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A B S T R A C T

Background: The pressing demand to increase agricultural productivity amid the rapidly growing population
has exponentially boosted fertilizers usage. Phosphate (Pi) runoff from fertilizers induces eutrophication in
water sources and severely affects its surrounding ecosystems. To cope with Pi accumulation problem, this
study reported the synthesis of an environmentally friendly magnetic adsorbent, namely Fe3O4/thiamine
(thF).
Method: A one-step chemical oxidation and functionalization technique for thF synthesis was developed.
X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy
(FTIR), nitrogen (N2) sorption, and superconducting quantum interference device (SQUID) analysis were con-
ducted to ensure the formation of Fe3O4, confirm the successful incorporation of thiamine, and gain insight
into the factors influencing the adsorptivity of thF-363.
Significant Findings: The thF synthesized at 363 K (thF-363) produces an adsorbent with the highest Pi
removal efficiency compared to other synthesis conditions. The thF-363 showed up to 1.51-fold higher
adsorption capacity than the unmodified Fe3O4. The large surface area and occurrence of thiamine functional
groups are the contributing factors in enhancing its adsorption capacity for Pi removal. The thF-363 did not
adversely affect the growth of the model plant, Arabidopsis thaliana; demonstrating its suitability as an
environmentally friendly adsorbents for Pi removal from eutrophicated water with the feasibility of magnetic
separation from an aqueous system.

© 2021 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Phosphorus in phosphate (Pi) form is essential for every organism,
including humans, animals, and plants. Appropriate Pi intake is
majorly related to bone�teeth health and overall growth for animals
and humans [1]. Similarly, Pi availability is also affiliated to plant
vigor, where Pi deficiency had been acknowledged to affect root
growth. The prolonged starvation eventually can be detrimental to
the sustainability of agriculture [2,3]. Due to its indispensable nature,
most global Pi consumption is allocated for the production of fertil-
izers and animal feed supplements [4,5]. Pi-fertilizers are regularly
applied on agricultural soil to maintain adequate-high levels of Pi to
satisfy the plant demand for growth and development. However,
only less than half of the administered Pi is absorbed by crops while
the remainder is leached to the environment through soil and often
end-up in water [6,7]. Accumulation of Pi in the water body had
been acknowledged as the primary cause of eutrophication which
sets off a series of detrimental effects in the aquatic ecosystem; from
the algal bloom to the generation of hypoxic or anoxic ‘dead zone’
which affect the availability of oxygen in water [8]. To alleviate this
issue, various methods such as chemical precipitation, biological
treatment, anion exchange, electro-coagulation, acid-thermal treat-
ment, and adsorption have been developed to efficiently remove
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excess Pi from water resources [9-16]. Among them, adsorption is
one of the most used methods in managing Pi concentration in water,
owing to its inexpensive and straightforward operation.

Several composite adsorbents prepared from a combination of
inorganic and organic compounds had been widely used for Pi
removal application. For instance, MgO/biochar possessed Pi adsorp-
tion capacity up to 122 mg/g [17], the adsorption capacity of mont-
morillonite-iron crosslinked alginate, and its zirconium modified
alginate can reach 48.78 mg/g and 67.72 mg/g, respectively [18,19].
While various adsorbents with excellent adsorption capacity for Pi
removal had been developed, separation of the post-adsorption
adsorbent from the water is the main issue that leads to the impracti-
cability of those adsorbents. Filtration and/or centrifugation proce-
dure are commonly performed to recover the adsorbent from treated
water. In this work, an adsorbent with magnetic-separability prop-
erty was developed, with Fe3O4 as the core material. Superparamag-
netic Fe3O4 possesses remarkable magnetic properties that allow its
practical separation post-adsorption using an external magnetic field
[20-22]. Besides their superparamagnetic and adsorbing properties,
the low toxicity, durability, biocompatibility, low cost, and chemical
stability of Fe3O4 made them the promising adsorbent for water
treatment [23-26].

In this study, a composite material consisting of Fe3O4 and thia-
mine was developed to generate magnetic adsorbent with enhanced
adsorption capacity. Thiamine, also known as Vitamin B1, is a water-
soluble vitamin beneficial for plants and animals due to its antioxi-
dant activity. It may also function as a cofactor for various metabolic
activities [27,28]. In plants, thiamine is distributed in leaves, seeds,
flowers, and roots; and is known to play a role to protect plant from
abiotic and biotic stresses [29,30]. Thiamine molecule consists of a
pyrimidine ring (4-amino-2-methyl-5-pyrimidyl) which is connected
to a thiazole ring (4-methyl-5-b-hydroxyethylthiazolium) through
a methylene bridge [31]. The occurrence of these N-functional
groups in thiamine, which tends to be positively charged, is
expected to promote the adsorption capacity toward anionic Pi
ions [32-34]. In addition, through the beneficial effect of thiamine
for plant stress adaptation, the post-adsorption thiamine-func-
tionalized Fe3O4 (thF) can be a potential Pi-supplement to sup-
port plant growth. This study also investigated the effect of
synthesis temperature on the product yield and its Pi-removal
performance. Several physicochemical characterizations were car-
ried out to elucidate the properties of thF, including crystallinity
pattern, surface chemistry, surface functional groups, porosity,
and magnetic behavior. The physicochemical properties of thF
were compared to that of unmodified Fe3O4 (F) to confirm the
successful incorporation of thiamine. Adsorption isotherm of Pi
by thF and F at different temperatures was conducted to study
their adsorption behavior and mechanism. The environmental
compatibility of these adsorbents was also assessed.
Table 1
Synthesis temperature used and its influence on y
materials. Data are means § SD from three replicates

Sample name Temp (K) pH* YieldFe** (%

thF-303 303 9.24 31.00 § 1.3
thF-333 333 9.14 30.04 § 0.5
thF-363 363 9.11 33.93 § 1.0
F-303 303 9.98 29.44 § 0.5
F-333 333 9.92 27.16 § 0.5
F-363 363 9.83 25.72 § 0.3

* pH of solution at the end of the reaction.
** The amount of product formed per amount of

¼ mproduct

mFeSO4 ¢7H2O
� 100%.

*** The amount of product formed per amount of
lated as YieldFe+thiamine ¼ mproduct

mFeSO4 ¢ 7H2Oþmthiamine
� 100%.
2. Materials and methods

2.1. Materials

All chemicals used were of analytical grade and were used with-
out any pretreatment. Iron(II) sulfate heptahydrate (FeSO4.7H2O,
purity >99.5%) and hydrochloric acid (HCl, purity 37%) were pur-
chased from Acros Organics, New Jersey, USA. Ammonia (NH3, purity
28-30%) and potassium dihydrogen phosphate (KH2PO4, purity
�99.5%) were manufactured by Showa, Tokyo, Japan. Thiamine
hydrochloride (C12H17ClN4OS.HCl, purity �99%) was a product of
Sigma, St.Louis, MO, Germany. Sodium hydroxide (NaOH, purity
>97%) was obtained from Fisher Scientific, Loughborough, UK. The
solutions used for the experiments were freshly prepared before use
by dissolving a certain amount of chemicals in deionized (DI) water
with 18.3 MV¢cm.

2.2. Synthesis of magnetite-based adsorbent

For thF synthesis, 0.2024 g of thiamine and 0.1668 g of FeS-
O4.7H2O (Fe salt) were dissolved in 20 mL of DI water. The solution
was left to react for 1 h under constant mixing at 300 rpm at certain
temperatures, as listed in Table 1. Subsequently, ammonia was added
(molar ratio of NH4OH, Fe salt, and thiamine 10:1:1). The mixture
was then left to react for another hour. The precipitate generated
from the reaction was magnetically separated from the supernatant
with an external magnetic force. The pH of the supernatants was
determined by Denver Instrument UltraBasic pH Benchtop Meters
UB-10 and was presented as the solution pH at the end of the reac-
tion (Table 1). On the other hand, the solid product was washed at
least 3 times with DI water and ethanol and dried at 313 K under vac-
uum for 24 h. The unmodified Fe3O4 was prepared using a similar
procedure, without the addition of thiamine, and used as a control.

2.3. Characterization

Thermogravimetric analysis (TGA) was performed using a TA
instruments/TGA 550, operated at a temperature range of 303-973K
with a heating rate of 10 K/min under N2 flow. The crystal pattern of
the prepared magnetite nanoparticles (thFs and Fs) was analyzed by
a Bruker D2 Phaser X-ray diffractometer (XRD) using Cu-Ka radiation
operating at 30 kV and 10 mA. Fourier-transform infrared spectros-
copy (FTIR) analysis was performed on a Shimadzu IRTracer-100. The
oxidation states of Fe element in the samples were determined using
an X-ray photoelectron spectroscopy (XPS, Thermo Fischer Scientific,
VG ESCALAB 250). The magnetic properties were measured by a
superconducting quantum interference device (SQUID, MPMS 3) at
300 K. Surface area and pore properties were determined by N2

adsorption-desorption isotherm procedure using a BEL Belsorp Max
ield and Pi removal ability of the synthesized
.

) YieldFe+thiamine*** (%) % Removal

9 ac 14.00 § 0.64 17.09 § 1.76
5 ab 13.57 § 0.25 34.37 § 0.88
2 a 15.01 § 0.46 48.33 § 1.06
5 bc 3.92 § 0.49
1 bd 5.82 § 0.46
0 d 7.67 § 0.18

FeSO4.7H2O reactant used, calculated as YieldFe

FeSO4.7H2O and thiamine reactants used, calcu-
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analyzer. Prior to the sorption experimentation, the samples were
degassed at 393 K for 4 h. The N2 adsorption-desorption data (Va vs
p
p0
) were then fitted with Brunauer�Emmett�Teller (BET) model,

with mathematical expression shown in equation (1).

p
Va p0 � pð Þ ¼

1
Vmc

þ c � 1
Vmc

p
p0

� �
ð1Þ

where Vm (cm3(STP)/g) and Va (cm3(STP)/g) are the gas volume at the
monolayer coverage and the total gas volume adsorbed at the stan-
dard state (T= 273.15 K and P= 101.3 kPa), c is the BET constant and p

p0
(kPa) is the relative pressure. The obtained Vm value was then utilized
to calculate the BET surface area (as,BET, cm2/g) by the following equa-
tion (2).

as;BET ¼ Vm N Acs

22414
ð2Þ

where N is the Avogadro’s number (6.023 £ 1023 mol�1), Acs (cm2) is
adsorbate cross-sectional area (16.2 £ 1020), 22414 cm3(STP)/mol is
the molar volume of gas at STP. The total pore volume (Vp, cm3/g)
and the mean pore diameter (dp, nm) was determined by equa-
tions (3) and (4), respectively.

Vp ¼ V M
22414 � ra

ð3Þ

dp ¼ 4 � Vp

as;BET
� 1000 ð4Þ

where V (cm3(STP)/g) is amount N2 adsorbed at last adsorption point,
ra is the density of adsorptive (0.808 g/cm3), and M is the nitrogen
molecular weight (28.0134 g/mol).

The point of zero charge (pHPZC) determination was done accord-
ing to the reported procedure [35]. In brief, 10 mg of adsorbent was
added into a series of 10 mL KNO3 0.1 M solution with initial pH
between 2 to 10. The initial pH of these KNO3 solutions was adjusted
by HCl 0.1 M or NaOH 0.1 M. Subsequently, the mixture solution was
placed on a shaking incubator (200 rpm) at 303 K. After 36 h incuba-
tion, the supernatants were collected and were used for final pH
determination. The DpH was calculated by subtracting the value of
the final pH from the initial pH. The pHPZC of each particle is the pH
where DpH equal to 0.

2.4. Adsorption Study

A 10,000 mg/L Pi stock solution was prepared by dissolving 10 g of
KH2PO4 in 1 L of DI water. The diluted Pi solution was then prepared
from the stock solution and was used for the adsorption experiment.
The residual concentration of Pi solution post-adsorption was mea-
sured by a colorimetric procedure using a UV-Vis spectrophotometer
Shimadzu UV 2600. The Pi solution was filtered using a 0.22 mm
PVDF syringe filter membrane prior to the colorimetric measure-
ment. To these filtered solutions, ammonium molybdate-based
reagent was added to produce a blue-colored solution which absor-
bance was measured at 880 nmwavelength [36].

2.4.1. Screening of Pi adsorption potential
Adsorbent (10 mg) was added into 10 mL Pi solutions at an initial

concentration of 100 mg/L, the adsorption process lasted for 24 h
under constant shaking at 200 rpm, and a temperature of 303 K. After
24 h, the adsorbent was magnetically separated from the superna-
tant, and the concentration of Pi that remained in the supernatant
was measured.

2.4.2. Effect of pH on Pi adsorption
The effect of pH on Pi removal was investigated between pH range

of 2 to 10. NaOH (0.1 M) or HCl (0.1 M) was used to adjust the initial
pH of the Pi solution (C0 = 100 mg/L). Into the 10 mL Pi solution,
10 mg adsorbent was added, and the mixtures was then placed in a
shaking incubator at 200 rpm and 303 K. After 24 h, the supernatant
was separated, and the amount of residual Pi that remained in the
supernatant was measured.

2.4.3. Adsorption isotherm
The adsorption of Pi by the samples was conducted at pH 3 and 4

for F-363 and thF-363 samples, respectively. A series of 10 mL Pi solu-
tions at a varied concentration (50 to 10,000 mg/L) were prepared in
scintillation vials, then 10 mg of the sample was added. These vials
were then placed in a shaking incubator, which operated at 200 rpm
under a controlled temperature of 303, 318, or 333K. After 24h, resid-
ual Pi in the supernatant was measured.

2.4.4. Data processing
The percent removal of Pi (% Removal) and the equilibrium

amount of Pi adsorbed per unit mass of adsorbent (Qe) were calcu-
lated based on the equations (5) and (6), respectively.

%Removal ¼ C0 � Ceð Þ
C0

� 100% ð5Þ

Qe ¼ C0 � Ceð Þ
m

� V ð6Þ

where C0 (mg/L) and Ce (mg/L) are the initial and equilibrium concen-
tration of Pi, V (L) is the volume of the solution, and m (g) is the mass
of adsorbents.

The adsorption data were plotted as Qe vs Ce and were fitted
against the Langmuir and Freundlich model, which is mathematically
expressed as equations (7) and (8), respectively. These two models
are used to respectively describe the monolayer and multilayer
adsorption process that might occur during the adsorbate-adsorbent
interaction [37].

Qe ¼ QLKLCe

1þ KLCe
ð7Þ

Qe ¼ KFCe
1
nF ð8Þ

where QL (mg/g) is the Langmuir maximum adsorption capacity, KL

(L/mg) is the Langmuir adsorption equilibrium constant, KF (mg/g)(L/
mg)1/n is Freundlich isotherm constant related to adsorption capacity,
and nF is a dimensionless constant related to the favorability of
adsorption. Furthermore, the suitability of adsorbents for Pi adsorp-
tion was evaluated from the value of the constant separation factor
(RL) obtained from the following equation (9).

RL ¼ 1
1þ KLC0

ð9Þ

Besides the model mentioned above, the Sips three-parameters
model was employed for the data fitting purpose. This model is a
modified form of the Freundlich equation, which follows the continu-
ous increase of capacity as an increase of concentration but has a
finite limit at the sufficiently high concentration [38]. The mathemat-
ical expression of the Sips model is given in equation (10).

Qe ¼ QSKSCe
nS

1þ KSCe
nS ð10Þ

where QS is the Sips maximum adsorption capacity (mg/g), Ks is the
Sips equilibrium constant related to the adsorption affinity (L/mg),
and nS is the Sips model exponent that expresses the heterogeneity
of the adsorbent. Sips model reduces to Langmuir model as the nS= 1
and reduces to Freundlich when either Ce or Ks! 0. These isotherm
models were fitted with the experimental data gathered to evaluate
the adsorption mechanisms to better understand how adsorbates
interact with adsorbents. The linear regression (LR), nonlinear
regression (NLR), and orthogonal distance regression (ODR) analyses
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[39, 40] were performed by minimizing the sum of the squares of the
residuals/error (SSE, equation 11) while the model coefficients were
iteratively modified. The LR and NLR analyses were carried out using
Microsoft Excel equipped with Solver data analysis tool pack with
the regression results assessed through the resulting coefficient of
determination (R2, equation 12), adjusted R-squared (Radj2, equa-
tion 13), while the ODR analysis was conducted with the Origin2019
software.

SSE ¼
Xn
i¼1

Qe � cQe

� �2
ð11Þ

R2 ¼ 1�
Pn

i¼1 Qe � cQe

� �2

Pn
i¼1 Qe � Qe

� �2 ð12Þ

Radj
2 ¼ 1� 1� R2

� �
n� 1ð Þ

n� k� 1
ð13Þ

where cQe is the fitted value of equilibrium amount of Pi adsorbed per
unit mass of adsorbent (mg/g), Qe is the average mean value of
the equilibrium amount of Pi adsorbed per unit mass of adsorbent
(mg/g), n is the number of experimental data points, and k is the
number of parameters in the model, including the equilibrium
concentrations predicted.

The thermodynamic parameters, i.e. the change in Gibbs free
energy (DGo), enthalpy (DH), and entropy (DS), were based on the
equations (14) to (17) [41].

DGo ¼ �RT ln Kd ð14Þ

DGo ¼ DH � TDS ð15Þ

lnKd ¼ �DH
RT

þDS
R

ð16Þ

Kd ¼ 55:51 � KL � 1000 �MWadsorbate ð17Þ
where Kd is the thermodynamic equilibrium constants dimensionless
of the adsorption process [42]. R is the gas constant (8.314 J/mol.K)
while T is the absolute temperature (K). By plotting ln Kd versus 1/T,
the change inDH, DS, and DGo can be obtained.

2.5. Arabidopsis thaliana growth media supplementation

To assess the environmental compatibility of the F-363 and thF-
363, the freshly synthesized materials were administered to the plant
growth media [43]. A. thaliana Col-0 ecotype was used as the model
plant. The half-strength Murashige and Skoog (MS) basal medium
supplemented with 1% (w/v) sucrose, 0.8% (w/v) agar media was pre-
pared according to previous publications [3,44-46]. For the F-363 or
thF-363 treatment group, 0.1 wt.% of respective materials were added
into the basal media. The A. thaliana seeds were germinated and
grown under continuous light condition at 295 K. After 14 days of
vertical growth, the aerial fresh weight and primary root length of
the seedlings were measured. Three independent biological experi-
ments with 8 seedlings per replicate were performed for control, F-
363, and thF-363-treated samples. Statistical analysis was conducted
using the GraphPad Prism 8.0 software, and significant differences
between different growth media compositions were examined by
one-way analysis of variance (ANOVA) with Tukey’s posthoc test.

3. Results and Discussion

This study employed three synthesis temperatures (303, 333, and
363 K) for thFs and Fs preparation. To ensure that the suitability of
these conditions, firstly, the thiamine thermal stability was tested. As
shown in Figure S1, a negligible amount of % mass loss (»0.19%) of
thiamine was observed upon 2 h isothermal heating at 363 K (the
highest temperature used for the synthesis), which implies that the
thiamine remained stable and did not undergo thermal degradation
during the synthesis process.

The formation of thFs appears to depend on temperature, as
implied from the increase in yield as the reaction temperature was
increased (Table 1). The increase of synthesis temperature from 303
K to 333 K resulted in the decrease of thF YieldFe from 31.00% to
30.04%. However, the YieldFe was increased from 30.04% to 33.93% as
the synthesis temperature increased from 333 K to 363 K. The
increase in synthesis temperature shows a favorable effect on the for-
mation of thF, which could be attributed to the high energy supply at
higher temperature, thus facilitating the formation of thF. The supply
of energy was reported to affect the nucleation rate in the formation
of metal-organic complexes [47,48], which could also be the case in
the formation of thF involving the interaction between thiamine and
Fe3O4. Meanwhile, the higher thF-303 YieldFe (compared to YieldFe of
thF-333) was attributed to the generation of side product FeO(OH);
as shown by the occurrence of two additional XRD peaks at 2u of
20.81o and 40.21o (Figure S2a), which were attributed to the reported
(220) and (420) crystal plane of FeO(OH) (JCPDS No. 01-077-0247)
[49,50]. Interestingly, no contaminant peaks were observed in thF-
333 and thF-363 samples (Figures S2b and 1a).

Besides yield, the synthesis temperature was shown to positively
affect the Pi removal efficiency of the resultant thFs, and the highest
% Pi removal was achieved upon the usage of thF-363 as the adsor-
bent. This enhanced adsorption potential might be attributed to the
higher composition of thiamine in thF prepared at 363K than the
one synthesized at 333K. The TGA plots (Figure S2d and e) con-
firmed that the thF-363 contained approximately 15.16% thia-
mine, while only »6.94% of the thF-333 consisted of thiamine.
The higher thiamine content in thF-363 provides more adsorption
sites for better Pi removal. The proposed interaction between the
thF-363 and Pi is described in subsection 3.3. Based on the
above-mentioned results, thF-363 has better Pi removal efficiency
and higher YieldFe than thF-303 and thF-333; thus, detailed char-
acterization and Pi adsorption studies were carried out for thF-
363 and F-363 (as the control).

3.1. Characterization of thF-363

Figure 1a shows the crystal pattern of F-363 and thF-363; both
samples had seven distinct diffraction peaks at similar 2u angles, and
these XRD patterns match well with the XRD pattern of Fe3O4 refer-
ence (JCPDS 19-0629), indicating the successful formation of Fe3O4

particles. The crystallinity of thF-363 was 57.8%, which is significantly
lesser than the F-363 (81.2%). This reduced crystallinity can be attrib-
uted to the incorporation of thiamine on the magnetite core. The for-
mation of Fe oxide was also confirmed by the occurrence of Fe-O
functional group at »576 cm�1 and »573 cm�1 in the thF-363 and F-
363 FTIR spectra (Figure 1b). Beside the Fe peak, thiamine fingerprint
spectra, specifically the N-H group (3314 cm�1), C-H aliphatic group
(2922 cm�1), aromatic amine C-N group (1652 cm�1), C=C group
(1524 cm�1), C-S group (1325 cm�1), and C-O group (1037 cm�1) can
be observed in the FTIR spectra of thF-363 which verify the formation
of thiamine-functionalized Fe3O4. XPS analysis was performed to
investigate the elemental state of Fe ions in thF-363 and F-363. As
shown in Figure 1c, three peaks of iron (Fe 2p) with binding energies
at 710.8, 712.3, and 724.8 eV, respectively attributed to Fe3+ 2p3/2,
Fe2+ 2p3/2 and Fe 2p1/2, can be observed in the XPS patterns of F-363
[51,52]. Similarly, the thF-363 samples also showed three Fe 2p-
related XPS spectra with the binding energy of 710.7, 712.6, and
724.7 eV (Figure 1d). Based on the stoichiometric, the Fe2+:Fe3+ ratio
of thF-363 and F-363 is shown to be 0.34:0.66 and 0.37:0.63, respec-
tively. These ratios are comparable to the previously reported Fe3O4



Figure 1. (a) Powder XRD pattern and (b) FTIR spectra of the thiamine-functionalized Fe3O4 synthesized at 363 K (thF-363) and control; unmodified Fe3O4 synthesized at 363 K (F-
363). (c,d) The XPS spectra of (c) F-363 and (d) thF-363. (e) The N2 adsorption-desorption isotherms curves and (f) hysteresis curves showing the magnetic properties of F-363
(black) and thF-363 (blue).
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data [52], suggesting that the iron oxide in thF-363 and F-363 are in
Fe3O4 form.

The N2 adsorption-desorption isotherms of thF-363 and F-363 are
shown in Figure 1e. According to IUPAC classification [53], the iso-
therm peak of both samples exhibited the type IV isotherms curve
with H3-types hysteresis loop, which is commonly observed for mes-
oporous materials. Upon fitting by BET model, the dp of thF-363 and
F-363 is 32.913 nm and 36.976 nm, respectively, which is within the
range of mesoporous material (2 to 50 nm). In addition, the thF-363
particles have an as,BET of 32.999 m2/g that is greater than that of the
control (27.490 m2/g). Figure 1f displays the magnetic hysteresis
curves of thF-363 and F-363 measured at 300 K. The saturation mag-
netization values (Ms) of thF-363 and F-363 is 84.67 and 91.71 emu/g.
Lower Ms value of thF-363 might be due to the addition of thiamine
which is non-magnetic. Despite the smaller Ms value, thF-363 (and
F-363) fell into the classification of superparamagnetic material. Dis-
regard of the reduced Ms, these values are postulated to be sufficient
for magnetic recovery from solution [54].

3.2. Effect of initial pH on Pi adsorption

The influence of initial pH on the Pi removal by thF-363 and F-363
adsorbent was presented in Figures 2a and 2b. Optimum Pi removal
by using thF-363 can be achieved when the initial pH of the adsor-
bate was set at pH 4. On the other hand, the efficiency of Pi removal
by F-363 decreased upon increasing pH, and the optimum removal
can be obtained between pH 2-3. The pH for Pi adsorption is essen-
tially concentrated at low pH for both samples, which can be



Figure 2. Effect of solution pH on Pi adsorption onto (a) thF-363 and (b) F-363. (c) The pH of point of zero charge of thF-363 and F-363. Data are means § SD from three replicates.
Different lowercase letters above the graph bars denote significant differences among different pH (ANOVA and Tukey’s test, p<0.05).
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explained by observing the pHPZC of thF-363 and F-363 adsorbent. As
shown in Figure 2c, the pHPZC value for thF-363 and F-363 is 5.6
and 4.4, respectively. The pHPZC value indicates the surface charge
tendency of the adsorbent; positive surface charge occurs at pH solu-
tion < pHPZC, while negative surface charge occurs at pH solution >

pHPZC [55].
The interaction of Pi and thF-363 at acidic and basic pH is illus-

trated in Figure 3. At acidic pH (i.e., pH solution < pHPZC), thF-363
particles are positively charged while Pi dominantly presents as
Figure 3. Illustration on the effect of pH, adsorbent surface charge, and
negatively charged species (H2PO4
�) [56]. The opposite charges

between the adsorbent and adsorbate generate electrostatic attrac-
tion, which promotes the adsorption of Pi onto the adsorbent surface.
At basic pH (i.e., pH solution > pHPZC), thF-363 tends to be negatively
charged; and, Pi dominantly occurs as negatively charged species of
HPO4

2� [56]. The same charges between thF-363 and Pi lead to repul-
sion force, which demotes the adsorption of Pi. A similar effect of sur-
face charge on the adsorption performance of adsorbent has also
been reported in other works [46,57,58]. For example, Jiang et al. [57]
adsorbate species distribution on the thF-363 and Pi interaction.



Figure 4. Isotherm data of Pi adsorption on (a,c,e) thF-363 and (b,d,f) F-363 at three different adsorption temperatures (303 K, green; 318 K, blue; and 333 K, red symbols). The
experiments were done in triplicate. The lines represent the (a, b) Langmuir, (c, d) Freundlich, and (e,f) Sips data fitting.
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reported that the Fe3O4 particles were negatively charged at pH 7,
which led to the electrostatic adsorption between the particles and
positively charged anthocyanin. In addition, the occurrence of excess
hydroxyl ions also may act as competing molecules and occupy the
adsorption site of Pi anions on the adsorbent [59].

3.3. Adsorption isotherm of Pi onto thF-363 magnetic adsorbent

The adsorption isotherm plays a crucial role in determining the
maximum adsorption capacity and estimating the adsorption mecha-
nism of adsorbents. The isotherm study of Pi on thF-363 and F-363
was conducted at adsorption temperatures of 303, 318, and 333 K
(Figure 4). At any given temperature, the system containing thF-363
displayed typical H-adsorption curves, which suggests that the
adsorption was driven by the electrostatic forces due to different
charges of adsorbate and adsorbent. While for F-363 adsorbent, the
system shows an L-type curve which commonly occurs in the adsorp-
tion of ions in aqueous solutions and the adsorption process is driven
by van der Waals forces [60]. Overall, the adsorption process with an
adsorbent plateau at high adsorbate concentration follows the sub-
class classification number 2, demonstrating the absence of the inter-
molecular forces between the adsorbed-adsorbate molecules and the
adsorbate molecules in bulk solution [61]. Both thF-363 and F-363
tend to exhibit endothermic adsorption behavior, where the equilib-
rium adsorption capacity (Qe) increases with temperature.

Three isothermmodels, Langmuir, Freundlich, and Sips, were used
to evaluate the adsorption behavior of Pi onto magnetite sorbent thF-
363 and F-363; the calculated parameters of NLR fitting the isotherm
models are listed in Table 2. The NLR fitting method was chosen as
the best regression method since it gave the smallest SSE value and
the closest fitting to the experimental data compared to LR and ODR
methods (Tables S1, S2, and Figures S3, S4). The Sips model showed
the best fitting with the experimental data of both thF-363
(Radj2 = 0.988-0.994) and F-363 (Radj2 = 0.997-0.999). The goodness of
fitting also is displayed on the value of calculated QS from the Sips
model, which showed the closest resemblance to the Qexp. The Sips



Table 2
Adsorption isotherm parameters of Pi adsorption on either thF-363 or F-363 obtained from nonlinear regression fitting
using Langmuir, Freundlich, and Sips models.

Model Parameter (Unit) thF-363 F-363

303 K 318 K 333 K 303 K 318 K 333 K

Qexp(mg/g) 221.993 242.281 280.954 146.977 206.093 230.923
Langmuir QL (mg/g) 226.051 243.906 286.376 177.699 248.289 275.639

KL (L/mg) 0.0042 0.0072 0.0086 0.0005 0.0007 0.0009
RL 0.02-0.83 0.01-0.74 0.01-0.70 0.17-0.98 0.13-0.97 0.1-0.96
R2 0.994 0.987 0.994 0.997 0.982 0.983
Radj

2 0.993 0.986 0.994 0.997 0.980 0.981
SSE 559.782 1443.821 911.814 139.427 1811.293 2575.329

Freundlich KF (mg/g)(L/mg)�n 39.190 57.528 67.881 3.519 8.388 9.833
nF 5.017 5.866 5.854 2.404 2.743 2.752
R2 0.938 0.923 0.886 0.951 0.894 0.875
Radj

2 0.933 0.918 0.879 0.948 0.887 0.868
SSE 5553.256 8802.450 18520.144 2232.027 10464.750 17976.803

Sips QS (mg/g) 225.837 257.013 287.680 168.019 209.278 238.421
KS (L/g) 0.004 0.025 0.010 0.0003 0.00001 0.00002
nS 1.005 0.748 0.967 1.108 1.695 1.594
R2 0.994 0.989 0.994 0.998 0.999 0.999
Radj

2 0.993 0.988 0.994 0.997 0.999 0.999
SSE 559.683 1211.164 905.877 101.864 70.988 156.020
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model also can be used to confirm the satisfactory of the Langmuir or
Freundlich fitting. Based on the fitting results, the nS value of all the
adsorption systems is close to 1, indicating their better approach
to the Langmuir model. Furthermore, the KS of the Sips model
does not show zero value, which confirms the Langmuir approach
[35,62].

In agreement with the Sips fitting result, the Langmuir model
showed better fitting with the experimental data for both adsorbents,
while the fitting with Freundlich model tends to deviate strongly
from the experimental data. Based on the Langmuir isotherm, the
maximum adsorption capacity of Pi increased from 226.051 to
286.376 mg/g for thF-363 and 177.699 to 275.639 mg/g for F-363 at
the increasing adsorption temperature. Proportionally, the equilib-
rium constant KL value also increased at higher temperature. On the
other hand, the favorability of adsorbent towards Pi was evaluated
by the value of the separation factor constant (RL) which can be
obtained from Langmuir model. The value of RL of all adsorption
experiments showed the value between 0 and 1, indicating that the
synthesized adsorbents were all suitable for the Pi adsorption [63].
Disregards of the data fitting, the nF values of both samples fallen
within the 2-10 range which indicate the adsorption is favorable
[63]. It is also worth mentioning that the thF-363 showed substan-
tially higher adsorption capacity compared to F-363; up to 1.51-fold
higher capacity for adsorption at 303K.
Figure 5. Possible mechanism of Pi adsorption on (a) F-363 and (b) thF-363.
The mechanism of Pi adsorption on F-363 and thF-363 is illustrated in
Figure 5. The adsorption of Pi on F-363 was driven by the electrostatic
attraction between the anionic species of Pi and positively charged F-
363, which is a typical phenomenon observed in the adsorption of
anionic Pi onto iron oxides-based sorbents [64,65]. Distinctively, the
enhanced adsorption capacity in thF-363 adsorbent may be attrib-
uted to the presence of thiamine, which provides additional amino
(�NH2) binding sites. The high Pi adsorption on the �NH2 functional-
ized adsorbents has been reported in several works [66-68], wherein
the anionic Pi establishes electrostatic attraction with the protonated
species of the �NH2 functional group.

Pi removal through adsorption method had been previously stud-
ied using various magnetite-based adsorbents [66,68-71]. A compari-
son of the maximum Pi adsorption capacities onto thF-363, F-363,
and other magnetite composite adsorbents is presented in Table 3.
The capacity of thF-363 for Pi adsorption is significantly higher than
other reported magnetite adsorbents, which show the superiority of
thF-363 adsorbent.

3.4. Adsorption thermodynamic

Thermodynamic parameters can be used to estimate the charac-
teristics of Pi adsorption onto the adsorbent surface. Figure 6 shows
the adsorption thermodynamic of the adsorbents. The negative DGo



Table 3
Comparison of Pi adsorption capacities and optimum adsorption condition of thF-
363, F-363, and previously reported magnetite-based adsorbents.

Adsorbent Conditions Qmax (mg/g) References

thF-363 pH 4, 333 K 287.7 This study
F-363 pH 3, 333 K 238.4 This study
Fe3O4/ZrO2/chitosan pH 3, 298 K 26.5 [68]
Fe3O4@LDH composites pH 3 26.5�36.9 [69]
Fe3O4@alkali-treated calcium-silicate pH 8, 298 K 128 [70]
Chitosan/Al2O3/Fe3O4 nanofiber pH 3, 303 K 130.9 [66]
Rectorite/Fe3O4-CTAB pH 5, 303 K 174.5 [71]
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value at all given temperatures demonstrate the thermodynamically
favorable and spontaneous adsorption of Pi onto the thF-363 and F-
363 surface. Specifically -26.22, -28.47, and -30.72 kJ/mol for the DGo

of thF-363 at 303, 318, and 333 K, and DG -20.83, -22.67, and
-24.52 kJ/mol for F-363 at 303, 318, and 333 K. The DH for each tem-
perature increase was evaluated to observe the heat transfer direction in
the adsorption system. Positive DH values obtained in the Pi�thF-363
system was 27.66 kJ/mol, 10.24 kJ/mol and 19.23 kJ/mol when the
adsorption temperature was increased from 303 to 318K, 318 to 333 K,
and 303 to 333 K, respectively. The same positive values of DHwere cal-
culated from the system containing F-363 as well (DH = 18.84 kJ/mol for
303 ! 318 K, 13.89 kJ/mol for 318 ! 333 K, and 16.44 kJ/mol for
Figure 6. Adsorption thermodynamics for the re
303! 333 K). These positiveDH values indicate that the adsorption pro-
cess happens endothermically and favors high temperature [58,72], as
confirmed by the maximum adsorption capacity increase when the tem-
perature increases from 303 to 333 K (Table 2).

The DS value for each temperature increase was also calculated. A
positive value of DS was found at each temperature increase. For
instance, the DS = 0.178 kJ/mol�K and 0.150 kJ/mol�K when the
adsorption temperature in Pi�thF-363 system increased from 303 to
318K and 303 to 333K, respectively. In the system containing F-363,
the DS303 ! 318 was 0.131 kJ/mol�K and DS303 ! 333 is 0.123 kJ/mol�K.
The positive DS values indicate the increase in the disorder of ions in
the adsorbate-adsorbent interface along with the increase in temper-
ature [63,73].

3.5. Environmental compatibility assessment of thF-363 on plant
growth

The usage of non-environmentally friendly adsorbents for con-
taminant removal from wastewater may evoke ecological risk toward
soils, plants, and their surrounding ecosystem. To evaluate the envi-
ronmental compatibility of thF-363, this work focused on its effect on
the overall growth of A. thaliana seedlings upon supplementation to
plant growth media. The evaluation was based on phenotypical
observation of the seedling aerial and root development. Figure 7a
moval of Pi by (a-c) thF-363 and (d-f) F-363.



Figure 7. Growth observation of Arabidopsis thaliana seedlings grown on supplemented media. (a) Image of 14-day-old seedlings. (b) Aerial fresh weight (upper panel) and primary
root length (lower panel) of the seedlings. Data are means § SD from three replicates, with 8 seedlings observed per replicate. Different letters above and below the graph bars
denote significant differences among different growth media (ANOVA and Tukey’s test, p<0.05).
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shows the representative 14-day-old seedlings grown on basal (con-
trol), thF-363 supplemented (thF), and F-363 supplemented (F)
media. The measured aerial fresh weight and primary root length of
the seedlings are presented in Figure 7b. No observable difference
can be seen between the aerial fresh weight of seedlings grown on
the thF, F, and control. However, the thF-363 supplementation
slightly affects the primary root growth of the seedlings (Figure 7b,
lower panel). This phenomenon might be due to the high adsorption
capacity of freshly synthesized thF-363, which reduces nutrient avail-
ability in the media, thus inhibiting root growth. Nevertheless, both
modified and unmodified Fe3O4 caused minimal to no adverse effects
on phenotypical growth of seedlings’ root and aerial tissues, which
suggest their non-phytotoxic properties.
4. Conclusion

An environmentally friendly adsorbent with high adsorption
capacity toward phosphate ions (Pi), namely thiamine-functionalized
Fe3O4 (thF), was successfully synthesized through in-situ reaction by
combining NH4OH:Fe:thiamine at a molar ratio of 10:1:1 and a tem-
perature of 363 K. Detailed characterization through XRD, XPS, FTIR,
SQUID, and N2 adsorption-desorption isotherm confirmed the forma-
tion of Fe3O4, the incorporation of thiamine, and gave insight on the
other physicochemical properties of the thF-363. The thiamine func-
tionalization was shown to substantially increase the adsorption
capacity for Pi removal up to 1.51-fold (at 303 K) compared to the
unmodified Fe3O4. The improved adsorption capacity is attributed to
the synergistic effect of the surface charge, area, and the occurrence
of the thiamine functional group in thF-363. The adsorption process
fitted well with the Langmuir and Sips isotherm model, with a maxi-
mum adsorption capacity of 287.680 mg/g at 333 K. The Pi adsorption
to the adsorbents followed endothermic and spontaneous
mechanisms. Both modified and unmodified Fe3O4 showed a non-
toxic effect on plant growth, confirming their environmentally-
friendly nature.
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