð%Þ ¼ PFAME mBD 100%, ð3Þ mDPO where PFAME (%) is the purity of FAME obtained from Equation (4), mBD (g)

25is the mass of the final biodiesel product obtained from the

in-situ esterification/trans- esterification reaction process, and mDPO (g) is the mass of DPO used in the reaction. 2.5 | Characterization The catalyst characterization includes

19scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy

(EDX),

1nitrogen sorption, and thermogravimetric analysis (TGA) to respectively determine the

morphology; pore and double-shelled structure; elemental composition; textural properties; and thermal stability of Cu/DS-HMS-NH2. SEM and

1EDX images were taken on a JEOL JSM-6500 F (Jeol Ltd., Japan) running at 15.0 kV

accelerating voltage and 12.2-12.5 mm working distance. TEM images were acquired using

1JEOL JEM-3010 with an accelerating volt- age of 200 kV. The nitrogen sorption analysis was carried out at 77 K on a Micrometrics ASAP 2010 Sorption

Ana- lyzer. Before analysis, the samples were outgassed at 150 C for 4 h under vacuum. The adsorptiondesorption of nitrogen isotherm is run at a pressure range (p/p) of zero to unity. To analyze the catalyst stability at high temperatures, TGA analysis was employed on a

6TG/DTA Diamond instrument (Perkin-Elmer, Japan). A

certain mass of the sample was placed in a platinum pan and heated from the ambient temperature

6to 900 C with a heating rate of 10 C/min to monitor the thermal stability of the catalyst

. Nitrogen gas was purged

25into the system at the rate of 20 mL/min throughout the

entire analysis to maintain the system oxygen-free. To verify the formation of FAME from the DPO, the functional groups of DPO and FAME were analyzed using Shimadzu FTIR 8400 s in the wavenumber range of 4000-400 cm?1. Then, the purity and compositional anal- ysis of FAME were conducted using Shimadzu GC-2014 (Shimadzu, Japan), according to the method reported by Santosa et al (2019).23 The FAME purity

in the sample Pwas calculated following Equation (4) below, where AFAME is the total area of FAME peaks, AMH

11is the peak area of methyl heptadecanoate (MH), V MH is the volume of MH solution added to the sample (mI), CMH is the actual concentration of MH solution (g/mI), and mBD is the sample weight of

the final biodiesel prod- uct (g). FAMPEPurity ðPFAME,wt%Þ ¼ AFAME ? AMH V MHCMH ð4Þ AMH mBD 100%: 2.6 | Reusability study The reusability study was performed by repeatedly using Cu/

1DS-HMS-NH2 for the preparation of biodiesel

at the optimum reaction condition. After each reaction cycle, Cu/

1DS-HMS-NH2 was recovered by centrifugation (4500 rpm, 15 min) and calcination

(550 C, 5 h) to be subsequently reused. Meanwhile, fresh DPO and metha- nol were used in every cycle. The repetition was con- ducted until the FAME

1yield became lower than 80 wt%. The purity and yield of FAME were measured using the procedure in Sections 2.4

and 2.5. 3 | RESULTS

1AND DISCUSSIONS 3.1 | Characterization of Cu/DS- HMS-NH2

As presented in

1Figure 1, the synthesis route of Cu/DS- HMS-NH2

can be divided into several steps as follows: (1) the ellipsoidal micelles of CTAB are formed with an F I G U R E 1 Fabrication route of Cu/DS-HMS-NH2 [Colour figure can be viewed at wileyonlinelibrary.com] inner core consisting of the hydrophobic tail, (2) during the addition of TEOS, the micelles enlarge, and result in the transformation of micelle shape from ellipsoidal to spherical, (3) TEOS has then undergone hydrolysis and condensation reaction along with the ammonium solu- tion to form a silica shell around the micelles, (4) the CTAB micelles are removed from the core using calcina- tion to form HMS-NH2, (5) to synthesize the outer shell and create the DS-HMS-NH2, TEOS, APTES, and CTAB are subjected for another hydrolysis and condensation reaction, (6) Again, both CTAB and APTES are removed from the DS-HMS-NH2 nanospheres by calcination at high temperature, and (7) Cu (II) are impregnated on the

1surface of DS-HMS-NH2 using wet impregnation

tech- nique to produce Cu/

1DS-HMS-NH2. The morphological structure of the

fabricated catalyst (Cu/DS-HMS-NH2) powder is analyzed using SEM and TEM analysis (Figure 2). Figure 2A,B captures the respec- tive surface morphology of

1DS-HMS-NH2 and Cu/DS- HMS-NH2

particles. Due to the spontaneous formation through co-condensation during the synthesis, both parti- cles are found to be spherical in shape, uniform in size (at ~150 nm), and have a neat surface structure.27 Spheri- cal particle shape was also reported by You et al (2018)28

1for a similar double-shelled hollow mesoporous silica

. As seen from the corresponding figures, there is a clear dif- ference between

1DS-HMS-NH2 and Cu/DS-HMS-NH2

, particularly in their surface roughness. It is apparent from Figure 2B that Cu/

1DS-HMS-NH2 possesses a rough surface topography because of

the impregnation of cop-per nanoparticles, which shapes including rods, cubes, and tetrahedrons. The TEM images (Figure 2C-F) confirm the formation of the double-shell, where the inner shell has a higher silica density than the outer one, indicated by the darker color gradation. Figure 2D shows that both the inner and outer shells of DS-HMS-NH2 have a similar thickness, approximately 16-19 nm. It also verifies that DS-HMS-NH2 has a diameter of 150 nm, with a hollow core size of 81 nm. Meanwhile, Figure 2F shows that the Cu/DS-HMS-NH2 possesses a diameter of 157 nm, slightly larger than the not-impregnated parti- cles, indicating that copper incorporation onto the sur- face adds some layer, with approximately 7 nm in thickness. The copper impregnation is further verified by the results of the EDX analysis (Figure 2G). It can be seen from the elemental composition that there is 1.22 wt% of impregnated copper on the particle surface, which meets the expected copper content in the Cu/DS-HMS-NH2 cat- alyst. The other elemental content includes (1) 30.5 wt% silica and 52.39 wt% oxygen which are the main elements constructing silica nanoparticles, (2) 15.78 wt% carbon which comes from the undegraded TEOS and/or surfac- tant, and (3) trace amount of calcium (0.11 wt%). The adsorption-desorption isotherm of Cu/DS-HMS- NH2 (Figure 3A) implies that this catalyst possesses a typi- cal type-IV mesoporous isotherm, 30, 31 indicating the pres- ence of mesoporous capillary pores within the particles, with the mean pore diameter of 2.43 nm. Khatun et al (2017)32 reported similar adsorption-desorption profile for the mesoporous particle, where only a gradual increase in nitrogen adsorption occurs in the p/po range from 0.1 to 0.9, while a sharp increase was observed in the range of p/p0 between 0-0.1 and 0.9-1.0. Another study mentioned that a steep increase

1at p/p0 close to unity also suggests

6A, SEM image of DS- HMS-NH2; B, SEM image of

Cu/DS-HMS- NH2; C, and D, TEM image of DS-HMS- NH2, E, and F, TEM images Cu/DS-HMS- NH2; and G, EDX image of Cu/DS-HMS- NH2 [

18Colour figure can be viewed at wileyonlinelibrary.com] that there are macropores interior in

the particle, which indicates the same sorption tendency and behavior corresponds to the hollow structure.33 An identical hyster- between the two, emphasizing that this catalyst possesses esis loop between the adsorption and desorption curves high accessibility.10 The textural properties of Cu/DS- F I G U R E

243 A, N2 adsorption/desorption isotherm and B, TGA profile of

Cu/DS-HMS-NH2 HMS-NH2 (

7surface area, SBET, and pore volume

, Vp) are monitored at 733.24

7m2/g and 0.54 cm3/g

. This result shows that the catalyst possesses comparable, if not higher, textural properties to the existing heterogeneous catalysts used for biodiesel production which generally

1range from 200 to 1300 cm2/g for the SBET, and

from 0.18 to 1.68 cm3/g for the Vp.8,28,34,35 Figure 3B presents the degree of thermal stability of the catalyst which is determined through TGA analysis. The figure shows that a weight loss of 23 wt% occurs in the temperature range of 0 to 100 C. This is likely due to the dehydration and removal of the hydroxyl groups from the surface of the particles. At a temperature higher than 100 C, the catalyst particles do not experience sig- nificant weight loss, implying that surfactants and the other organic compounds have been removed in the pre- vious calcination process36; thus, it can be concluded that Cu/DS-HMS-NH2 has good thermal stability. 3.2 | The

biodiesel preparation using Cu/DS- HMS-NH2 Table 3 summarizes the characteristics of CPO and DPO used in biodiesel production using Cu/DS-HMS-NH2. Notably, DPO possesses high FFA content (5.54 wt%), rendering the lipid material a low-quality oil. Figure 4 shows the influence of the catalyst loading on the yield

of FAME. Based on the figure, it can be seen that the in-situ esterification/transesterification is significantly affected by the amount of catalyst used. Escalating the Cu/DS- HMS-NH2

6loading from 1 wt% to 5 wt% greatly improves the yield of FAME by

more than 10 folds. However, a T A B L E 3 Characteristics of CPO and DPO Parameter CPO FFA (wt%) 5.68 Acid value mggDKPOOH 12.13 Moisture (wt%) 0.51 Fat content (wt%) 93.18 Saponification value mggDKPOOH 232.23 ? Molar weight mol g 764.65

8Fatty acid profile (wt%) - Lauric acid (C12:0) Myristic acid (C14:0) Palmitic acid (C16:0) Stearic acid (C18:0) Oleic acid (C18:1) Linoleic acid (C18:2) Linolenic acid(C18:3) Arachidic acid

(C20:0) DPO 5.54 12.04 0.57 93.65 234.08 756.62 0.9 1.4 43.7 3.4 38.3 11.2 0.7 0.4 further catalyst addition to 7 wt% slightly reduces the FAME yield. Previous studies agree that the catalyst amount above 7.5 wt% is inefficient and instead, reduces the yield.5,37-39 This is because the higher the content of solid catalyst added to the reaction system, the higher the mixture viscosity, leading to an inconsistent dispersity. Gurunathan and Ravi (2015)1 added that a high amount of catalyst inhibited the interaction of reactant with the active sites of the catalyst due to aggregation; therefore, lowers the FAME yield. Figure 5A(1-3) presents the effect of two inter- connected variables on the experimental FAME yield, in F I G U R E 4 The effect of Cu/DS-HMS-NH2 loading (wt%) on the yield of FAME (wt%) (reaction time = 5 h, temperature = 65 C, and mass ratio of methanol to DPO = 6:1) 3D surface plots. The effect of reaction time on the yield of FAME is depicted in Figures 5A(1,2). Looking at the data curve, it is apparent that reaction time gave a signifi- cant

2influence on the yield of FAME. An increase in the duration of

reaction from 1 to 5 h sharply escalates the response. Longer reaction time gives the reactants higher opportunities to come into contact with the active sites of Cu/DS-HMS-NH2.40 It also allows the adsorption and

1 diffusion of the reactants to reach the internal pores of the catalyst

, where the actual reactions took place. In terms of the catalyst, extending the reaction time also provides the

1 catalyst more time to adsorb the reactant and desorb the product

.8 Moreover, as the sorption of reactant from the catalyst is the reaction governing step,41

1allowing longer contact between both reactants and catalyst assures high conversion of

DPO to FAME. The

1effect of reaction temperature on the

other two variables is depicted in Figure 5A(1,3).

1Both esterification and transesterification reactions are endothermic and reversible

process.42,43 Therefore, it can be seen that when the temperature is increased from 45 C to 55 C, a significant increase is observed in the yield of FAME. Heating the reaction system accelerates the mobility of the reactant molecules and catalyst particles, leading to intensive particle collision in the system. This phenome- non increases the

3reaction rate constant and shifts the reaction to the right (product side).43-46 From another viewpoint, an increase in temperature also enhances the

mass transfer and diffusivity

1 of the reactant molecules to the pore of Cu/DS-HMS-NH2

; therefore, heightening the yield of FAME. A further increase to the temperature of 65 C, on the other hand, lowers the yield of FAME. Madhuvilakku and Piraman (2013) and Yin et al (2016)47,48 stated that this tendency occurs due to the loss of methanol in the reaction system caused by evapora- tion, which induces the reverse reaction towards the reactants.

3A similar trend is also observed for the

24influence of methanol to DPO mass ratio on the FAME yield

. As seen from Figure 5A(2,3), increasing the level of

7methanol to DPO mass ratio from 2:1 to 4:1 escalates the FAME

yield, while further addition of methanol in the system, reaching the

7methanol to DPO mass ratio of 6:1

, gives an antagonistic effect to the yield. This result is in accor- dance with the study proposed by Gunawan et al (2014)49 where the excess methanol is

6favorable to the reaction, only to a certain extent

. Pangestu et al (2019)8 added that even though the yield of FAME may increase along with the amount of methanol, it may as well rapidly improve glycerol production. This phenomenon may subsequently provoke

3a reverse reaction to the reactant side, lowering the

FAME yield. Furthermore, a

1higher mass ratio of methanol to DPO will only increase the production cost

, reducing the operating efficiency.23 3.3 | Process optimization RSM is statistically

3employed to determine the optimum operating conditions for the production of

FAME using Cu/DS-HMS-NH2, by simultaneously integrating the three important parameters, for example,

1reaction time, temperature, and the mass ratio of methanol to DPO

4Table 2 presents the correlation between the input variables and their corresponding

response (FAME yield, wt%). The average SE estimate between the actual and predicted response is obtained at 0.01% (n = 20), indicating sufficient data accuracy. A similar trend as the experimental data is also observed from the predicted plots, as depicted in Figure 5B(1-3). The statistical analysis

16to determine the significance of the three independent variables on the

yield of FAME is conducted using ANOVA, with the α value set at 0.05 to minimize the analysis error; and the results are pres- ented in Table 4. All linear terms and the interaction between

1reaction temperature and the mass ratio of methanol to DPO

are observed to have a positive effect on the FAME yield, while in contrast, the quadratic coef- ficients and the other two interactions give an antagonis- tic effect to the yield of FAME. It can be seen from Table 4 that all terms, except the interaction between reaction time

1 and the mass ratio of methanol to DPO (BC), show prominence to the

FAME yield (P value <0.05). Based on the perturbation plot pres- ented in Figure 6A, reaction time (B) is regarded as the most dominant contributor, where the plotline rises the steepest compared to the other variables. It is successively F I G U R E 5 The

2yield of FAME (wt%) based on the A, experimental results and B

, predicted results, due to the

3interaction between (1) reaction time (h) and temperature

(C), (2)

1reaction time (h), and the mass ratio of methanol to DPO

, and (3) temperature (C) and the mass

2ratio of methanol to DPO [Colour figure can be viewed at wileyonlinelibrary.com

] followed by the methanol to DPO mass ratio (C) and reac- tion temperature (A). The coefficients for the three inde- pendent variables (A, B, C) obtained from this plot are 1.58, 9.26, and 3.80, respectively. This coefficient value indi- cates the sensitivity of the variable. For instance, the coeffi- cient value of reaction time (B, 9.26) pointed out that this variable contributes to the response with the average value of 9.26% when the reaction time is increased by one level. The results obtained from the perturbation plot were also supported by the generated Pareto chart (Figure 6B). As seen from the figure, the significance order of all the linear, quadratic and two-way interaction terms can be sorted into the following sequence: reaction time (B) >

1mass ratio of methanol to DPO

(C) > quadratic temperature (A2) > temperature/time (AB) > quadratic reaction time (B2) > temperature (A) > quadratic mass ratio of methanol to DPO (C2) > temperature/mass ratio of methanol to DPO (AC). These parameters contribute to the suitability of the mathematical regression model. By inserting all the significant coefficient values to Equation (5), the

20mathematical model can be expressed as follows: Y

1⁄4 79:95 þ 1:58 A þ 9:26 B þ 3:80 C ? 4:84 A2 ? 3:72 B2 ? 2:33 C2 ? 2:08 AB þ 1:10 AC ð5Þ where Y is the yield of FAME (wt%), and

4A, B, C are the encoded level of input variables (?1

, 0, 1). T A B L E 4 The estimated regression coefficient and

2their significance for the calculation of FAME yield, generated by ANOVA Term

Constant A B C A2 B2 C2 AB AC BC Coef SE Coef 79.947 0.336 1.583 0.315 9.262 0.315 3.805 0.344 ? 4.842 0.648 ?3.717 0.648 ?2.333 0.746 ?2.078 0.352 1.097 0.352 ?0.550 0.352 T-value 238.14 5.03 29.45 11.07 ?7.48 ?5.74 ?3.13 ?5.91 3.12 ?1.56 P-value 0.000 0.001 0.000 0.000 0.000 0.000 0.011 0.000 0.011 0.149 The goodness-of-fit analysis for the regressed equa- tion is summarized in Table 5. Based on the ANOVA, the regressed mathematical model shows significance, indi- cating that the model can be used for predicting the yield of FAME. The low value of SD (0.9947) further points out that most of the experimental data approaching the sta- tistical average.50 Figure 6C also observes a well-behaved residual vs predicted plot, indicating that the linear corre- lation is reasonable. The horizontal band around the zero-line formed by the residuals, without any value stood out from the basic random pattern also suggests that the variances of the error terms are equal and there are no outliers. The

2lack-of-fit test shows that the P-value of the model is 0

.3625, emphasizing that the derived equation is well-fitted to the actual data and the discrep- ancy of the model shows no significance. The value of R- squared for the model is found to be 0.9934, implying that 99.34% of

10the experimental data can be adequately interpreted by Equation

(5).

3A good agreement between the predicted and experimental response of FAME yield

is also observed from the

2value of adjusted and predicted R-squared which are also close to unity (0.9875 and 0.9656, respectively

). This result indicates that the model is sufficient to support the prediction of new responses within the tested range. Furthermore, two other parameters, for example, the coefficient of variation and adequate precision, are also monitored through the ANOVA. Table 5 presents that the values of C.V. and adequate precision are obtained at 1.34% and 46.3751, respectively. While C.V. is used to express the model reproducibility and has a maximum value of 10%, the

17adequate precision shows the signal-to-noise ratio

, which can be used to compare the

17range of the predicted values at the design points to the average prediction error

, with the optimal value of >4.0. Based on the obtained value of C.V. (1.34%) and adequate precision (46.3751), it can be concluded that the level of data clarity is high and the experimental values are sufficient; indicating that the regressed model can be used to represent all the inde- pendent variance assumption. Meanwhile, the optimum operating condition for the

1in-situ esterification/transesterification reaction using Cu/DS-HMS-NH2

is obtained using Minitab (version 18.1) (Figure 7): temperature of 55.3 C (coded level of 0.0303), the reaction time of 5 h (coded level of 1)

12and methanol to DPO mass ratio of 5.3:1

(coded level of 0.6970). The

12predicted FAME yield under this optimum condition

is monitored at 86.63%

2with model desirability of 1.00. Three replicated experiments were performed using these optimum variables to confirm the plausibility of the

developed mathematical model. The experimental FAME yield

2obtained at the optimum operating condi- tion

4is found at 87.14 ± 0.11 wt% with the FAME purity of 98.45 ± 0.67 wt

%.

3With the error between the experi- mental and predicted values of only 0.51%, we can con- clude that adequate accuracy in the

determination of FAME

3yield using the operating parameters within the tested levels

can be achieved via the established equa- tion. The optimum yield of FAME also shows that Cu/DS-HMS-NH2 is comparable to the existing catalysts published in the literature. Xie and Wan (2019)12 stud- ied that the oil conversion of 95.8 wt% was achieved only after a 6 h reaction at a temperature of 110 C using the POM-

23based sulfonated ionic liquid immobilized- UiO-66-2COOH metal-organic

framework, while da Conceiç~ao et al (2016)15 presented the use of extreme temperature and catalyst loading (250 C and 30 wt%) to attain 99.2 wt% FAME yield using sulfated niobium oxide. High

9reaction temperature (200 C) and catalyst loading (7.5 wt

%) was also reported by García-Sancho et al (2011)20 to obtain a 95 wt% biodiesel conversion using niobium-impregnated MCM-41 catalyst. More- over, Omar and Amin (2011)11 mentioned that the transesterification of waste cooking oil in the presence of alkaline-modified zirconia catalyst requires a temper- ature of 115.5 C to achieve less than 80 wt% FAME yield. Therefore, the mild temperature (55 C), moderate catalyst loading (5 wt%), and comparable reaction time (5 h) obtained from this optimization study are highly favorable since the three parameters are directly related to the process efficiency in the industries. Table 6 presents the characteristics of the final FAME product. The results show that its fuel properties are fol- lowing the standard of ASTM D6751. The measured heating

1value (45.72 MJ/kg) is also within the range observed in the common petrodiesel

fuel (42-46 MJ/ kg).51 We observe a similar profile in the FTIR spectra of F I G U R E 6 A, Perturbation plot and B, Pareto chart

4showing the significance order of various reaction variables

, where A = temperature (C), B = reaction time (h), C = mass ratio of methanol to DPO; and C, the residual vs predicted plot [Colour figure can be viewed at wileyonlinelibrary.com] DPO and FAME (Figure 8). Several functional groups, for example, the bending vibrations of –CH, –CH2, –CH3 (1395, 1187, and 760 cm?1 for DPO and 1395, 1181, and 754 cm?1 for FAME), their respective stretching bands (3024, 2953, and 2876 cm?1 for DPO and 3030, 2929, and 2858 cm?1 for FAME), carbonyl (C=O, 1786 cm?1 for DPO and 1756 cm?1 for FAME), C–O stretching band (1140 cm?1 for DPO and 1134 cm?1 for FAME) are moni- tored in both spectra. Fadhil (2021)52 also reported simi- lar spectra for bio-oil from the non-edible feedstock, indicating that oils and fats generally consist of the same functional groups. However, the FTIR spectra of FAME show a new signal at 1465 cm?1 which indicates the pres- ence of the ester group with its deformation vibration. This implies that FAME is formed during the simulta- neous esterification/transesterification reaction. More- over, using the external standard pack (47 885 U, containing 37 components FAME standard mix), 11 FAME peaks, including C11:0, C14:1, C15:1, C16:0, C16:2, C18:0, C18:1n9c, C18:1n9t, C18:2, C18:3, C20:0, and C20:3n6, are identified. 3.4 | Reusability study of Cu/DS-HMS-NH2

1To determine the reusability of Cu/DS-HMS-NH2, several reaction cycles were conducted in series using the

T A B L E 5 The ANOVA results

20for the fitted regression model Source Sum of squares DF

Model 1497.29 9 A 25.06 1 B 857.85 1 C 121.19 1 A2 55.30 1 B2 32.59 1 C2 9.67 1 AB 34.53 1 AC 9.64 1 BC 2.42 1 Residuals 9.89 10 Lack of fit 4.63 4 Pure error 5.27 6 Total 1507.18 19 R-squared (R2) 0.9934 Adjusted R2 Adequate precision 46.3751 Coefficient of variation (C.V., %) Mean square 166.37 25.06 857.85 121.19 55.30 32.59 9.67 34.53 9.64 2.42 0.9893 1.16 0.8778 0.9875 1.34 F-value 168.16 25.33 867.09 122.50 55.89 32.94 9.78 34.90 9.74 2.45 1.32 Predicted R2 SD P-value <0.0001 0.0005 <0.0001 <0.0001 0.0002 0.0108 0.0001 0.0109 0.1489 0.3625 0.9656 0.9947 Remarks Significant Significant Significant Significant Significant Significant Significant Not significant F I G U R E 7

3Response optimization plot of the three independent variables

for the

1in-situ esterification/transesterification reaction using Cu/DS-HMS-NH2 [Colour figure

can be viewed at wileyonlinelibrary.com] following optimum condition: temperature = 55.3 C, reac- Figure 9 presents the catalytic ability of the reused Cu/DS- tion time = 5 h, and methanol to DPO mass ratio = 5.3:1. HMS-NH2. Notable from the figure, this catalyst can T A B L E 6 The characteristics of the resulting FAME product Properties Methods Kinematic viscosity (at 40 C) ASTM D445 Flashpoint ASTM D93 Cetane number ASTM D613 FAME content (purity) EN 14103 Acid value ASTM D664 Monoglycerides content ASTM D6584 Diglycerides content EN14105 Triglycerides content EN14105 Calorific value ASTM D240 Unit mm2/s C - wt% mg KOH/g wt% wt% MJ/kg Final FAME product 3.54 168.4 53.2 98.45 0.27 0.32 0.09 0.09 45.72 ASTM D6751 1.9-6.0 93 min 47 min - 0.5 max 0.4 max - - - F I G U R E 8 The FTIR spectra of DPO and FAME [

2Colour figure can be viewed at wileyonlinelibrary.com

] F I G U R E 9 The

1 catalytic activity of Cu/DS-HMS-NH2 during the

reusability study maintain the

1yield of FAME above 80 wt% until the fifth cycle, before significantly drop to

72.18 wt% at the sixth cycle. Similar catalytic

1performance has been reported for some other solid catalysts, where 5 cycles seem to be the average number in terms of their reusability.12,53 The

FAME purity for the first five is measured at 97.16 wt%, 97.72 wt%, 98.02 wt%, 97.77 wt%, and 96.94 wt%, respec- tively; higher than the required ester content in the com- mercial biodiesel (minimum at 96.5 wt%). The

1deactivation of Cu/DS-HMS-NH2 is attributed to the blockage of the

cat- alyst pores by the components present in the reaction sys- tem, for example,

1glycerol, acyl glycerides, and biodiesel.33 Besides, the FFA content in DPO also

contributes to the neutralization of the

1basic sites in the inner shell of Cu/DS- HMS-NH2

catalyst,54 thereby promoting the production of the amine-carboxylate compound and subsequently, generating

1emulsion. 3.5 | The catalytic reaction mechanism for the in-situ esterification/transesterification

Figure 10 presents the catalytic

1reaction mechanism for the in-situ esterification/ transesterification reaction using Cu/DS-HMS-NH2. As shown in the

figure, the outer layer of the catalyst is impregnated by copper (a strong Lewis acid) which was intended to convert FFA to FAME through an esterification process, while the inner shell was functionalized with amine (–NH2) as the basic sites to further convert the acyl glycerides to FAME through the process of transesterification. The

1in-situ esterification/transesterification mecha- nism using the Cu/DS-HMS-NH2 catalyst

can be described as follows: all reactant molecules, including

1acyl glycerides, FFA, and methanol migrate onto the boundary layer of the catalyst and diffuse through the

layer onto the outer shell of the catalyst, which is impregnated by the copper. In this layer, the pi carbonyl bond in FFA resonates and undergoes electron F I G U R E 1 0 The

1in-situ esterification/transesterification reaction mechanism using Cu/DS-HMS-NH2

[

18Colour figure can be viewed at wileyonlinelibrary.com] delocalization to form carbocation and

carbanion,55,56 which are highly reactive. The pi carbonyl bond has a weak molecular interaction due to the distance between the electron in the carbanion and the positively charged atomic nucleus (carbocation).57 As a result, the copper impregnated on the Cu/DS-HMS-NH2 catalysts acts as a proton donor and binds the carbanion to form a complex by holding the excess electron density; therefore, stabilize the charge and promote the next reaction step to occur. The chemical interaction in the outer shell continues when the lone pair in the hydroxyl group of methanol, which possesses the electronegative properties, binds to the carbocation, resulting in the release of the hydrogen atom in the hydroxyl group of methanol, further driving the atom to move to the hydroxyl group of FFA. Due to the addition of the attached hydrogen atom, another elec- tron delocalization occurs to adjust the distribution of electrons in the hydroxyl group of FFA. Subsequently, the hydrogen atom attached

1to the hydroxyl group of FFA is released to form

H2O, followed by the release of the copper complex bond to form the final product in the form of FAME. Meanwhile, the acyl glycerides diffuse further to the basic sites contained in the inner shell of the catalyst to engage in a transesterification reaction. Initially, metha- nol undergoes a deprotonation reaction to give the hydro- gen atom to the amine group of the catalyst. This reaction results in two products, namely NH3+- embedded catalyst and the alkoxy (RO-) group of methanol. Then, in one of its pi-carbonyl bonds, the acyl glycerides encounter an

1electron delocalization to form carbocation and carbanion. The

alkoxy (RO-) group of methanol is then bound to the carbocation. A further electron reso- nance occurs to produce a complex of FAME and glyc- erol. To create a stable compound, the positively charged NH3 in the catalyst donates the hydrogen proton to the + complex of FAME and glycerol to release glycerol from one of the chains58 and at the same time, produce FAME as well. Once the reaction is completed, the three products (FAME, H2O, and glycerol) from the in-situ esterifi- cation/transesterification reaction are subsequently desorbed to the surface of the catalyst. 4 | CONCLUSION Cu/DS-HMS-NH2 is successfully fabricated and employed

, for the synthesis of FAME from DPO with

2high FFA and moisture content. The particle size of

the Cu/DS-HMS-NH2 catalyst is uniform at 157 nm with a hollow core size of 81 nm. This catalyst consists of 2 layers with a similar thickness of 16-19 nm. The textural properties of Cu/DS-HMS-NH2 are also comparable to the existing heterogeneous catalyst, with SBET of 733.24 m2g?1, and Vp of 0.54 cm3g?1. The maximum FAME yield at 87.14 \pm 0.11

4wt% with the purity of 98.45 ± 0.67 wt

% was obtained using Cu/DS-HMS-NH2 under the following optimum condition: 55.3 C, 5 h,

12methanol to DPO mass ratio of 5.3:1

, and 5 wt% catalyst loading, indicating the high

1catalytic activity of Cu/DS-HMS-NH2. The result of

the statistical ANOVA shows that the reac- tion time gives the

1most significant influence on the yield of FAME, followed successively by the

1mass ratio of methanol to DPO and temperature. The predicted and

experimental results have a direct proportional output, as shown by the

4goodness of fit analysis. Based on the

reus- ability study, the catalyst produces

4a high yield of FAME (>80 wt%) until the

fifth cycle. Therefore, Cu/

1DS-HMS- NH2 can be considered as a promising solid catalyst

1thank Professor Chun-Hu Chen, National Sun Yat-Sen University, and National Taiwan University of Science and Technology, for providing the facilities for material characterizations

13This work was supported by Widya Mandala Surabaya Catholic University, through

the research grant no. 2263/WM01/N/2020. D A T A A V A I L A B I L I T Y S T A T E M E N T The

14data that support the findings of this study are avail- able from the corresponding author upon reasonable request

. O R C I D

2Maria Yuliana https://orcid.org/0000-0002-3915-9401

R E F E R E N C E S 1. Gurunathan B, Ravi A. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst. Bioresour Technol. 2015;188:124-127. 2. Adhari H, Yusnimar Y, Utami SP. Pemanfaatan minyak jelantah menjadi biodiesel dengan katalis zno presipitan zinc karbonat: pengaruh waktu reaksi dan jumlah katalis. J Online Mahasiswa. 2016;3:1-7. 3. Puna JF, Gomes JF, Correia MJN, Soares Dias AP, Bordado JC. Advances on the development of novel heterogeneous catalysts for transesterification of triglycerides in biodiesel. Fuel. 2010; 89:3602-3606. 4. Chaudhary S, Milton MD, Garg P. A base- and metal-free pro- tocol for the synthesis of 2-aryl/heteroaryl Thiazolines. Chem Sel. 2017;2:650-654. 5. Samart C, Chaiya C, Reubroycharoen P. Biodiesel production by methanolysis of soybean oil using calcium supported on mesoporous silica catalyst. Energy Convers Manag. 2010;51: 1428-1431. 6. Jacobson K, Gopinath R, Meher LC, Dalai AK. Solid acid cata- lyzed biodiesel production from waste cooking oil. Appl Catal B Environ. 2008;85:86-91. 7. Xie W, Yang X, Fan M. Novel solid base catalyst for biodiesel production: mesoporous SBA-15 silica immobilized with 1,3dicyclohexyl-2-octylguanidine. Renew Energy. 2015;80: 230-237. 8. Pangestu T, Kurniawan Y, Soetaredjo FE, et al. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J Environ Chem Eng. 2019;7:103277. 9. Zhou K, Chaemchuen S. Metal-organic framework as catalyst in esterification of oleic acid for biodiesel production. Int J Environ Sci Dev. 2017;8:251-254. 10. Chen S-Y, Mochizuki T, Abe Y, Toba M, Yoshimura Y. Ti- incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high- quality biodiesel fuels. Appl Catal B Environ. 2014;148-149: 344-356. 11. Omar WNNW, Amin NAS. Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Pro- cess Technol. 2011;92:2397-2405. 12. Xie W, Wan F. Immobilization of polyoxometalatebased sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem Eng J. 2019;365:40-50. 13. Boz N, Degirmenbasi N, Kalyon DM. Esterification and trans- esterification of waste cooking oil over Amberlyst 15 and modified Amberlyst 15 catalysts. Appl Catal B Environ. 2015;165:723-730. 14. Liu H, Chen J, Chen L, Xu Y, Guo X, Fang D. Carbon nanotube-based solid sulfonic acids as catalysts for production of fatty acid methyl Ester via transesterification and esterifica- tion. ACS Sustain Chem Eng. 2016;4:3140-3150. 15. da

Conceic~ao LRV, Carneiro LM, Rivaldi JD, de Castro HF. Solid acid as catalyst for biodiesel production via simultaneous esterification and transesterification of macaw palm oil. Ind Crop Prod. 2016;89:416-424. 16. Li Y, Zhang XD, Sun L, Xu M, Zhou WG, Liang XH. Solid sup- eracid catalyzed fatty acid methyl esters production from acid oil. Appl Energy. 2010;87:2369-2373. 17. Li Y, Shi J. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater. 2014; 26:3176-3205. 18. Stein A. Advances in microporous and mesoporous solids - highlights of recent progress. Adv Mater. 2003;15:763-775. 19. Ying JY, Mehnert CP, Wong MS. Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed. 1999;38:56-77. 20. García-Sancho C, Moreno-Tost R, Mérida-Robles JM, Santamaría-Gonzalez J, Jiménez-Lopez A, Maireles-Torres P. Niobium-containing MCM-41 silica catalysts for biodiesel pro- duction, Appl Catal B Environ, 2011;108-109;161-167, 21, Chang F, Yan C. Zhou Q. Synthesis of a new copper-based supramolecular catalyst and its catalytic performance for biodiesel production. Int J Chem Eng. 2018;2018:1-8. 22. Fadhil AB, Saeed IK, Saeed LI, Altamer MH. Cosolvent eth- anolysis of chicken waste: optimization of parameters and characterization of biodiesel. Energy Sour Part A. 2016;38:2883- 2890. 23. Santosa FH, Laysandra L, Soetaredjo FE, Santoso SP, Ismadji S, Yuliana M. A facile noncatalytic methyl ester production from waste chicken tallow using single step subcritical methanol: optimization study. Int J Energy Res. 2019;43:8852-8863. 24. Lie J, Rizkiana MB, Soetaredjo FE, Ju YH, Ismadji S, Yuliana M. Non-catalytic transesterification of waste cooking oil with high free fatty acids content using subcritical metha- nol: process optimization and evaluation. Waste Biomass Valo- rization. 2020;11:5771-5781. 25. Yuliana M, Santoso SP, Soetaredjo FE, et al. A one-pot synthe- sis of biodiesel from leather tanning waste using supercritical ethanol: process optimization. Biomass Bioenergy. 2020;142: 105761. 26. Lee HV, Yunus R, Juan JC, Taufig-Yap YH. Process optimiza- tion design for jatropha-based biodiesel production using response surface methodology. Fuel Process Technol. 2011;92: 2420-2428. 27. Wang J, Liu C, Tong L, et al. Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: an effective heterogeneous Fenton catalyst for orange II degra- dation. RSC Adv. 2015;5:69593-69605. 28. You C, Yu C, Yang X, et al. Double-shelled hollow mesoporous silica nanospheres as an acid-base bifunctional catalyst for cas- cade reactions. New J Chem. 2018;42:4095-4101. 29. Zaidi HA, Pant KK. Catalytic activity of copper oxide impreg- nated HZSM-5 in methanol conversion to liquid hydrocarbons. Can J Chem Eng. 2008;83:970-977. 30. Das SK, Bhunia MK, Sinha AK, Bhaumik A. Self-assembled mesoporous zirconia and sulfated zirconia nanoparticles syn- thesized by triblock copolymer as template. J Phys Chem C. 2009;113:8918-8923. 31. Tsou CJ, Hung Y, Mou CY. Hollow mesoporous silica nanoparticles with tunable shell thickness and pore size distri- bution for application as broad-ranging pH nanosensor. Micro- porous Mesoporous Mater. 2014;190:181-188. 32. Khatun R, Bhanja P, Mondal P, Bhaumik A, Das D, Manirul IS. Palladium nanoparticles embedded over mesoporous TiO2 for chemical fixation of CO2 under atmospheric pressure and solvent-free conditions. New J Chem. 2017;41:12937-12946. 33. Suryajaya SK, Mulyono YR, Santoso SP, et al. Iron (II) impregnated doubleshelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters. Renew Energy. 2021;169:1166-1174. 34. Klinghoffer NB, Castaldi MJ, Nzihou A, et al. Catalyst Proper- ties and catalytic performance of char from biomass gasifica- tion to cite this version: HAL id: HAL-01632400 catalyst Properties and catalytic performance of char from biomass Gasi fi cation. Ind Eng Chem Res. 2012;51:13113-13122. 35. Zakeri M, Samimi A, Shafiee Afarani M, Salehirad A. Effects of porosity and pore size distribution on mechanical strength reli- ability of industrial-scale catalyst during preparation and cata-lytic test steps. Part Sci Technol. 2018;36:96-103. 36. Peng W, Zhang Z, Rong M, Zhang M. Core-shell structure design of hollow mesoporous silica nanospheres based on thermo-sensitive PNIPAM and pH-responsive catechol-Fe3+ complex. Polymers. 2019;11:1832. 37. Baskar G, Soumiya S. Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst. Renew Energy. 2016;98:101-107. 38. Cai J, Zhang QY, Wei FF, et al. Preparation of copper (II) containing Phosphomolybdic acid salt as catalyst for the synthesis of biodiesel by esterification. J Oleo Sci. 2018;67: 427-432. 39. Ong HR, Khan MR, Chowdhury MNK, Yousuf A, Cheng CK. Synthesis and characterization of CuO/C catalyst for the esteri- fication of free fatty acid in rubber seed oil. Fuel. 2014;120: 195-201. 40. Amalia Kartika I, Yani M, Ariono D, Evon P, Rigal L. Biodiesel production from jatropha seeds: solvent extraction and in situ transesterification in a single step. Fuel. 2013;106:111-117. 41. Wei Z, Xu C, Li B. Application of waste

eggshell as low-cost solid catalyst for biodiesel production. Bioresour Technol. 2009; 100:2883-2885. 42. Alenezi R, Leeke GA, Winterbottom JM, Santos RCD, Khan AR. Esterification kinetics of free fatty acids with super- critical methanol for biodiesel production. Energy Convers Manag. 2010;51:1055-1059. 43. Farooq M, Ramli A. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew Energy. 2015;76:362-368. 44. Canakci M. Van Gerpen J. Biodiesel production via acid cataly- sis. Trans Am Soc Agric Eng. 1999;42:1203-1210. 45. Farooq M, Ramli A, Subbarao D. Biodiesel production from waste cooking oil using bifunctional heterogeneous solid cata- lysts. J Clean Prod. 2013;59:131-140. 46. Liu S, Wang Y, Oh JH, Herring JL. Fast biodiesel production from beef tallow with radio frequency heating. Renew Energy. 2011;36:1003-1007. 47. Madhuvilakku R, Piraman S. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol. 2013;150:55-59. 48. Yin X, Duan X, You Q, Dai C, Tan Z, Zhu X. Biodiesel pro- duction from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst. Energy Convers Manag. 2016;112: 199-207. 49. Gunawan F, Kurniawan A, Gunawan I, et al. Synthesis of bio- diesel from vegetable oils wastewater sludge by in-situ subcritical methanol transesterification: process evaluation and optimization. Biomass Bioenergy. 2014;69:28-38. 50. Balajii M, Niju S. A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel produc- tion – process optimization using central composite design. Energy Convers Manag. 2019;189:118-131. 51. Association WN. Heat values of various fuels. 2018. Available at: http://www.world-nuclear.org/information-library/facts- and-figures/heat-values-of-variousfuels.aspx. 52. Fadhil AB. Production and characterization of liquid biofuels from locally available nonedible feedstocks. Asia Pac J Chem Eng. 2021;16:1-21. 53. Ullah Z, Bustam MA, Man Z. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew Energy. 2015;77:521-526. 54. Kouzu M, Hidaka JS. Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel. 2012;93:1-12. 55. Herges R, Geuenich D. Delocalization of electrons in mole- cules. Chem Eur J. 2001;105:3214-3220. 56. Peter K Vollhardt C. NES. Organic Chemistry; Palgrave ver- sion: Structure and Function. 2014. 57. Deen MJ, Pascal F. Springer handbook of electronic and pho- tonic materials. J Mater Sci Mater Electron. 2007;17:549-575. 58. Trejo-Zarraga F, Hernandez-Loyo F, Chavarría-Hernandez J, Sotelo-Boyas R. Kinetics of transesterification processes for bio- diesel production. In: Biernat K, ed. Biofuels - State of Development. London, United Kingdom: Intechopen; 2018. How to cite this article: Rahadi AN, Martinus JJ, Santoso SP, et al. Double-shelled hollow

5mesoporous silica incorporated copper (II) (Cu

9ET AL. 5 6 RAHADI ET AL. RAHADI ET AL

. 7 8 RAHADI ET AL. RAHADI

9ET AL. 9 10 RAHADI ET AL. RAHADI ET AL. 11 12 RAHADI ET AL

. RAHADI ET AL. 13 14 RAHADI ET AL. RAHADI ET AL. 15 16 RAHADI ET AL. RAHADI ET AL. 17 18 RAHADI ET AL.