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Abstract: The ‘Back-to-nature’ concept has currently been adopted intensively in various industries,
especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals
has caused severe damage to the environment and ecosystem. One class of natural materials
developed to substitute artificial chemicals in the pharmaceutical industries is the natural polymers,
including cellulose and its derivatives. The development of nanocelluloses as nanocarriers in
drug delivery systems has reached an advanced stage. Cellulose nanofiber (CNF), nanocrystal
cellulose (NCC), and bacterial nanocellulose (BC) are the most common nanocellulose used as
nanocarriers in drug delivery systems. Modification and functionalization using various processes
and chemicals have been carried out to increase the adsorption and drug delivery performance
of nanocellulose. Nanocellulose may be attached to the drug by physical interaction or chemical
functionalization for covalent drug binding. Current development of nanocarrier formulations
such as surfactant nanocellulose, ultra-lightweight porous materials, hydrogel, polyelectrolytes,
and inorganic hybridizations has advanced to enable the construction of stimuli-responsive and
specific recognition characteristics. Thus, an opportunity has emerged to develop a new generation of
nanocellulose-based carriers that can modulate the drug conveyance for diverse drug characteristics.
This review provides insights into selecting appropriate nanocellulose-based hybrid materials and
the available modification routes to achieve satisfactory carrier performance and briefly discusses the
essential criteria to achieve high-quality nanocellulose.

Keywords: drug delivery; drug release; functionalization; nanocellulose

1. Introduction

Drug delivery technology (DDT) is a cutting-edge applied science for delivering drugs
to specific targets. This technology regulates the absorption and release of therapeutic
drugs via various drug carriers to the desired organs, including subcellular organs, tis-
sues, and cells, to improve human health [1]. DDT has advanced rapidly in the past
few decades, enabled by various discoveries in various fields, including pharmaceutical,
materials, and biomedical sciences. DDT development aims to improve therapeutic drugs’
pharmacological activity and overcome various disadvantages of conventional therapeutic
drugs such as drug agglomeration, biodistribution deficiency, low bioavailability, limited
solubility, and insufficient selectivity to prevent the concurrent effects of therapeutic drugs.

Polymers 2021, 13, 2052. https://doi.org/10.3390/polym13132052 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-2832-0797
https://doi.org/10.3390/polym13132052
https://doi.org/10.3390/polym13132052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13132052
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13132052?type=check_update&version=2


Polymers 2021, 13, 2052 2 of 47

The majority of research studies on drug delivery technology revolve around de-
veloping materials suitable for drug delivery with desirable characteristics such as high
drug adsorption capacity, targeted drug administration, controlled release, biocompati-
bility, and non-immunogenic and non-toxic effects that optimize therapeutic efficacy and
eliminates side effects [2]. Many engineered nanomaterials have been studied for drug
delivery applications [3]. Some nanomaterials have recently been undergoing development
and clinical investigation; however, each nanomaterial has its various characteristics and
limitations, challenging the researcher in creating a suitable drug delivery system.

Natural-based polymers have drawn considerable attention as suitable biomateri-
als for numerous applications in drug delivery systems. Various nature-based polymers
such as polysaccharides (cellulose, chitosan, hyaluronic acid, pectins, alginate, cellulose
ethers), proteins (silk fibroin and collagen), and peptides have been identified as promis-
ing biomaterials for drug delivery systems given their biocompatibility, processability,
and characteristics (e.g., nanoparticles, hydrogels, aerogels, tablets, and so on) that can be
regulated by modifying various polymer functional groups such as amino groups, carboxyl
groups, and hydroxyl groups [4]. The current development of these mentioned various
polysaccharides, proteins, and peptides for drug delivery systems have been well-reviewed
elsewhere [4–7].

Several natural polymers have been shown to have a higher affinity for cell re-
ceptors and modulate cellular processes such as adhesion, migration, and proliferation.
These advantages make these natural polymers attractive for effective and high-efficiency
drug delivery systems [8]. They can also be degraded in the presence of in vivo en-
zymes, which ensures their ability to create responsive local delivery systems. However,
only polysaccharides and proteins have been extensively studied in drug delivery systems
(DDS). These natural polymers have unique characteristics in each tissue and have identical
characteristics in the extracellular skeleton. These characteristics support these natural
polymers’ utilization as drug carriers with insignificant invasive features [9–11].

Cellulose is the most abundant and commonly found natural polymer [12]. Its an-
nual production is estimated at more than 7.5·1010 tons [13]. As a promising fuel and
chemical precursor, cellulose has been widely utilized in various industries such as textile,
pulp, paper, composite, and pharmaceutical excipients [2]. However, the development of
cellulose-based materials as a direct molecule controller for drug adsorption and release
had not been evaluated until the discovery of nanocellulose, which became a turning point
for using carbohydrate-based nanomaterials in the field of drug delivery [14,15].

As illustrated in Figure 1, the publication on nanocellulose for biomedical engineering
applications increases every year, especially for drug delivery applications. The increase in
the number of publications on the utilization of nanocellulose for drug delivery systems
is a strong indication of the potential application of this material in the future. The rapid
development of nanotechnology and materials science has brought about nanocellulose
as a potential drug carrier because of its extraordinary physicochemical and biological
characteristics. Nanocellulose has a large surface-area-to-volume ratio, thus enabling
more significant adsorption and therapeutic drug-binding capacity than other materials.
With these properties, nanocellulose can facilitate drug release mechanisms and allocate
drug delivery precisely to the target to drastically reduce drug consumption, leading to
improved drug delivery system effectiveness [16,17]. Nanocellulose additionally exhibits
other attractive characteristics such as stiffness, high mechanical strength, biocompatibility,
low toxicity, lightweight, tunable surface chemistry, and renewability [11,18], which are
desirable for the design of advanced drug delivery system.



Polymers 2021, 13, 2052 3 of 47

Polymers 2021, 13, x  3 of 49 
 

 

  
(a) (b) 

Figure 1. The number of publications in the area of nanocellulose and nanocellulose for biomedical engineering indexed 
by Scopus from 2010-until recent (10 June 2021) (a); data representation of annual publication of nanocellulose in various 
categories of biomedical engineering within the last decades (b); data analysis performed on Scopus using the terms nano-
cellulose and nanocellulose for “x” (x refer to biomedical engineering, drug delivery, tissue engineering, wound healing, 
implants, Antibacterial/antimicrobial, and cardiovascular). 
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The drug binding and the release time of nanocellulose-based drugs vary depending 
on the nanocellulose configuration, therapeutical ingredient’s activity, the production 
method, and the modification [25,26]. Therefore, nanocellulose is a promising carrier for 
various drug delivery systems such as oral administration, ophthalmic drug delivery, in-
tratumoral administration, transdermal drug delivery, topical administration, and local 
drug delivery. 

This review provides a comprehensive overview of the preparation procedures of 
nanocellulose and the various effects on drug formulation and delivery. Three types of 
nanocelluloses and a brief description of their synthesis processes are discussed at the 
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cess on the characteristics of the resultant nanocellulose are discussed. This is then fol-
lowed by the application of nanocellulose to various drug delivery systems. 
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Cellulose is the most abundant natural polymer globally and is a renewable source 

and essential raw material for various industries. Cellulose is a crucial constituent com-
pound for plants, marine animals, algae, fungi, bacteria, and amoebae [12]. In 1838, French 
chemist Anselme Payen discovered and isolated cellulose from plant fibers using nitric 
acid and determined its chemical structure. The primary sources of cellulose are plant 
fibers with a high cellulose content, such as cotton (containing more than 90% cellulose 
content) [27] and wood (up to 50% cellulose). Other compounds such as hemicellulose, 
lignin, pectin, and wax are also present; they can be recovered during the separation pro-
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Figure 1. The number of publications in the area of nanocellulose and nanocellulose for biomedical engineering indexed
by Scopus from 2010-until recent (10 June 2021) (a); data representation of annual publication of nanocellulose in various
categories of biomedical engineering within the last decades (b); data analysis performed on Scopus using the terms
nanocellulose and nanocellulose for “x” (x refer to biomedical engineering, drug delivery, tissue engineering, wound
healing, implants, Antibacterial/antimicrobial, and cardiovascular).

Nanocellulose can be utilized as either carrier or excipient for broad application
in drug delivery systems such as microparticles, tablets, hydrogels, aerogels, regulating
nanoparticles, and membrane drug delivery systems [19]. Nanocellulose has been manufac-
tured on the laboratory and industrial scale, i.e., ranging from 140 g day−1 to 50 ton year−1

in three different forms as nanocrystalline cellulose (NCC), nanofiber cellulose (NFC),
and bacterial nanocellulose (BNC) [20]. Several recent research and review articles have
comprehensively overviewed the process, extraction, characterization, and applications of
nanocellulose and their modified structures in drug delivery systems [12,17,21–24].

The drug binding and the release time of nanocellulose-based drugs vary depending
on the nanocellulose configuration, therapeutical ingredient’s activity, the production
method, and the modification [25,26]. Therefore, nanocellulose is a promising carrier
for various drug delivery systems such as oral administration, ophthalmic drug delivery,
intratumoral administration, transdermal drug delivery, topical administration, and local
drug delivery.

This review provides a comprehensive overview of the preparation procedures of
nanocellulose and the various effects on drug formulation and delivery. Three types of
nanocelluloses and a brief description of their synthesis processes are discussed at the
beginning of this review. Subsequently, the effects of raw materials and the synthesis
process on the characteristics of the resultant nanocellulose are discussed. This is then
followed by the application of nanocellulose to various drug delivery systems.

2. Conversion of Cellulose into Nanocellulose and Its Characteristic

Cellulose is the most abundant natural polymer globally and is a renewable source and
essential raw material for various industries. Cellulose is a crucial constituent compound
for plants, marine animals, algae, fungi, bacteria, and amoebae [12]. In 1838, French chemist
Anselme Payen discovered and isolated cellulose from plant fibers using nitric acid and
determined its chemical structure. The primary sources of cellulose are plant fibers with a
high cellulose content, such as cotton (containing more than 90% cellulose content) [27]
and wood (up to 50% cellulose). Other compounds such as hemicellulose, lignin, pectin,
and wax are also present; they can be recovered during the separation process.
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Recently, various agricultural wastes with high cellulose content were explored as a
source of cellulose, such as oil palm empty fruit bunches (OPEFB) [28], palm and banana
fronds, passionfruit peel waste [29], bagasse, wheat straw, rice straw, bamboo stalks, hemp
bark, potato tubers, mulberry bark, hemp avicel, and sugar beets [30]. Cellulose derived
from these non-plant precursors can have a molecular structure similar to that of plant
cellulose. However, the main difference is that much less hemicellulose or lignin is present
in these non-plant-based precursors; higher cellulose content with much lower impurities
can be obtained from these precursors.

In terms of chemical structure, cellulose is composed of a linear homopolysaccharide
consist of β-D-glucopyranose units entirely condensed and bonded through β-1,4-glycoside
linkages (Figure 2). The structure foundation of the cellulose network is arranged by a
chain glucose dimer comprising two anhydrous glucoses (AG) defined as cellobiose [31]
(Figure 2). The raw material or the pretreatment (chemical or mechanical) of cellulose may
affect the cellulose chain length and thus lead to molecular weight variation. The number
of AG units in each chain is known as the polymerization degree (PD). The value of PD for
cellulose powder varies from 100 to 300 units and around 26,500 for cellulose pulp [32].
The PD value for cellulose from cotton is 15,000, and wood is approximately 10,000 [33].
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Each cellulose monomer contains three reactive hydroxyl groups in the repeating
chemical structure of the β-D-glucopyranose unit. In the same chain, these hydroxyl
groups can make hydrogen bonds with the adjacent β-D-glucopyranose units. At differ-
ent chain locations, the bonds present are intramolecular and intermolecular hydrogen
bonds responsible for the crystal arrangement, determining the cellulose’s physical char-
acteristics. Based on molecular orientation and hydrogen network between molecules
and intramolecular, cellulose is classified into different types, i.e., I, II, III, IIII, IIIII, IVI,
and IVII. For details about the classification of cellulose, the reader can refer to the work of
Moon et al. [34]. Some of the cellulose characteristics are mainly represented by hydrogen
linkage coordination [35,36].

Structurally, the cellulose is a linear chain polymer with a rod-like configuration, aided
by the glucose residues’ equatorial conformation that is intensely aggregated together
with the lateral size 3–5 nm [36]. Primary chains of cellulose, especially polysaccharide
chains, are found on the secondary walls of plants arranged in a parallel configuration. The
cellulose’s basic fibers have a cross-sectional diameter between 10–450 nm with a length
of several micrometers that depend on the diversity of material sources [37]. Moreover,
the elementary fibrils were arranged into large pack units called microfibrils, further
foregathered into fibrils [13]. There are regions within the cellulose fibrils where the
cellulose chains are organized into a highly crystalline structure with a length of 50–150 nm
and disordered amorphous regions with 25–50 nm [34]. The cellulose chains construct
the crystalline regions through Van der Waals forces, strong intra- and intermolecular
hydrogen linkage, and β-1,4-glycosidic bonds. In contrast, amorphous regions are built
up through the deficiency of hydrogen bonds in the crystalline region. The crystalline and
amorphous regions in cellulose may vary depending on various sources.

The crystalline constituent within cellulose fibers can be refined through various
chemical treatments by destructing and removing the disordered amorphous or para-
crystalline regions. The purified crystal fragments with particle sizes on the nanometer scale
are called nanocrystalline cellulose (NCC) (Figure 3). Different shapes of NCC are present
such as needle and elongated rod-like shape or spindle-like shape with high stiffness of
crystalline fragments [38], which are reported as cellulose whisker [39], nanowhisker [40],
nanorod [41], and spherical nanocrystal [42].
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microscopy (TEM) images of rod-like cellulose nanocrystals [38], reprinted with permission; transmission electron mi-
croscopy (TEM) images of cellulose nano whisker reprinted with permission from [25]. Copyright © 2019 Elsevier B.V.; (b)
transmission electron microscopy (TEM) images of spherical cellulose nanocrystal reprinted with permission from [43].
Copyright © 2018 Elsevier B.V.).

A top-down process has been applied for NCC production in which a large unit of
cellulose fibers (cm) is disintegrated through chemical or mechanical treatment into small
units of nanocellulose (nm) [44]. NCC’s chemical structure is constructed by intra- and
intermolecular hydrogen linkage of cellulose macromolecules with a high crystallinity
value varying from 54 to 88% [45]. NCC’s particle size depends on the origin of the cellulose
sources, with the diameter and length typically varying between 5 and 30 nm and between
100 and 500 nm, respectively [46]. Thus, NCCs have become an attractive candidate as
drug carriers, given their outstanding physical and chemical properties [21,47,48].

Cellulose nanofiber (CNF), also known as cellulose nanofibril, micro-fibrillated cellu-
lose, nano-fibrillar cellulose, nano-fibrillated cellulose, or cellulose microfibril, has a similar
molecule structure to NCCs with nano-size particles. Similar to NCC, CNF can also be pro-
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duced from various cellulose sources. However, the morphology and crystallinity of NCC
and CNF are the unique features that differentiate these two cellulose-based compounds.
CNFs have long, flexible cellulose chains of amorphous and crystalline regions isolated
from cellulose fibrils through mechanical treatment (Figure 4) [46]. The diameter of CNFs
varies from 1 to 100 nm, while their length varies between 500 and 2000 nm. The dimension
of CNFs molecules is strongly influenced by mechanical treatment and defibrillation [49].
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Figure 4. Schematic representation of cellulose nanofibers fabrication by mechanical treatment
(scanning electron microscopy (SEM) images of micro fibrillated cellulose reprinted with permission
from ref. [50]; Copyright © 2007 Elsevier Ltd.; scanning electron microscopy (SEM) images of cellulose
nanofibers reprinted with permission from ref. [51]. Copyright © 2006 Elsevier Ltd.).

NCC has high crystalline cellulose purity, resulting in a rigid structure, whereas the
CNF structure consists of irregular amorphous parts, with some parts exhibiting a high
degree of crystallinity. The amorphous regions in CNF control the structure flexibility
of nanocellulose [52]. Figure 4 presents an illustration of CNF extracted from cellulose
fragments via mechanical defibrillation. The exerted force fractures the cellulose fibrils
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along its longitudinal axis [34]. Compared with NCC, CNF exhibits unique properties
such as extended length with excellent aspect proportion (length to diameter), superlative
surface area, hydrophilicity, biocompatibility, and adjustable characteristic through surface
modification [53].

Microbial cellulose (MC), bacterial nanocellulose (BC), and bio-cellulose (BC) have
been used as the other terms for bacteria cellulose (BC). In contrast to NCC and CNF,
BC’s structure comprises sugars with low molecular weight. Many bacteria strains have
been used to generate BC as an extracellular metabolic product, such as Gluconaceto-
bacter, Sarcina, Aerobacteria, Escheria, Achromobacter, Rhizobium, Rhodobacter, Azotobacter,
and Agrobacterium [54,55]. However, only Gluconacetobacter xylinus has been commercially
utilized to produce BC on an industrial scale [27]. The bacteria strains are commonly
incubated in nutrient-rich aqueous media and produce BC on the upper layer (interface
with air) as an exopolysaccharide. In this case, the β-D-glucopyranose units are initially
present during the growth of cellulose molecules within the bacterial cell. The elementary
fibril is released across the pores of the cellulose surface, which was further arranged and
crystallized into microfibrils with twisting ribbons shape followed by pellicle formation
(Figure 5) [56]. The fabricated BC comprises a nanofibers framework with a diameter of
20–100 nm with a length of several micrometers and a large surface area composed mainly
of water (99%) [57].
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(TEM) images bacteria cellulose pellicle, reprinted with permission from ref. [59]. Copyright © 2019 Elsevier Ltd.)

In terms of chemical composition, BC is indistinguishable from plant-based nanocel-
lulose (e.g., NCC and CNF). However, BC has higher crystallinity (up to 84–89%) with
fewer amorphous regions than NCC and CNF. Moreover, BC contains fewer impurities
and contaminants such as hemicellulose, lignin, and pectin, mainly found in plant-based
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nanocellulose. BC is a biocompatible material with non-cytotoxicity and non-genotoxicity
for biomedical applications, especially drug delivery [60]. BC synthesis does not involve a
complicated process such as mechanical and chemical treatment to cleave the hemicellulose
or lignin within the lignocellulosic biomass, thereby allowing high cellulose purity.

BC’s properties can be modulated by various techniques such as substrate manipula-
tion, culture condition and operation parameter, and proper bacterial strain selection [17,54].
In contrast to NCC and CNF, BC provides unique characteristics such as high crystallinity
of nanocellulose (84–88%) and polymerization grade, high water uptake capacity (exceed-
ing 100 times of its weight), large surface area (high aspect proportion of fiber), outstanding
tensile strength (Young modulus of 15–18 GPa), flexibility, foldability, moldability, mechan-
ical stability, and high porosity [60]. A summary of the characteristics of various types of
nanocellulose is listed in Table 1.

Table 1. Summary of the characteristics of various types of nanocelluloses.

Parameter

Types
Nanocrystalline Cellulose (NCC) Cellulose Nanofibers (CNF) Bacterial Cellulose

Common names

Cellulose whisker, cellulose
nanowhisker, cellulose nanowire,

and cellulose nanorod or spherical
cellulose nanocrystals

Cellulose nanofibril, micro
fibrillated cellulose, Nanofibrillar

cellulose, Nanofibrillated
cellulose, and cellulose microfibril

Microbial cellulose (MC), bacterial
nanocellulose (BC), and

bio-cellulose (BC)

Morphological
structure

Needles like shape, elongated
rod-like shape, and spindle shape

Smooth, extended, and flexible
chain Twisted ribbons like shape

Structure of
Nanocellulose Crystalline domains amorphous and crystalline

domains Crystalline domains

Chain Length ≥500 500–15,000 4000–10,000

Crystallinity (%) 54–88 - 84–88

Other Impurities and
contaminant

Possible to contain hemicellulose,
lignin, and pectin

Possible to contain hemicellulose,
lignin, and pectin

Contain no hemicellulose, lignin,
and pectin

Size (Length and
Diameter)

Diameter: 5–30 nm and Length:
100–500 nm

Diameter: 1–100 nm and Length:
500–2000 nm

Diameter 20–100 nm and several
micrometric lengths

Process System Top-down system Top-down system Bottom-up system

Tensile strength (Gpa) 7.5–7.7
[34] 13 0.2–0.3

Modulus Young (Gpa) 110–220
[45] Approximately 15 18–20

[60]

Density (gr/cm3) 1.6
[61] 1.42 1.1

Characteristics

Homogenous nanorod form,
exceptional aspect ratio (length to

diameter), appreciable specific
surface area (SSA),

biocompatibility, liquid crystalline
attribute, inferior breaking

expansion, high young’s modulus,
hydrophilicity, outstanding

mechanical stiffness, tunable
surface characteristic due to the

reactive hydroxyl group and low
density

Extended length with excellent
aspect proportion (length to

diameter), superlative surface
area, hydrophilicity,

biocompatibility and adjustable
characteristic through surface
modification afforded by high

extensive of hydroxyl groups in
CNF.

High crystallinity of nanocellulose
(84–88%) and polymerization

grade, high water uptake capacity
(exceeding 100 times of its

weight), remarkable surface area
(high aspect proportion of fiber),

outstanding tensile strength
(young modulus 15–18 Gpa), and
flexibility, foldability, moldability,

mechanical stability, highly
biocompatible material,

non-cytotoxic, un-genotoxic and
high porosity

Based on the previous discussion, cellulose can be subjected to a mechanical, biologi-
cal, and chemical treatment to produce three different NCs, i.e., nanocrystalline cellulose,
cellulose nanofibrils, and biological cellulose. They are classified based on various aspects
such as morphology, particle size, crystallinity, nanocellulose structure, extraction tech-
niques, and cellulose sources [56]. Moreover, other important factors such as interfibrillar
arrangement, microfibril inclination, chemical constituent, cell dimension, and defects can
also vary depending on the cellulose sources [62]. Among all the mentioned character-
istics, mechanical strength is essential in the drug delivery field [63]. As summarized in



Polymers 2021, 13, 2052 10 of 47

Table 1, NCC possesses a high modulus young, up to 220 GPa, which is higher than glass
(86 GPa) [61] and kevlar KM2 fiber (88 GPa) [45]. Furthermore, the mechanical stiffness of
NCC can reach up to 7.7 GPa, which is higher than 302 stainless steel (3.88 GPa) [45] and
kevlar KM2 fiber (1.28 Gpa) [45].

3. Sources and Pretreatment of Raw Materials for Nanocellulose Productions

In general, the production of nanocellulose (NC) consists of three steps: (1) Finding the
suitable sources, (2) raw material pretreatment, and (3) NC extraction. The raw material’s
source and type influence the physical and chemical properties and the NC product’s
yield. Currently, most nanocellulose sources utilize high-quality biomass such as cotton,
wood pulp, and dissolving pulp, which comprises the high cellulose content. However,
in response to recent essential issues, such as the depletion of non-renewable energy and
increasing global temperature, the researchers realized the development of waste-based
biomass as a feedstock for the production of nanocellulose. Various types of biomass
waste, including forest residues, algae, agricultural, and industrial by-products, appear as
potential raw materials for nanocellulose production. In terms of chemical composition,
each category of biomass waste is primarily composed of cellulose, lignin, hemicellulose,
pectin, and other minor substances with different physical and chemical characteristics [64].
Agricultural and forest residues have similarities in their chemical composition, but lignin
composition in agricultural waste is significantly high, while the cellulose content in forest
residues is higher than in agricultural waste [64,65].

Among all of the waste-based cellulose sources, the nanocellulose extraction from
industrial waste seems more complex since the chemical and structural composition of
feedstock is variable and crucially depends on the residue types. The various impurities
(e.g., hemicellulose, lignin, wax, and pectin) act as a structural barrier that hinders the
accessibility to the cellulose material for the extraction process [22]. Therefore, pretreatment
is necessary to remove the cellulose framework’s impurities, permitting the aperture of
the material framework to expedite cellulose microstructure access. Moreover, removing
impurities is also beneficial to reduce the consumption energy of mechanical treatment for
cellulose disintegration [66]. Another objective of raw material pretreatment is to regulate
the biomass structure and size and overcome the plant cell wall recalcitrance.

The pretreatment is generally divided into four categories such as physical (milling,
grinding, microwave, ultrasound, etc.), chemical (dilute acid, mild alkali, TEMPO medi-
ated oxidation, organosolv, and ionic liquid), biological (fungi, bacterial, and archaeal),
and physicochemical (steam explosion, liquid hot water, wet oxidation, etc.) [67]. The effec-
tiveness of the biomass pretreatment process depends on pH, temperature, type of catalyst,
and pretreatment time. Selecting the appropriate pretreatment would allow avoiding the
structure disintegration or loss of cellulose, ensuring low cost, and minimizing energy use
to reduce toxic and hazardous waste [68].

The chemical pretreatment process is considered the most efficient and economically
feasible for the disintegration of biomass with low pretreatment severity. However, chem-
ical pretreatment is non-environmentally friendly and requires a wastewater treatment
process [69]. Physical pretreatment is environmentally friendly and scarcely generates
hazardous or toxic substances, but the major disadvantage lies in its high energy con-
sumption, which is generally higher than chemical treatment [70]. Biological treatment
is widely known as an eco-friendly process, operates under mild conditions, and con-
sumes a lower energy amount. However, long pretreatment duration, low conversion,
and carbohydrate loss tendency throughout pretreatment remain the main challenges of
biological pretreatment by the microorganism [71]. Physicochemical pretreatment using a
combination of chemicals and high temperature or pressure in extreme conditions can ef-
fectively escalate biomass degradation. Nevertheless, high energy input is required, which
translates to high operation costs for this method. Proper pretreatment of cellulosic fibers
can improve the hydroxyl group’s accessibility, inner surface enhancement, crystallinity
alteration, and fracture of the intra and inter hydrogen bonds of cellulose, leading to the
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increased fibers reactivity [72]. Detailed pretreatment of cellulose-based raw materials has
been thoroughly discussed elsewhere [73].

The integrated pretreatment strategy of lignocellulosic waste biomass comprising
two or more pretreatment stages increases the pretreatment process’s effectiveness, prod-
uct characteristics, and versatility of composition in extracted cellulose. An additional
process that adds more steps to cellulose purification is highly undesirable [74]. For in-
stance, de Carvalho Benini [75] performed alkaline treatment coupled with multiple stages
of bleaching pretreatment followed by sequential dilute acid hydrolysis to increase the
efficiency of impurities removal (e.g., starch, hemicellulose, and lignin/pectins) from the
cellulose framework. Similarly, Wijaya et al. [29] combined alkaline and bleaching treat-
ment to obtain higher purified cellulose from passion fruit peel. In a different study, Maciel
et al. [76] obtained the soluble and insoluble lignin after alkaline treatment reached 60 and
75%, respectively. The summary of the pre-treatment strategy of waste-based nanocellulose
sources is presented in Table 2.

Table 2. Summary of waste-based sources for nanocellulose production and its characteristic.

Waste Residue
Sources

Nanocellulose Isolation Technique Nanocellulose Characteristics References
Pretreatment Treatment

WASTE BASED FOREST RESIDUE

Birch and Spruce
sawdust

Hot water treatment and
subsequent delignification;

TEMPO oxidation
Mechanical defibrillation CNF

σ = 171,6 MPa; E = 6.4 Gpa; [77]

Medium-density
fiberboard

Soxhlet extraction (Ethanol
and toluene), NaOH, and

recurrent bleaching
Acid hydrolysis (H2SO4)

NCC
L:164.7 nm; W: 6.7 nm; CrI (%):

71
[78]

Eucalyptus sawdust

Hot water treatment,
alkaline delignification, O2

residual delignification,
TEMPO-mediated

Oxidation

High pressure
homogenization

CNF
Davg: 41.0 nm; SSA: 60 m2/g; Y

(%) = 60
[79]

Pinecone biomass
Alkali treatment followed

with acidification
(NaClO2:CH3COOH)

Mechanical grinding.
CNF

σ: 273 MPa; E: 17 GPa;
CrI (%): 70%; D: 5–20 nm.

[80]

Logging residues Alkaline and bleaching
pretreatment Acid hydrolysis (H2SO4)

NCC
L/D > 10; CrI (%): 86–93; TS

(◦C): 208.4–211
[81]

Bamboo log chips Pretreatment with glycerol;
and screw extrusion

Mechanical refining/Milling
treatment assisted by H2SO4

(0.15%) as a catalyst

CNF
D: 20–80 nm; CrI (%): 52.7%; Y

(%): 77.2
[82]

WASTE BASED ALGAE RESIDUE

Cladophorales - TEMPO Oxidation;

CNF
W: 80 nm; SSA: 77 m2/g
CrI (%): 93%; D: 80 nm;

Excellent mechanical and
rheological characteristics

[83]

Red algae - Acid hydrolysis (H2SO4)
NCC

L: 432 nm; W = 28.6 nm; L/D:
15.1; CrI (%): 69.5; Yield: 20.5%;

TS (◦C): 220 ◦C
[84]

Green Seaweed
Ulva lactuca

Methanol pretreatment
(Soxhlet extraction)

followed by bleaching,
alkaline pretreatment, and

neutralization

Acid hydrolysis (H2SO4) NCC
CrI (%): 83; TS (◦C): 225 ◦C [85]

Industrial kelp
(Laminaria japonica)

waste

Two stages of bleaching
pretreatment (Chlorine
dioxide followed with

hydrogen peroxide)

Acid hydrolysis (H2SO4)
NCC

L: 100–500 nm; D = 20–50 nm;
L/W: 5–20; Yield: 52.3%; TS

(◦C): 240 ◦C
[86]
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Table 2. Cont.

Waste Residue
Sources

Nanocellulose Isolation Technique Nanocellulose Characteristics References
Pretreatment Treatment

Dealginate kelp
residue

From Giant Kelp
(Calrose variety)

Na2CO3 (2% wt) treatment,
residual sodium alginate
extraction by NaOH (2%

wt); Ultrasonic irradiation;
NaClO2 (0.7% wt) buffer

solution bleaching treatment
and delignification

Acid hydrolysis (H2SO4)
NCC

L: 100–500 nm; D = 20–50 nm;
L/W: 30–70; CrI (%): 74.5; TS

(◦C): 120–180 ◦C; l = 120–480 nm
[87]

Chaetomorpha
antennina Bleaching method

Acid hydrolysis (HCl)
followed with Ultrasonic

irradiation

CNF
E = 0.9 Gpa; CrI (%): 85.02; Y =
34.09%; TS (◦C) = 200–370 ◦C

[88]

Gelidium sesquipedale

Soxhlet Extraction (Ethanol:
Toluene) Bleaching

treatment, delignification
(5% KOH solution)

Acid hydrolysis (H2SO4)
followed with

neutralization (NaOH)

NCC
L: 467–1650 nm; D = 18–29 nm;

L/W: ~40; CrI (%): ~70%;
[89]

Gelidium elegansred Alkali and bleaching
pretreatment Acid hydrolysis (H2SO4)

NCC
L: 547.3 nm; D = 21.8 nm; L/W:

25; CrI (%): 73%; TS (◦C): 334 ◦C
[90]

WASTE BASED AGRICULTURAL RESIDUE

Waste sugarcane
bagasse

Acidification and alkaline
pretreatment Acid hydrolysis (H2SO4)

NCC
L: 170 nm; D = 35 nm; h = 70–90

nm; CrI (%): 93%; TS (◦C):
249–345 ◦C

[91]

Jute dried stalks
Alkali treatment followed

by steam explosion; sodium
chlorite bleaching

Acid hydrolysis (oxalic acid)
followed by steam

explosion.

CNF
L: few micrometers D = 50 nm;
CrI (%): 82.2%; E: 138 Gpa; TS

(◦C): 250–400 ◦C

[92]

Coconut husk

Ultrasonic-aided solvent
submersion. Delignification
and Bleaching Pretreatment,

followed by
TEMPO-mediated

Oxidation
(TEMPO/NaClO/NaClO2;

pH = 4.8)

Ultrasonication
CNF

L: 150–350; D = 2–10 nm; CrI
(%): 56.3%; TS (◦C): 190–380 ◦C

[93]

Citrus waste Alkaline and Bleaching
Pretreatment

Enzymatic hydrolysis and
ultrasonication

CNF
L: 458 nm; W: 10.3 nm; Davg =
10 nm; L/W: 47; CrI (%): 55%;

TS (◦C): 190–380 ◦C

[94]

Raw rice husk

Size Reduction, Soxhlet
extraction (toluene and
ethanol); Acidification

(NaClO2 and CH3COOH);
and delignification (5%

KOH)

High pressure
homogenization and

high-intensity
ultrasonication processes

(500 W,40 min).

CNF
L: 1800 nm; W: 10 nm; CrI (%):
77.5%; L/D > 180; TS (◦C): 323

◦C
[95]

Corn cobs -
One pot synthesis via

mechanochemical
esterification

CNF
σ = 110–125 MPa; E = 5.5 Gpa;

D: 1.5–2.8 nm
[96]

Kenaf bast fiber
Delignification and three

stage of bleaching
pre-treatments

Mechanical grinder
CNF

D: 1.2–34 nm; CrI (%): 82.52%; Y
(%) 60.25; TS (◦C): 200–400

[97]

Passion Fruit Peels Alkaline and bleaching
pretreatment

Acid hydrolysis (H2SO4)
followed with
ultrasonication

NCC
L: 103–173.5 nm; CrI (%):

77.96%; TS (◦C): 303.4; Y (%):
58.1

[29]

WASTE BASED INDUSTRIAL BY PRODUCT

Olive industry solid
waste

Pretreatment including
pulping and bleaching Acid hydrolysis (H2SO4) NCC [98]

Lime residues Autoclaving pretreatment
High shear and
high-pressure

homogenization

CNF
D: 5–28 nm; CrI (%): 44–46 [99]
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Table 2. Cont.

Waste Residue
Sources

Nanocellulose Isolation Technique Nanocellulose Characteristics References
Pretreatment Treatment

Recycled Tetra Pak
Food Packaging

Wastes

Delignification and
bleaching pretreatment

Acid hydrolysis (H2SO4)
followed with
ultrasonication

NCC
L: 127–258 nm; D: 11.4–14 nm;

L/D: 10; CrI (%): 94.8%; TS (◦C):
204

[100]

Waste paper Deinking method and
alkaline pretreatment

Acid hydrolysis (H2SO4)
followed with
ultrasonication

NCC
L: 271 nm [101]

Discarded cigarette
filters

Ethanol extraction, alkaline
pretreatment, and bleaching

pretreatment,

Acid hydrolysis (H2SO4)
followed with
ultrasonication

NCC
L: 143 nm; W: 8 nm; CrI (%):

96.77%; Y (%): 29.4
[102]

Recycled Paper Mill
Sludge Ozonation pretreatment Acid hydrolysis (Maleic

acid)

NCC
L: 2431 nm; W: 165 nm; L/D:

16.7
CrI (%): 77%; Y (%): 0.8

[103]

Citrus Pulp of Floater
(CPF)

Alkaline and bleaching
pretreatment with autoclave Enzymatic hydrolysis n.d

CrI (%):60 [104]

Sweet lime pulp waste Blending and acid
hydrolysis (H2SO4)

Komagataeibacter europaeus
SGP37 incubated in static

intermittent fed-batch
cultivation

BNC
Y(g/L): CrI (%):89.6; TS (◦C):

348
[105]

Abbreviation: D: Diameter; L: Length; W: Width; TS: Thermal Stability; Y: Yield; L/D: Aspect Ratio; CrI: Crystallinity Index; l: Lateral size;
σ: Tensile strength; E: Young Modulus.

4. Isolation of Nanocellulose
4.1. Isolation of Nano-Fibrillated Cellulose (NFC)

Regardless of its cellulose sources, NFC is mainly fabricated from cellulose pulp
through mechanical treatment by breaking down the linkage of interfibrillar hydrogen [106].
The exerted mechanical force triggers the cracking phenomenon to form a critical tension
center in fibrous substances. The development of NFC from fibrous material requires
intense mechanical treatment with or without pretreatment. However, fibrous material’s
mechanical disintegration may cause pulp clogging, causing the fiber to agglomerate and
require high energy to break it down. Thus, another pretreatment is required to overcome
this problem.

Several pretreatments have been introduced before the primary mechanical treatment
to diminish the polymerization degree and debilitate the hydrogen linkage. These pre-
treatments include mechanical refining, alkaline hydrolysis, solvent-assisted pretreatment,
organic acid hydrolysis, 2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation,
enzymatic disintegration, periodate-chlorite oxidation, oxidative sulfonation, cationization,
ionic liquid, carboxymethylation, deep eutectic solvents, and acetylation [17].

The earliest production of NFC was reported by Turbak et al. [107] and Herrick
et al. [108]. They isolated NFC from wood via high-pressure homogenization (HPH). HPH
exerted a mechanical force on cellulose fibrils driven by crushing, shear, and cavitational
forces in which cellulose pulp is transferred into the chamber through a small nozzle
to enable particle size reduction to the nanoscale of the cellulose fibrils [72]. Currently,
the HPH is the most commonly utilized method for NFC production on an industrial
and laboratory scale, given its simplicity, high efficiency, and lack of organic solvent
requirements [109]. Furthermore, HPH enables high conversion of cellulose material
toward CNF. High energy, high pressure, and long duration of the HPH process may also
escalate the fibrillation degree. However, the difficulty of cleaning the equipment due to
the blockage in the homogenizer valve is the major drawback of the HPH method [110].
Different processes have also been developed to produce CNF, such as micro-fluidization,
micro-grinding, cryo-crushing, ultrasonication, mechanical refining, radiation, ball milling,
blending, extrusion, steam explosion, and aqueous counter collision [111].
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4.2. Isolation of Cellulose Nanocrystal (NCC)

According to the previous discussion, the main difference between NCC and CNF
lies in their structure, in which CNF comprises amorphous and crystalline regions while
NCC has high crystalline purity in cellulose regions. Therefore, the primary step in
isolating NCC is to break down the disordered amorphous or paracrystalline regions that
integrate the crystalline regions within cellulose fibrils. Initially, an NCC suspension was
produced in 1949 from lignocellulosic biomass through an integrated alkaline and bleaching
pretreatment and acid hydrolysis [13]. Acid hydrolysis remains the paramount process for
NCC extraction. The crystalline part in cellulose fibers is not hydrolyzed because it has a
high resistance to acids, although acids can easily hydrolyze the amorphous regions [112].
In this method, sulfuric acid (H2SO4), hydrochloric acid (HCl), hydrobromic acid (HBr),
and phosphoric acid (H3PO4) have been extensively employed as the acid component to
breakdown the amorphous region of cellulose.

Following acid hydrolysis, the remaining free acid molecules and other impurities
should be removed by diluting and washing with water using centrifugation and dialysis
processes. Moreover, specific mechanical treatment like sonication may be needed to stabi-
lize the NCC particles in uniform suspensions. However, the high tendency of corrosion,
low recuperation rate, and high acid wastewater produced due to the high amount of water
for the washing process for nanocellulose suspension neutralization become the significant
drawbacks of the acid hydrolysis process [46]. To avoid excessive equipment corrosion
and environmental issue, various nanocellulose isolation processes have been developed,
such as extraction using ionic liquids, TEMPO oxidation, enzymatic, and others. Various
researchers have carried out the combination and integration of various isolation processes
to increase the isolation process’s efficiency, such as enzymatic hydrolysis with TEMPO
oxidation and enzymatic hydrolysis with ultrasonication [113]. Chemical treatment is
crucial for NCC isolation, while mechanical treatment is the vital stage for CNF production.

4.3. Isolation of Bacteria Cellulose (BC)

The selection of strains of microorganisms is a very crucial factor in the synthesis of BC.
There are currently two main methods that have been used for BC production, i.e., static
fermentation and submerged fermentation [54]. Static fermentation has been widely
employed as an extracellular-based production route. In the static fermentation, a 3D
network of gelatinous pellicles with high water content formed during the interspersing
and intertwining of the ribbons structure form of BC, reaching a particular thickness
corresponding to longer incubation time and causing the entrapment of bacteria cells
and its further inactivity. The static fermentation produces BC with excellent crystallinity
and mechanical strength, although prolonged cultivation and low productivity limit their
industrial utilization.

Furthermore, the BC layer’s uneven thickness is produced due to the exposure of
bacteria to uncertain conditions (nutrient, oxygen level, and cell distribution) throughout
the growth cycle. Fed-batch strategies and submerged fermentation involving aeration
and agitation fermentation have been introduced to overcome static fermentation’s sig-
nificant drawbacks. Submerged fermentation leads to higher BC productivity than static
fermentation, which has been extensively utilized commercially. The cultivated bacteria
are adequately exposed to oxygen, thereby generating a high yield of BC in the shape of
small granules or pellets during aerated fermentation [114]. Moreover, agitation in the
fermentation would result in a more homogeneous BC and oxygen evenly distributed to
bacterial cells. However, the produced BC has lower crystallinity and mechanical strength
than static fermentation [115].

Several submerged fermentation issues such as the advancement of cellulose non-
production strains [116], irregular shapes of BC granules or pellets, and physical character-
istic modification of BC remain challenging for the researcher to overcome. In addition,
excessive-high rotation speed and hydrostatic stresses may promote gluconic acid pro-
duction by bacteria due to the accumulation of self-protection metabolism [117]. Several
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factors such as bacterial strains, fermentation medium carbon sources, growth condition,
and its characteristic and yield should be evaluated carefully to choose the most suitable BC
synthesis process selection approach. The summary of the recent studies of BC production
is given in Table 3.

Table 3. Recent study of bacteria cellulose production.

Bacteria Cultivation Source of Carbon and
Its Concentration Culture Medium Fermentation Conditions Yield (g/L) References

Komagataeib acter
xylinus K2G30
(UMCC 2756)

Glucose

GY Broth Static; 28 ◦C; 9 days

6.17 ± 0.02

[118]Mannitol 8.77 ± 0.04

Xylitol 1.36 ± 0.05

Komagataeibacter
rhaeticus PG 2

Glycerol
Hestrin–Schramm (HS)

liquid media Static; 28 ◦C; 15 days

~6.9

[119]Glucose ~4.05

Sorbitol and Mannitol ~1.65–3.41

Komagataeibacter
xylinus B12068

Glucose

Hestrin–Schramm (HS)
liquid media Static; 30 ◦C; 7 days

~2.2

[120]
Sucrose ~1.6

Galactose ~1.4

Maltose and Mannitol ~0.1–0.2

Komagataeibacter
medellinensis

Glucose Standard
Hestrin–Schramm (HS)

Medium
Static; 28 ◦C; 8 days

2.80

[121]Sucrose 1.68

Fructose 0.38

Gluconacetobacter
xylinus (PTCC 1734)

Date syrup

Yamanaka

150 rpm; 28 ◦C; 7 days,

~1.15

[122]

glucose ~0.85

mannitol, ~1.4

sucrose ~1.45

food-grade sucrose ~0.7

Date syrup

Hestrin–Schramm

~0.65

glucose ~0.7

mannitol, ~1.05

sucrose ~1.5

food-grade sucrose ~1.1

Date syrup

Zhou

~0.9

glucose ~1

mannitol, ~1.85

sucrose ~1.65

food-grade sucrose ~1.15

5. Surface Chemistry of Nanocellulose for Drug Delivery

Biocompatibility, biodegradability, and drug carrier capability to confine, control,
and localize the drug release towards the target sites are desirable for nano-drug carrier
formulation. The ability of nano-drug carriers to transport the drug and specify the sites
for targeted drug release is influenced by the particle size, the surface charge, modification,
and hydrophobicity. These aspects govern the nano-drug carrier interface with the plasma
membrane and its diffusion across the physiological drug barrier [123]. Most NCs exhibit
high specific surface area and negative interface charges as potential drug carriers, making
them suitable as hydrophilic drug carriers. Therefore, the NCs’ surface can be attached
to the desired drug [124]. However, pristine NC cannot be used effectively as a drug
carrier given its limited water solubility, moisture sensitivity, thermal instability, and lack
of stability in various buffer solutions. Even though the pH adjustment of the environment
can enhance the dispersibility of NCs, the scattering examination divulged the aggregation
tendency of NCs, which translates to the colloidal instability of NCs. The size reduction
obtained by converting cellulose into NC provides an exponential improvement of hydro-
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gen bonding that triggers the NC aggregation. This limitation can be made worse by the
drug coordination, which is exposed on the NC exterior, consequently altering the dis-
persibility and solubility [125]. Therefore, various surface modification and pretreatment
fiber methodologies have been developed to overcome limitations and advance specific
characteristics [126].

From a structural perspective, the three hydroxyl groups in each cellulose monomer
are the most prominent characteristic that makes the NC surface reactive. The reactivity
of hydroxyl groups influences the surface modification of anhydroglucose units. It was
reported that in the molecular framework of cellulose, the hydroxyl group at the sixth
position behaves as primary alcohol with a reactivity ten times larger than the other
hydroxyl groups, while the hydroxyl group at the second position has two-fold higher
reactivity than that in the third position, both of which serve as secondary alcohols. This
phenomenon manifests from the steric hindrance of each hydroxyl group, in which the
hydroxyl group at the sixth position attached to the carbon atom that is connected to only
one alkyl groups while the carbon atom that carries the hydroxyl groups in the second
and third positions bonded to two alkyl groups [127]. Regarding the surface receptiveness
of NC’s hydroxyl groups, the addition of solvent and reactant may alter the group’s
receptiveness in diverse positions. De la Motte et al. [128] modified NCC through cationic
epoxide 2,3-epoxypropyltrimethyl ammonium chloride (EPTMAC) by spray technique.
It was revealed that the hydroxyl bunch receptiveness of cationic modified NC follows
the order of OH-C6 = OH-C2 > OH-C3, which was validated through nuclear magnetic
resonance (NMR).

Nanocellulose surface modification for drug delivery was developed by modulating
the NC hydroxyl groups. In general, the main objective of nanocellulose surface modifica-
tion is to incorporate new functional groups or drug components into the nanocellulose
framework to escalate the degree of substitution and the efficacy of material grafting with-
out altering the structure, morphology, and crystallinity of nanocellulose [129]. Several
processes have been developed for the surface modification of NC, either by physical or
chemical processes, presented in more detail in the following sections.

5.1. Functionalization of Nanocellulose through Physical Technique

Several physical techniques such as surface defibrillation, irradiation, electric current,
and electric discharge have been developed to modify and functionalize nanocellulose
surfaces for diverse applications [130]. Surface defibrillation disintegrates cellulose into
elementary fibrils by exerting mechanical force using various devices such as ultra-refining,
a high-pressure homogenizer, a grinder, a microfluidizer, and spray-drying. In nanocellu-
lose functionalization, the combination of nanocellulose and drug entities can be subjected
to surface defibrillation to modify the morphology of nanocellulose and construct a new
matrix system with a tight fiber network.

Microparticles from BC with fibrillar structure morphology have been prepared by
spray-drying technique. An ultra-refining-assisted method was also conducted to construct
bacteria cellulose nanofiber (BCNF) with various sizes and shapes. The coating of BCNF
with mannitol (MN), maltodextrin (MF), and hydroxypropylmethylcellulose (HPCM) were
also carried out at various ratios to study the drug release characteristics. The addition of
such coating matrices exhibits benefits towards the spray-drying process and drug carrier
ability, i.e., superior protection of drug confinement, decreased droplet adhesion on the
drying chamber, and improved powder performance. As a result, the BC-microparticles can
successfully enhance the drug uptake capacity and sustain the drug release of diclofenac
sodium (hydrophilic) and caffeine (lipophilic) [131].

As a recent advanced method, irradiation exerted high energy, which modifies the
cellulose exterior. For example, the radiated gamma energy can generate reactive in-
termediates comprising ions and free radicals that provoke reaction pathways such as
cross-linking, scission degradation, oxidation, and polymer and molecule grafting. The
presence of irradiation beams, such as microwave and electron, accelerates the polymer
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growth. UV-irradiation has also been developed to improve the reaction rate to allow
pre-synthesized grafted polymer formation on the nanocellulose surface [132]. Recently,
this method has been developed to induce polymer grafting and polymer growth on
nanocellulose surfaces.

Plasma treatment is considered an environmentally friendly method to achieve
nanocellulose surface functionalization by utilizing plasma ionized gas without altering its
characteristics. Researchers have widely applied this method for various modifications,
such as increasing material–cell interaction, introducing the surface of NC with hydropho-
bicity or hydrophilicity characteristics, and incorporating chitosan towards cellulose sub-
strates. For instance, Kusano et al. [133] modified CNF by utilizing dielectric-based plasma
discharge treatment, leading to the formation of many carboxyl groups, carbonyl groups,
and oxygen-containing groups on the surface of nanocellulose [133]. Moreover, assisted
ultrasonic irradiation combined with plasma discharge treatment can refine the wetting and
oxidation of the nanofibers coating. Plasma treatment is an attractive route for surface func-
tionalization of nanocellulose given its benefits such as non-polluting, fast-modification,
and simple chemical treatments compared to the conventional modification method.

5.2. Functionalization through Chemical Synthesis of Nanocellulose

Chemical treatments use reactive chemical species for nanocellulose formation through
cellulosic framework disintegration. As mentioned in the previous section, acid hydrolysis
has been extensively exploited as the primary process for CNF and NCC isolation from the
cellulosic fiber. The strong acidic environment leads to the disintegration of amorphous
regions that act as structural defects in the cellulosic framework, facilitating nanoparticle
production. Other chemical processes, such as TEMPO-based oxidation and APS oxidation,
are also used in the CNF and NCC synthesis. The schematic mechanisms of acid-based
hydrolysis and oxidation processes are presented in Figure 6. The summary of chemical
modification of nanocellulose is tabulated in Table 4.
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Table 4. The influence of chemical functionalization on morphological nanocellulose.

Methods Reagents Aided
Reagents

Operation
Parameter

Sources of
Cellulose

Mechanical
Technique

Yield
(%)

Morphology
(nm) CI%)

Zeta
Potential

(mV)

Surface
Charge
Density
(mmol/g)

Ref.

Mineral
Acids

H2SO4

- 52% H2SO4 50 ◦C;
60 min

Passion Fruit
Peels Ultrasonication 58.1 NCC

L: 103–173.5 77.96 −25 - [29]

- 63% H2SO4 50 ◦C;
90 min

Microcrystalline
Cellulose Ultrasonication 30% NCC

L:250; W: 16 - −46.1 - [134]

- - Filter Paper - - NCC
W: 22 85 - -SO3H

(0.0985) [135]

H2SO4/HCl -
H2SO4 :HCl:H2O
(3:1:6); Ultrasonic

50 hZ; 10 h

Microcrystalline
Cellulose Ultrasonication - S-CNC

(D:10–180 nm) - - - [136]

ClSO3H (Post-
sulfonation) - ClSO3H in 50 mL

DMF; RT; 2 h Sulfated NCC Ultrasonication 79.31
NCC

L:152; W: 22.7;
h: 5.0

88% −66.1 -SO3H
0.409 [137]

H3PO4

- 73.9% H3PO4 ; 100
◦C; 90 min Filter Paper Blending

(15 min) 76–80 NCC
L:316; W: 31; 81 - -PO3

(0.0108) [135]

- 10.7 M H3PO4 ;
100 ◦C; 30 min

Cellulose
Biotethanol

Residue
Homogenizer

(10 times)

NCC 83 −27 -PO3
(0.4352)

[138]
- 10.7 M H3PO4 ;

100 ◦C; 30 min
CNF

L: 2500 nm 81 −23 -PO3
(0.018)

H3PO4 in
molten Urea

-
10.7 M H3PO4 ;
150 ◦C; 30 min

NCC
L: 610 nm 83 −34 -PO3

(1.038)

- CNF
L: 330–480 nm 86 −24 -PO3

(1.173)

HCl - 2.5 M HCl; 105 ◦C;
40 min Filter Paper Blending

(40 min) - NCC
W: 20 79% - - [135]

Organic
Acids

Acetic Acid
H2SO4 80 ◦C; 3 h

Bleached
eucalyptus
kraft pulp

- 81 NCC
L: 264; W: 16 80 −33 -SO3H

(0.015) [139]

HCl 105 ◦C; 9 h Cotton Blending
(20 min) 30 NCC

L: 269; W: 45 - - - [140]

Formic Acid

6M HCl 80 ◦C; 4 h Microcrystalline
Cellulose - - NCC

L: 236; W: 25 88 −1.7 Formate
(0.4) [141]

0.015 M
FeCl3

90 ◦C; 6 h
Bleached

eucalyptus
kraft pulp

- 75 NCC
L:594 75 −6.53 Formate [142]

Lactic Acid HCl 150 ◦C; 3 h Cotton Blending
(20 min) - NCC

L: 200; W = 20 80 - Lactate [143]
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Table 4. Cont.

Methods Reagents Aided
Reagents

Operation
Parameter

Sources of
Cellulose

Mechanical
Technique

Yield
(%)

Morphology
(nm) CI%)

Zeta
Potential

(mV)

Surface
Charge
Density
(mmol/g)

Ref.

Butyric Acid 0.027 M
HCl 105 ◦C; 9 h Cotton Blending

(20 min) 20 NCC
L: 226; W = 34 - - Butyrate [140]

Maleic Acid
(MA)

- 70% MA; 100 ◦C;
45 min

Bleached
eucalyptus
kraft pulp

- 12% NCC - -33 -COOH
(0.29) [144]

-
60% MA; 120 ◦C;

2 h

Bleached
eucalyptus
kraft pulp

Microfluidizer
(120 mPa; 5

passes)

3% L: 329.9; h =
15.9 - −46.9 -COOH

(0.368)
[145]

84% CNF
h: 13.4 - −45.2 -COOH

(0.059)

Oxalic Acid
(OA)

- 8.75% OA; 110 ◦C;
15 min Filter paper Sonication

(60 min) 93.77
NCC

L: 150–200;
W: 5–20

- −36 -COOH,
0.29 [146]

- 70% OA; 100 ◦C; 1
h

Bleached
eucalyptus
kraft pulp

- 24.7 NCC 80 −42.5 -COOH [144]

- 30% OA; 100◦ C;
30 min Celery Sonication

(18 min) 76.8 CNF
h: 5.5 49 −32.9 -COOH [147]

Malonic Acid
- 80% wt of

Malonic Acid; 140
◦C; 3 h

Ramie
Cellulose

Blending
(5 min)

5%

NCC
L: ~220; W: ~12

- - -COOH

[148]

0.025 M
HCl 19.8% 75 - -COOH

Malic acid
-

80% wt of Malic
Acid; 140 ◦C; 3 h

3.4% - - -COOH,
(1.617)

0.05 M
HCl 20% 78 - -COOH

Citric Acid

-
80% wt of Citric
Acid; 140 ◦C; 3 h

5.1 - - -COOH

0.05 M
HCl 20.5 78 - -COOH,

(1.884)

-
80% wt of Citric
Acid; 100 ◦C; 4 h

Bleached
Baggase Pulp Ultrasonication

32 NCC,
L: 251; W: 21 78 −122.9 -COOH,

0.65
[149]

- - CNF,
L: 654; W: 32 69 190.3 -COOH,

0.3

Oxidation
Treat-
ment

TEMPO/NaCl
/NaBr

-

TEMPO (0.094
mmol)-NaBr (1.57

mmol)- NaClO
(1.24 M); 10 ◦C; 45

min

Nanocrystalline
Cellulose Ultrasonication - NCC,

L: 100; W: 5–20 80% - - [150]

-

TEMPO (0.1
mmol

mmol)-NaBr (1
mmol)- NaClO (5

mmol/g
cellulose);
Ambient

condition; 1.5 h

HBKP Ultrasonication - CNF 85% -
-COOH;
-CHO
(1.191)

[151]

TEMPO/O2/Laccase
50 mM TEMPO, 5
U mL–1 laccase;

96 h
HBKP Ultrasonication - CNF,

L: > 100; W: 4–8 - -
-COOH;
-CHO
(0.837)

Sequential
Periodate-
Chlorite

Oxidation

1 M
Acetic

Acid (2)

(1). 46 mmol
NaIO4 ; 50 ◦C;4.5
h followed by (2).
12 g NaClO2l 50

◦C; 40 h

Hardwood
Pulp

Homogenizer
(5 passes; 80

MPa)
- CNF,

L: 95.8; W: 2.72 - −128 -COOH
(2.0) [152]

APS Oxidation - 1 M APS; 75 ◦C;
16 h Cotton Linters - 34.4 CNF,

L: 95.8; W: 2.72 63.8 -
-COOH
(0.16);
-SO3
(0.98)

[153]

In general, NCC isolation comprises exposing pure cellulose material under strong
acid hydrolysis with strictly controlled operating parameters such as temperature, agita-
tion, time, and concentration of chemical species. As mentioned earlier, various chemical
reagents such as H2SO4, HCl, HBr, and H3PO4 have been utilized as cellulosic disinte-
grators. The selection of acid reagents has the most crucial role in determining drug
carrier characteristics and synthesis pathways for incorporation or grafting through chemi-
cal/physical modification for particular functional groups. The amorphous decomposition
using HCl and HBr is not widely adopted because they provide low dispersion stabil-
ity of NCC and increase the agglomeration tendency of NCC in an aqueous suspension.
H2SO4 and H3PO4, on the other hand, exhibit better performance as a hydrolyzing agent
because the chemical moieties can be attached to the hydroxyl group of NCC during the
reaction to isolate charged surface of NCC for subsequent incorporation of phosphate or
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sulfate functional groups. The new functional group incorporation causes the spontaneous
dispersibility of NCCs in an aqueous environment due to the colloidal stability restora-
tion through electrostatic repulsion refinement, which is the preferred characteristic of
drug carriers.

A subsequent treatment of H2SO4 followed by HCl synthesis has been utilized to
control the sulfate moieties on the NC surfaces. The as-synthesized particle had a simi-
lar particle size to those particles directly acquired from acid hydrolysis. Nevertheless,
the surface charge density can be adjusted on the hydroxyl groups exploited by sulfate
groups [49]. Lin and Dufresne [137] proposed a strategy of inaugurating progressive
sulfate group content on NCCs surface through the modulation ratio of reactants and
post-sulfonation (chlorosulfonic acid) and desulfonation conditions. They also evaluated
the impact of sulfonation degree on the morphology, dimension, physical characteristic,
and surface chemistry of modified NCCs. Diverse zeta potential ranged from −7 mV to
−66 mV and approximately 0.0563 mmol/g–1.554 mol/g of sulfonation degree was ac-
quired. Therefore, it is indicated that the zeta potential of nanocellulose is mainly controlled
by the sulfonation degree of nanocellulose itself [137].

Wijaya et al. [29] successfully isolated NCC through sulfuric acid hydrolysis of
bleached passionfruit peels waste fiber by adjusting the acid concentration, hydrolysis
time, and reaction temperature. The NCC was used for tetracycline hydrochloride ad-
sorption through electrostatic and Van der Waals interaction. The adsorption isotherm
was correlated using Langmuir and Freundlich isotherm models. With pH environment
adjustment, the adsorption affinity of the drug can be altered to control the uptake and
sustained release of drugs [29].

(2,2,6,6-tetramethylpiperidine-1-oxyl)-mediated (or TEMPO-mediated) oxidation of
nanocellulose has arisen as an alternative NC isolation route to replace the conventional
acid hydrolysis method due to its environmentally friendly and facile synthesis nature.
The synthesis starts by using TEMPO/NaBr/NaClO or TEMPO/NaClO2/NaClO as a
reagent. TEMPO (stable nitroxyl radical) forms as the catalyst for NC synthesis, which
further transforms into N-oxoammonium salt (R1R2N+=O) under certain conditions while
the NaClO acts as a primary oxidant [46]. Both NaClO and NaBr can reversibly transform
the N-oxoammonium salt into TEMPO form. The hydroxymethyl groups of NC (primary
hydroxyl groups located on C6) are selectively transformed into carboxylated groups while
the secondary hydroxyl groups remain unchanged (secondary hydroxy groups located on
C2 and C3) [66]. The incorporated carboxyl groups imparted negative surface charges from
the change in the environment pH, which leads to improved colloidal stability.

As reported by Montanari et al. [154], TEMPO-mediated oxidation with the degree
of oxidation 0.24 has imparted negative charges on the crystalline regions of nanocellu-
lose, which provide dispersibility and individualization improvement time decreasing
the crystallite size [154]. Meanwhile, Habibi et al. [150] underlined that the TEMPO-
mediated oxidation did not affect the morphological and crystallinity of NCCs. Further-
more, they highlighted that the ratio of primary oxidizing agents affected the negative
charge of NCCs [150].

A novel oxidation system of TEMPO/laccase/O2 has been utilized to modify NC.
The TEMPO/laccase/O2 system with sufficient catalytic amounts of laccase and TEMPO
reagent produced reactive TEMPO+, which subsequently transformed primary hydroxyl
moieties into aldehyde moieties through oxidation. After the oxidation, the reactive
TEMPO+ was reduced into N-hydroxyl TEMPO. However, no-cycle regeneration occurred
between TEMPO+ and N-hydroxyl TEMPO due to the breakdown of the primary hydroxyl
groups of polysaccharides and laccase molecules. Furthermore, the N-hydroxyl-TEMPO
was accumulated in the reaction environment due to the absence of active laccase in
the system. Therefore, a large amount of TEMPO and laccase and prolonged reaction
time are required to oxidize the primary hydroxyl groups, which are considered major
disadvantages of this process [151].
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TEMPO-mediated oxidation was mainly used to modify NFCs before mechanical
defibrillation to promote the fiber’s individualization. TEMPO-mediated oxidation leads to
the breakage of the strong intra-fiber hydrogen coordination to facilitate the softening and
impairing of its rigid structure, which is beneficial in converting TEMPO-oxidized cellulose
fiber into highly crystalline individual nanofibers through mechanical treatment. The
NaClO concentration and mechanical treatment strength were considered crucial factors in
determining the polymerization degree, carboxylate group numbers, and CNFs yield.

Carlsson et al. [155] emphasized the influence of surface charges in nanocellulose
formulation as a drug carrier by introducing TEMPO-mediated oxidation in mesoporous
claodophora cellulose for aspirin degradation. The surface charge negativity (carboxylate
content 0.44 ± 0.01 mmol g−1) significantly accelerated the degradation of aspirin compared
to the native source of CNFs, which had a deficient surface charge (0.06 ± 0.01 mmol g−1).
This phenomenon is caused by the strong interaction of opposite charge entities between
aspirin and TEMPO-oxidized cellulose nanofibers (TOCNFs), leading to increased partial
amorphization ability inside the mesoporous TOCNFs [155].

Without a chlorine-containing oxidant, 1.1 mmol g−1 of carboxyl groups were incor-
porated onto wood cellulose. High in carboxylate content, wood cellulose underwent
tremendous depolymerization during oxidation. In addition, a long reaction duration of up
to 15 h was required to achieve 0.6 mmol g−1 carboxylate content, while 1.1 mmol g−1 was
achieved by increasing the reaction time up to 20 h. Prolonged reaction time is considered
the major disadvantage of this process. This method has been utilized for nanocellu-
lose modification in drug delivery applications [156]. The sequential periodate-chlorine
oxidation selectively and simultaneously incorporates two carboxyl groups through the
oxidative transformation of two vicinal secondary hydroxyl groups (located in C2 and C3
instead of C6 position), enabling higher surface charge density introduction. The increase
of surface charge density is essential in retaining the colloidal stability of drug carrier
and improving the electrostatic interaction between drug and carrier, which increase the
loading uptake of drugs.

Plappert et al. [152] investigated the pretreatment effect of sequential chlorite pe-
riodic oxidation on open-porous anisotropic CNF hydrogel membrane assembly. Hy-
drogel membranes were used for transdermal drug delivery systems for nonsteroidal
anti-inflammatory drugs (NSAIDs) and piroxicam (PRX). By tuning the surface charge den-
sity and the amount of carboxylated groups (0.74–2.00 mmol g−1) by varying the reagent
concentration, the drug carrier uptake capacity can be increased to within the range of
30–60 mg g−1 with the surface charge −66 mV to −128 mV. The electrostatic interaction
between the cationic drug (PCX) and the anionic characterized surface of CNF membranes
is the main driving factor behind the loading of drugs in the membrane [152].

5.3. Functionalization through Post Chemical Modification via Covalent and Physical Bonding Strategy

Maintaining the structural integrity of nanocellulose to prevent the polymorphic trans-
formation and maintaining the crystalline area while modifying its surface are considered
the main challenges. Therefore, several post-chemical modifications have been studied
for surface modification and functionalization of nanocellulose surfaces before the drug
upload. Sulfonation treatment is the most common strategy to introduce sulfate groups into
hydroxyl moieties of nanocellulose, which produces a highly negatively charged surface.
Nevertheless, the degree of sulfonation was highly determined by several factors such as
temperature, acid concentration, and hydrolysis time. Treatment of NC with sulfuric acid
or sulfonation followed by acid hydrolysis [137,157] can improve the characteristics of NCs.
However, these improvements may lead to lowering the colloidal stability of NC due to
the reduction in the sulfonate degree. Since the primary goal of the drug delivery system is
to achieve higher colloidal stability and strong electronegativity for further electrostatic
drug adsorption or modification, straight H2SO4 hydrolysis remains the primary treatment
for NC modification.
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On account of the simple and straightforward treatment, modification of hydroxyl
groups at the NC surface by Fischer esterification is another common approach. Several
reactants have been used to acetylate the surface of nanocellulose, such as acetic, citric,
malonic, and malic acid with the combination of HCl or H2SO4. The utilization of H3PO4
provides NC modification with higher thermal stability than sulfonated NC. Camarero
Espinosa et al. [135] suggested that only one hydroxyl group was incorporated by one ester
bond of phosphoric groups. Another study by Kokol et al. [138] revealed the possibility of
phosphate-modified nanocellulose (P-NC) originating from two structural isomers, either
of which can behave as monobasic acid or dibasic groups. Acetylation of hydroxyl groups
of NC can also be performed using enzymatic modification. In an environmentally friendly
approach, enzymatic modification serves as a favorable modification route without the need
for any addition of chemicals and has low energy requirements, improving biocompatibility
and lowering the cytotoxicity of NC for drug delivery.

The acid hydrolysis and oxidation treatments are mainly considered as a primary
synthesis of nanocellulose. Indeed, during acid-based hydrolysis or TEMPO-oxidation,
hydroxyl groups of nanocellulose grafted by anionic sulfate ester groups (-OSO3

−) and
carboxylate groups (-COOH) produce the negative electrostatic layer of nanocellulose.
Consequently, high stability of nanocellulose occurs in the aqueous solution resulting in
electrostatic repulsion between individual particles. Maintaining the structural integrity of
nanocellulose to prevent the polymorphic transformation and maintaining the crystalline
area while modifying its surface are considered the main challenges. Several post-chemical
modifications have been studied for surface modification and functionalization of nanocel-
lulose surfaces before the drug upload.

Silylation is another approach to modify the surface nanocellulose by conjugating
small molecules. A series of alkyl dimethyl-dimethylchlorosilane (alkyl-DMSiCl) with
various alkyl groups such as isopropyl, N-butyl, N-octyl, and N-dodecyl can be grafted on
the surface of NCC in the presence of toluene. However, the high price and high toxicity
of the reagents limit the progress of silylation modification in the drug delivery field.
Recently, Li et al. [158] developed an NC template for mesoporous hollow silica material
(R-nCHMSNs) for ibuprofen and lysozyme drug delivery. The presence of NC as a template
increases the content of geminal silanols on the R-nCHMSNs surface. Nanoparticles with
high content of geminal silanols present outstanding delivery characteristics for various
drugs [158].

The amine derivatives can covalently bond the surface of NC through a carbodiimide
amidation reaction. The majority of amidation-mediated couplings were incorporated on
the carboxylic groups of pre-oxidized NC without re-molding the morphology and crys-
talline native structure. N-ethyl-N-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDAC) has been widely used for the amidation among carbodiimide derivatives. The
addition of n-hydroxysuccinimide (NHS) is required to avoid unstable intermediate O-acyl
urea formation and to achieve the direct formation of the stable N-acyl urea. The amidation
approach was presented by Akhlagi et al. [159] to create a drug delivery system based on
chitosan oligosaccharides (CSOS) and TEMPO-oxidized NCC. The carboxylic moieties on
the oxidized NCC were coordinated into the primary alcohol and amino moieties of CSOS.
Several limiting factors such as medium reaction, time reaction, pH, and the molar ratio
of reagent and cross-linker reaction can be altered, translating to the modified grafting
behavior and degree of substitution of CSOS into oxidized NCC. Electrostatic interactions
were performed to achieve 21.5% of binding efficiency loading and 14% w/w of procaine
hydrochloride (PrHy) loading. The rapid release profile observed in this study is suitable
for local drug delivery by the oral system [159].

Direct covalent drug attachment towards the NC crystal backbone via a novel spacer
arm through amine-mediated couplings is another potential strategy [160]. Tortorella
et al. [160] modified NCC via periodate-oxidation-generated NCC-DAC (dialdehyde cellu-
lose) and inserted them into molecules of g-aminobutyric acid (GABA) via the Schiff base
condensation reaction. Subsequently, the nucleophilic substitution of 4-hydroxy benzyl al-
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cohol (HBA) occurred and was followed by an acylation reaction with
4-nitrophenylchloroformiat that exerted a carbonate group for nucleophilic substitution
of amino contained doxorubicin as model drug nucleophilic. Carbamate linkage adjacent
to the linker presents highly stable conditions in an aqueous environment with harsh
conditions, either basic or acidic. The drug release of active drugs was achieved only by
hydrolysis in cells utilizing suitable enzymes to cleave a carbamate linkage (Figure 7).
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5.4. Polymer Grafting Modified Nanocellulose

Polymer-grafted NC has been introduced as the sought-after functionalization strategy
to refine the drug delivery performance. Different techniques have been developed to
introduce functional groups onto NC covalently, i.e., (i) Thiolene reaction; (ii) Oxime
reaction; (iii) Michael addition; and (iv) imine and hydrazone synthesis. These reactions
have been well-developed for polymer functionalization for drug delivery systems.

Integrating polymer onto the NC surface can be performed by the ‘grafting onto’ or
‘grafting from’ strategy. The ‘grafting onto’ technique requires pre-synthesized polymer
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attachment that can bear the reactive end groups onto either modified or non-modified
hydroxyl groups of the NC surface. The adherence of polymer onto the NC surface’s
specific moieties can be performed via physical or chemical attachment. The ‘grafting onto’
approach offers the possibility of characterizing polymer before grafting and modulating
the resultant carriers’ characteristics.

Strong electrostatic interaction can be used to initiate the polymer grafting onto NC.
There is a possibility of incorporating polydopamine (PDA) into the NCC surface to fortify
the PDA material and develop NC’s colloidal stability. The presence of functional groups
in PDA, such as amine, imine, and catechol groups, can serve as the anchors for NC
and the drug through the Van der Waals interaction, the π–π interaction, and hydrogel
bonding [161].

Wang et al. [162] assembled poly(ethyl ethylene phosphate) (PEEP) that bears propargyl
functionality onto azide modified nanocrystalline cellulose (NCC) Cu via Cu(I)-catalyzed
azide-alkyne cycloaddition (CuAAC) “click” chemistry. In parallel, azide-modified NCC
was constructed by two steps, i.e., (i) partial desulfation treatment of NCC followed by
tosylation (NCC-Cl); and (ii) conversion of NCC-Cl into azido-NCC through nucleophilic
substitution using sodium azide. Propargyl-PEEP was grafted onto azide modified NCC
(NCC-g-PEEP) (Figure 8a). The as-synthesized suspension with negative charge can be
utilized for doxorubicin (DOX) confinement through electrostatic interaction, exhibiting
pH-responsive delivery in the tumor cell environment [162].

Kumar et al. [163] explored Diels-alder “click” chemistry by attachment of the metron-
idazole drug onto the CNFs. Initially, the TEMPO-oxidized CNFs underwent amidation
with furfuryl amine. Subsequently, esterification occurred between metronidazole as a
drug model and maleimide-hexanoic acid to introduce the ester function between the
drug and the maleimide ring. Finally, the Diels–Alder reaction occurs between the furan
functionalized CNF-t (CNF-fur) and metronidazole containing maleimide. Thus, the novel
system of carrier provides the ester function on the linking chain for innovative drug carrier
formulation, which induces the release in the presence of esterases enzyme [163].

Polymers 2021, 13, x  25 of 49 
 

 

in PDA, such as amine, imine, and catechol groups, can serve as the anchors for NC and 
the drug through the Van der Waals interaction, the π–π interaction, and hydrogel bond-
ing [161]. 

Wang et al. [162] assembled poly(ethyl ethylene phosphate) (PEEP) that bears pro-
pargyl functionality onto azide modified nanocrystalline cellulose (NCC) Cu via Cu(I)-
catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. In parallel, azide-mod-
ified NCC was constructed by two steps, i.e., (i) partial desulfation treatment of NCC fol-
lowed by tosylation (NCC-Cl); and (ii) conversion of NCC-Cl into azido-NCC through 
nucleophilic substitution using sodium azide. Propargyl-PEEP was grafted onto azide 
modified NCC (NCC-g-PEEP) (Figure 8a). The as-synthesized suspension with negative 
charge can be utilized for doxorubicin (DOX) confinement through electrostatic interac-
tion, exhibiting pH-responsive delivery in the tumor cell environment [162]. 

Kumar et al. [163] explored Diels-alder “click” chemistry by attachment of the met-
ronidazole drug onto the CNFs. Initially, the TEMPO-oxidized CNFs underwent ami-
dation with furfuryl amine. Subsequently, esterification occurred between metronidazole 
as a drug model and maleimide-hexanoic acid to introduce the ester function between the 
drug and the maleimide ring. Finally, the Diels–Alder reaction occurs between the furan 
functionalized CNF-t (CNF-fur) and metronidazole containing maleimide. Thus, the 
novel system of carrier provides the ester function on the linking chain for innovative 
drug carrier formulation, which induces the release in the presence of esterases enzyme 
[163]. 

 
(a) 

Figure 8. Cont.



Polymers 2021, 13, 2052 25 of 47

Polymers 2021, 13, x  26 of 49 
 

 

 
(b) 

Figure 8. Schematic representation of the polymer grafting technique (a). CuAAC “click” reaction 
for NCC-gPEEP synthesis (this picture is redrawn from Wang et al. [162], Copyright 2010 Royal 
Society of Chemistry); (b) polymer-grafted cellulose fibrils (pNIPAm-g-TOCNs) via Passerini one-
pot reaction (this figure is redrawn from Khine et al. [164]. Copyright © 2018 American Chemical 
Society). 

A versatile grafting strategy for numerous functional groups is the Passerini reaction. 
This reaction is a multicomponent reaction (MCR) that comprises three substances, i.e., a 
carboxylic acid, an isocyanide, and aldehyde/a ketone, in one pot of reaction. For example, 
Khine et al. [164] modified poly(N-isopropylacrylamide) pNIPAm carrying aldehyde end 
groups via the Reversible Addition−Fragmentation Chain Transfer (RAFT) polymeriza-
tion technique. Subsequently, the polymer with aldehyde functionality was further chem-
ically grafted into TEMPO-oxidized CNFs. As a result, these materials exhibit thermal re-
sponsiveness, which is promising for use in stimuli-responsive carriers (Figure 8b) [164]. 

Another way of modifying NC with polymer in an aqueous solution is the NICAL 
reaction. For example, Khine et al. [132] demonstrated photo-induced “click” chemistry 
for (TEMPO)-oxidized CNF bearing carboxylic acid moieties (TOCNs) modified with the 
nitrile imine-mediated tetrazole under ultraviolet (UV) irradiation. The presence of fluo-
rescence characteristics allowed for direct monitoring of NC throughout the cancer cells’ 
incubation. In addition, doxorubicin as a drug model can be attached via electrostatic in-
teraction to introduce excess negative charge onto carboxyl groups in the polymeric-
grafted NC [132]. 

Undesirable reduction in surface grafting density is nonetheless observed as the ma-
jor limitation. The steric barrier can hinder the optimum grafting throughout the reaction 
because the layer of attached polymer covered the available active sites. Therefore, an al-
ternative strategy has been proposed, called ‘grafting from’. Using this method, the poly-
mer chains can be grown in situ on the surface hydroxyl groups of NC via ring-opening 
polymerization (ROP) with the presence of stannous octoate (Sn(Oct)2) as an ROP agent. 
Another approach is atom transfer radical polymerization (ATRP) with 2-bromoisobutyr-
ylbromide (BIBB) as the ATRP agent. These standard approaches for drug delivery have 
been well-reviewed elsewhere [132]. 

5.5. Surfactant Modified Nanocellulose 

Figure 8. Schematic representation of the polymer grafting technique (a). CuAAC “click” reaction for
NCC-gPEEP synthesis (this picture is redrawn from Wang et al. [162], Copyright 2010 Royal Society of
Chemistry); (b) polymer-grafted cellulose fibrils (pNIPAm-g-TOCNs) via Passerini one-pot reaction
(this figure is redrawn from Khine et al. [164]. Copyright © 2018 American Chemical Society).

A versatile grafting strategy for numerous functional groups is the Passerini reac-
tion. This reaction is a multicomponent reaction (MCR) that comprises three substances,
i.e., a carboxylic acid, an isocyanide, and aldehyde/a ketone, in one pot of reaction. For
example, Khine et al. [164] modified poly(N-isopropylacrylamide) pNIPAm carrying alde-
hyde end groups via the Reversible Addition−Fragmentation Chain Transfer (RAFT)
polymerization technique. Subsequently, the polymer with aldehyde functionality was
further chemically grafted into TEMPO-oxidized CNFs. As a result, these materials ex-
hibit thermal responsiveness, which is promising for use in stimuli-responsive carriers
(Figure 8b) [164].

Another way of modifying NC with polymer in an aqueous solution is the NICAL
reaction. For example, Khine et al. [132] demonstrated photo-induced “click” chemistry for
(TEMPO)-oxidized CNF bearing carboxylic acid moieties (TOCNs) modified with the nitrile
imine-mediated tetrazole under ultraviolet (UV) irradiation. The presence of fluorescence
characteristics allowed for direct monitoring of NC throughout the cancer cells’ incubation.
In addition, doxorubicin as a drug model can be attached via electrostatic interaction to
introduce excess negative charge onto carboxyl groups in the polymeric-grafted NC [132].

Undesirable reduction in surface grafting density is nonetheless observed as the
major limitation. The steric barrier can hinder the optimum grafting throughout the
reaction because the layer of attached polymer covered the available active sites. Therefore,
an alternative strategy has been proposed, called ‘grafting from’. Using this method,
the polymer chains can be grown in situ on the surface hydroxyl groups of NC via ring-
opening polymerization (ROP) with the presence of stannous octoate (Sn(Oct)2) as an
ROP agent. Another approach is atom transfer radical polymerization (ATRP) with 2-
bromoisobutyrylbromide (BIBB) as the ATRP agent. These standard approaches for drug
delivery have been well-reviewed elsewhere [132].
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5.5. Surfactant Modified Nanocellulose

The adsorption of surfactants represents a promising alternative for the chemical
modification of NC. Surfactants are classified into cationic, anionic, zwitterionic, and non-
ionic. The distinct properties of the surfactant manifest through its micelle formulation
in the aqueous solution, which is highly beneficial in the drug delivery system. The
lack of a strong covalent bond is considered the significant drawback towards enabling
molecule release. Therefore, it is necessary to study several factors affecting the interaction
of surfactant and NC and their impact on drug uptake and release. Tardy et al. [165]
reviewed several factors that influence the affinity of NC and the surfactant. This study
provides some additional information on the affinity of NC and the surfactant on the drug
delivery system.

The opposite charge between the NCC surface and CTAB drove the electrostatic
interaction and physical adsorption for the NCC surface modified with the surfactant.
NCC’s negative charge creates a non-covalent interaction towards the cationic charge of
CTAB, resulting in a strong electrostatic interaction. Zainuddin et al. [166] pointed out
several factors that mainly involve the interaction between NCC and the surfactant, i.e., pH
and ionic strength, the CTAB concentration, and the ratio of CTAB to NCC. They high-
lighted that the CTAB concentration and mass ratio of NCC: CTAB affects the interaction
of surfactant-modified NCC with curcumin as a hydrophobic drug model. Increasing the
CTAB concentration intensifies the hydrophobic character of the carrier, which is intensely
coordinated with curcumin. However, at a high concentration of CTAB, the amount of
curcumin attached tends to decrease [166].

Low surfactant concentration favors the electrostatic interaction between the monomer
CTAB head with the negative charge of NCC surface, giving hydrophobic properties. While
the CTAB concentration increases progressively, the adsorbed monomer of the surfactant
tends to restructure and initiate surfactant cluster formation induced by hydrophobic
coordination between surfactant alkyl chains. The CTAB cluster molecules can be absorbed
through the NCC surface by hydrophobic interaction. However, the hydrophobic coordina-
tion of the surfactant and NCC manifested as a weak electrostatic interaction, which easily
releases CTAB from NCC surfaces through the washing. Moreover, an excessive amount
of CTAB concentration over the boundary of the surfactant critical micelles concentration
(0.93 mM CTAB) might provoke the surfactant micelles formation on the NCC surface,
which degrades the hydrophobic characters. Only ionic interaction between the cationic
head of CTAB and anionic sulfate ester groups remains unaffected, which acts as available
active sites for hydrophobic drug loading (Figure 9).

Raghav and Sharma [167] reported the coordination of the hydrophobic tail of CTAB in
phosphate NCC. They also observed that the surfactant types (CTAB and TBAB) influence
the capability of modified NCC to bind and release the drug. By observing the structure
configuration, stearic near the central nitrogen in TBAB-NCC causes the insufficiency of
drug binding, which exacerbates the coordination and controlled release of the carrier [168].

Putro et al. [25] modified the NCC with various types of surfactants such as cationic
(CTAB), anionic (sodium dodecyl sulfate), and non-ionic surfactant (Tween 20). Differ-
ent types of surfactants exhibit distinct interactions towards NCC, which influenced the
electronegativity of modified NCC itself and the drug adsorption–desorption behavior.
The presence of salt in the system had a significant influence on the uptake of paclitaxel.
Different behavior of surfactants due to the salt effect significantly influences the interaction
of NCC and drugs. They concluded that (1) electrostatic and Van der Waals interactions are
the primary mechanism of paclitaxel adsorption towards surfactant-modified NCC, which
can be enhanced through salt addition; and (2) pH played a significant role in the drug
adsorption and release of paclitaxel by altering the surface charge of surfactant-modified
NCC and the electrostatic interaction of hydroxyl ions and paclitaxel in solution.
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Surfactants have also been widely used to modify cellulose nanofiber for poorly
soluble drug adsorption performance. The surfactant attachment on the CNF surface is
vital to overcome various limitations of CNF’s chemical and physical characteristics during
modification for drug conveyance systems. The physical interaction of the surfactant and
CNF may overcome the aggregation tendency of CNF in an organic solvent, thus increasing
the solvent’s ability to assist CNF modification and adsorption of hydrophobic drugs. The
presence of the surfactant strengthens the cationic and hydrophobic characters of CNF. A
carrier’s physical and chemical characteristics can be refined by adding a surfactant (CNF
film and foams-based CNF).

The synthetic surfactant can induce membrane cell lysis based on biocompatibility,
which is considered a toxic material for cells. Therefore, the naturally available surfactants
have been considered to replace synthetic surfactants given their low toxicity. For instance,
Bundjaja et al. [26] utilized natural surfactant (rarasaponin) extracted from Sapindus rarak
DC fruits to modify nanocellulose via hydrophobic interaction. The results of their study
indicated that the rarasaponin-modified NCC exhibits a lower adsorption capability of
tetracycline relative to synthetic surfactant-modified NCC (CTAB, Tween20, and SDS). The
utilization of natural surfactants for the modification of nanocellulose materials remains a
challenge. Other bioactive compounds that were attached to the surface of NCC may cause
limited interaction for tetracycline molecules.

5.6. Polyelectrolytes-Based Nanocellulose

Polyelectrolytes are charged polymers in which their repeating units contain the elec-
trolyte group. In polar solutions such as water, these polymers dissociate into cations or
anions. The most common approach to make a functional polyelectrolyte carrier is to create
a multilayer carrier through electrostatically assembling layer-by-layer (LbL) the nanocel-
lulose (either negative or positive surface) with an oppositely charged polyelectrolyte.
Currently, the development of drug delivery carriers through LbL assembly has drawn
considerable attention due to their unique properties. Various physical interactions such
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as hydrogen bonding, hydrophobic interaction, and Van der Waals interaction are present
in functional polyelectrolyte carriers. Those interactions act as the driving force in drug
binding and maintain the stability of the multilayer [169]. LbL hybridization assembly of
nanocellulose with other organic and inorganic materials usually instigates an outstanding
performance improvement for the entire LbL system to stimuli-responsive and localized
drug delivery. Early development of the LbL approaches was demonstrated on the flat
substrates and is currently extended to spherical particles.

Coating LbL film on a spherical sacrificial template becomes another layer-by-layer
assembly approach for hollow polyelectrolytes capsule formation to encapsulate and re-
lease the drug. Melamine formaldehyde (MF) is a popular template for microcapsules
preparation via LbL assembly due to narrow-sized distribution and optimized disso-
lution conditions [170]. The physicochemical characteristics of templates such as size,
shape, porosity, colloidal stability, and template solubility modulate the characteristic of
as-synthesized hollow capsules. For instance, the capsule size can be adjusted depending
on the size of the template, which is common in the range of 150 nm to a few microme-
ters [171]. Nanocellulose has been used to construct the interior of multilayer thin film and
hollow microcapsules for various types of therapeutic molecules loading such as DNA,
RNA, protein, and drugs.

Several aspects should be considered to assemble suitable polyelectrolyte complexes
through the LbL system, i.e., charge stoichiometry, charge density, molecular weight, poly-
electrolytes concentration, pH, ionic strength, order of addition, mixing ratio, and mode
of mixing the polyelectrolyte solution. These factors greatly influence the drug carrier
thickness, the surface charge, and the morphological structure, such as the size, shape,
and porous structure of the drug delivery system. Reviews on some crucial aspects that
influence the stability of polyelectrolyte complexes for drug delivery systems are available
elsewhere [172].

Mohanta et al. [173] produced an NCC multilayer thin film with counterionic poly-
electrolytes (chitosan) on a quartz crystal microbalance (QCM) plate through LbL growth
assembly. They also developed hollow microcapsules using MF as a template. By varying
the concentration of the polyelectrolyte (either NCC and chitosan) and the number of
depositions, a homogeneous multilayer thickness with a porous structure can be obtained.
The thin film and microcapsule were utilized as carriers for hydrophilic drugs (doxorubicin)
and hydrophobic drugs (curcumin). The protonation of amine groups in acidic conditions
becomes the driving force for doxorubicin release, while the concentration difference be-
tween the medium and carrier is considered the primary factor affecting curcumin release.
The stimulus-responsive pH in LbL system-based nanocellulose may apply to local drug
transport and tumor therapy [173].

Other types of layer-by-layer assembly approaches were also used to construct
PEC-based nanocellulose by incorporating various types of polyelectrolytes. For in-
stance, Li et al. [174] proposed the buildup technique of LbL for opposite-charge building
blocks (e.g., cellulose nanocrystal (NCC), polyethyleneimine (PEI), cis-aconityl-doxorubicin
(CAD), and building blocks of folate (FA)). The highly negative charge of NCC serves as an
anchor to carry the positive-charge PEI through electrostatic interaction as an intermediary
layer. The coordination of NCC-PEI resulted in positive-charge material for electrostatic
adsorption of the negative charge of FA and CAD to construct the outermost layer, which
took place sequentially (denoted as FA/CAD@PEI@NCC). The presence of FA on the
surface carrier increased the active targeting ability towards folate receptors in the tumor
cell. Cis-aconityl amide linkage in doxorubicin (CAD) can specifically release DOX at
the lysosomal pH due to the pH labile characteristic and hydrolysis cis-aconityl amide
linkage by β-carboxylic acid under low pH. The integration of each layer can increase
the uptake to 20 times larger than its counterpart due to the strong electrostatic charge.
Besides the surface chemistry carrier, the carrier’s morphological structure also helps the
carrier delivery reach tumor cells [174]. Another potential form of polyelectrolytes, in-
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cluding hydrogel, aerogel, lightweight porous materials, and integrated inorganic–organic
composites, are thoroughly discussed in the following sections.

6. Hydrogel Based Nanocellulose for Drug Delivery

Hydrogels are three-dimensional (3D) cross-linked polymeric networks that carry
absorbed water and store a large quantity of water in the swelling state. The hydrogels
can be cross-linked through physical (non-covalent interaction), chemical (covalent co-
ordination), or an integration of both physical and chemical cross-links [175]. Given its
biocompatibility and stimulus-responsive swelling behavior, the hydrogel has gained atten-
tion for drug delivery application. As a drug carrier the physically cross-linked hydrogel is
preferable to the chemically cross-linked hydrogel. The covalently cross-linked hydrogel
generates a permanent structure that limits the swelling ability, and therefore, most chemi-
cally cross-linked hydrogels are used as implantables. Furthermore, the incorporation of
the drug via adsorption towards chemically cross-linked hydrogel restrains the loading
efficacy. Although the cross-linked reaction may perform drug conjugation on the hydrogel,
it sacrifices the chemical integrity of the drugs. Therefore, it is more desirable to construct
a hydrogel delivery system where simultaneous gel formation and drug adsorption can
occur in an aqueous environment without covalent cross-linking.

Due to the presence of sol-gel transition characteristics (such as swelling behavior, me-
chanical strength, and network structure), which are affected by the external stimulus such
as pH, thermal, light wavelength, ultrasonic waves, pressure, magnetic field, and electrical
field; the smart hydrogel-based nanocellulose has been well-developed for various drug
delivery formulation. Diverse types of polyelectrolytes can modify the substantial charge
of nanocellulose (either positive and negative) to form a variety of intelligent hydrogels
such as injectable hydrogel [161], stimuli-responsive hydrogel [176], double-membrane
hydrogel [177], supramolecular hydrogel [178], microsphere hydrogels, bacteria cellulose
hydrogel [179], shape memory-based bacteria cellulose [180], and aerogel/cryogel [174].
All those hydrogels have desirable physical and chemical characteristics to be adapted
to various drug delivery systems. Liu et al. [161] reviewed the current development
of nanocellulose-based hydrogel and its modification for drug delivery systems. How-
ever, double-membrane hydrogel and supramolecular hydrogel are excluded from their
review [161].

Different types of hydrogels have diverse morphological structures, network coor-
dination, and functional groups, affecting the drug’s diffusional path during adsorption
and release. Double-membrane hydrogel was developed by Lin et al. [177], consisting of
an external membrane composed of alginate and consolidation of cationic NCC (CNCC).
Two different drugs were introduced on different layers of the membrane with contrasting
types of release behavior. The outer hydrogel releases the drug rapidly, while sustained
drug release occurs in the inner membrane hydrogel. This phenomenon occurred due
to the ‘nano-obstruction effect’ and ‘nano-locking effect’ induced by CNCC components
in the hydrogels. The ‘nano-obstruction effect’ offers sustained drug release throughout
fragmentary disintegration, and the ‘Nano-locking effect’ is responsible for restricting the
burst of drug release through progressive hydrogel disintegration (Figure 10). The different
compositions and properties of external and internal hydrogels affect the drug’s behavior
and diffusional path [177].
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Alginate (this figure is redrawn from Lin et al. [177]. Copyright © 2016 American Chemical Society).

Supramolecular hydrogels have been characterized as the 3-D solid network hydrogel
organized by non-covalent interactions such as hydrogen linkage, hydrophobic coordina-
tion, and cation-π and π-π interactions. In contrast to the chemically cross-linked hydrogels,
gel morphology is equilibrated through covalent coordination; the supramolecular hy-
drogel morphology is stabilized by a non-covalent interaction. Supramolecular hydrogel
has been synthesized through extensive, diverse supramolecular configurations, includ-
ing host–guest complexation, biomimetic interaction, hydrogen bonding, stereo-complex
formation, and ionic and metal-ligand. Hydrogel-based supramolecular self-assembly
through host–guest complexation is the most widely explored method for supramolecular
hydrogel formation. Specifically, supramolecular hydrogels constructed by host–guest
inclusion between polymer and cyclodextrin demonstrated the thixotropic reversibility,
which is advantageous for syringe drug delivery.

Lin and Dufresne et al. [178] produced supramolecular hydrogel DDS by self-assembly
of a covalently grafted α-cyclodextrin (α-CD) NCC surface with epichlorohydrin as a cou-
pling agent through a one-step process. Furthermore, pluronic composed of triblock copoly-
mers with different molecular weights (Pluronic F68 or F108), both bearing hydrophobic
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poly-(propylene glycol) (PPG) and hydrophilic poly(ethylene glycol) (PEG) segments
(PEG-b-PPG-b-PEG), were immobilized on NCCs via the inclusion interaction between
the hydrophobic segment of polymer and cyclodextrin (Figure 11). The supramolecular
hydrogel-based NCC was utilized as a drug carrier for anti-cancer in vitro release of dox-
orubicin, which exhibited sustained drug release behavior (6.5 days). The kinetic release
mechanism follows the ‘obstruction’ and ‘locking’ effects. They found that supramolecular
hydrogels, upon being modified with NCC, induce a physical obstruction effect. Moreover,
the adequate loading of NCC gave strong interaction (e.g., hydrogen bonding) inside
supramolecular hydrogels and enabled the polymers to associate in the tridimensional per-
colating network, which provides a “locking effect” to delay the diffusion of doxorubicin
molecules (Figure 12). The sustained release depends on the a-CD content, the chain length
of the pluronic polymer, and the amount of NCC loaded in supramolecular hydrogels [178].
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Kopac et al. [181] pointed out that the main parameter for controlling the drug deliv-
ery rate in an anionic hydrogel-based nanocellulose is the average pore size (mesh size),
controlled by selecting cross-linked and biopolymer concentration along with the adjust-
ment of pH and temperature. The changes in the ionic strength and hydrogen bonding
of functional groups in the internal hydrogel structure are responsible for altering the
polymeric hydrogel network, which affected the average pore size of hydrogel (Figure 13).
Due to the smaller hydrodynamic size of the drug relative to the mesh size, the drug
can rapidly diffuse through the hydrogel network and vice versa without a steric barrier.
However, both drugs can have a similar drug release rate by modulating the mesh size
through cross-linking density and biopolymer ratio variation [181].
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7. Lightweight Porous Based Nanocellulose for Drug Delivery

Lightweight porous materials have been classified as a 3-D solid class of material with
several features such as high specific surface area, very low density (<50%), and diverse
pore structure with various pore sizes ranging from nanometer to micron. Sponge, foam,
and aerogels are the three major categories of lightweight porous materials. The sponge
is constructed by gas dispersion in the solid matrix, commonly present as an open cell
structure of low density porous elastic polymer. The sponge has a macroporous structure
full of gaps and channels, permitting easy access to water or molecules flow [182]. Similarly,
foam can be made through the steady gas dispersion into a hydrogel or solid matrix and
even liquid. Foam is commonly characterized as having a bubble diameter (pore diameter)
greater than 50 nm [183]. Aerogel is a three-dimensional (3D) porous material constructed
by self-assembly of the colloidal component or polymeric chains, creating nano-porous
networks that can be filled up with a gaseous dispersion medium. Aerogel is prepared
through the wet-gel drying process by removing the liquid component in the hydrogel,
which is replaced by a gas constituent while still preserving the gel network [184]. The
specific surface area of aerogel can reach up to 1000 m2 g−1 with a porosity range between
80 and 99.8%. On the other hand, other aerogels, namely xerogel and cryogel, have been
prepared by evaporation and freeze-drying. Detailed preparation of light-weight porous
material-based nanocellulose has been reviewed elsewhere [185].

For the drug delivery field, carrier morphology, especially the porosity structure,
controls the drug adsorption and release since the drug will pass through the internal
pore to be retained inside and release outside regardless of the chemistry interaction.
Sun et al. [186] underlined that the critical factor in controlling and modulating the pore
structure of ultralightweight porous materials is selecting a drying method [186]. Initially,
freeze-drying, supercritical drying, and evaporation drying have been utilized in fabricat-
ing ultralightweight porous materials. Evaporation drying has emerged as a conventional
technique of synthesizing nanocellulose-based porous materials. However, there are sev-
eral major drawbacks, such as internal network structure collapse due to the capillary
forces of the solid matrix and the difficulty to prevent the shrinkage. Therefore, freeze-
drying and supercritical drying have been used as drying methods to overcome these
drawbacks. Freeze drying can retain the porous structure through the sublimation of liquid
into gas. It is also possible to cross the solid–gas interface bypassing the liquid critical
point through adjusting the temperature and pressure (supercritical drying). Both methods
effectively retain the pore structure and refine the porosity and specific surface area of
nanocellulose-based porous materials.

Aerogel-, xerogel-, and cryogel-based nanocelluloses are promising materials as the
vehicle for a drug delivery system. Before the drying process, physical and chemical cross-
linking are vital in controlling the 3D network formation and porous material performance.
Physical cross-linking is commonly established by weaker interactions such as Van der
Waals, hydrogen bonding, and electrostatic interaction. In contrast, covalent cross-linking
can create a 3-D robust mechanical framework through the action of covalent coordina-
tion and polymerization. Chemical cross-linking exhibits better mechanical stiffness and
structural stability compared to physical cross-linking.

Muller et al. [180] synthesized water-responsive xerogel to retain its original shape by
submerging it in water through moisture utilization as the stimulus. The post-modification
of BNC with the different supplementary hydrophilic substances was performed to achieve
the re-swelling behavior. Rapid re-swelling behavior can be acquired by supplementary
magnesium chloride, glucose, sucrose, and sorbitol with up to 88% maximum rehydration.
Their findings of re-swelling modified BNC showed the possibility of developing a carrier
with controlled release properties for hydrophilic drug model azorubine in the drug
delivery system.

Li et al. [174] synthesized two types of nanocellulose/gelatin composite cryogels
through hydrogen bonding and chemical cross-linking with dialdehyde starch (DAS) for
controlled drug delivery of 5-fluorouracil (5-FU). DAS subsequently reacted with both
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gelatin and CNF to form the chemically cross-linked network. The reaction of aldehyde
groups with the hydroxyl groups of CNFs led to the formation of hemiacetal/acetal types
of structures. Furthermore, the aldehyde group presence effectively integrates with the
ε-amino groups of gelatin to generate a Schiff base coordination. They found that the
chemical cross-linking of Schiff bases and hemiacetal/acetate is crucial to regulate the
structural porosity of cryogel composite. Since the porosity and cross-linking degree
mainly control drug loading, selecting the chemical cross-linking method is crucial.

Moreover, the presence of gelatin hydration capability and reversible hydrolysis
characteristic of hemiacetal/acetate, along with its morphological structure, is also respon-
sible for achieving controllable and sustained release of 5-FU in a simulated intestinal
environment. In addition, the cross-linking degree and the porosity can be tuned by the
composition and ratio of CNF, gelatin, and dialdehyde starch. The addition of CNF in-
creases the drug loading and the cross-linking degree [174]. Figure 14A shows that the
improvement of surface roughness and cross-section morphology reduces the pore size of
cryogel, leading to an increase in the cryogel resistance against ice crystal growth during
freeze-drying, resulting in the smaller pore size, higher specific surface area, and lower
density. The smaller pore size leads to better drug loading and releases efficiency since the
smaller pore structure limits the drug looseness (Figure 14B).
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Zhao et al. [187] prepared polyethyleneimine (PEI) grafted to amine-modified CNF
and cross-linked using glutaraldehyde to form an aerogel (CNFs-PEI). The success of
the aerogel formation depends on the polymerization of methyl methacrylate (MMA)
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on the surface of CNFs, which induced the formation of the network between PEI and
CNF. Polyethyleneimine (PEI) carries some primary and secondary amine functional
groups, which increase the loading of sodium salicylate (NaSA) to 20 times higher than its
counterpart (CNFs-based aerogel). The sustained and controlled release was achieved by
the CNFs-PEI aerogel, which is highly responsive to pH because of the protonation and
deprotonation of amine groups in PEI [187].

Chemically cross-linked PEI with TEMPO-mediated BC CNF (abbreviated as PEI-
BC) for aspirin, gentamicin, and bovine serum albumin (BSA) carrier has been studied
by Chen et al. [156]. The PEI cross-linking induced the morphological changes of BC
by increasing the density of interconnected structures and thickening the pore walls,
which provide the CNF interpenetrated network with improved mechanical strength [156].
Liang et al. [188] proposed a well-balanced dual responsive polymer (temperature and pH)
by modifying branched PEI with N-isopropyl acrylamide (NIPAM), which was further
grafted onto CNF through the condensation reaction (abbreviated as CNF-PEI-NIPAM). Re-
markably, the pH and temperature of the carrier can alter the hydrophobic and hydrophilic
characteristics of CNF-PEI-NIPAM [188].

CNF has been combined with the non-edible surfactant to make air bubble confine-
ment by the Pickering technique, generating stable air bubbles encapsulated in wet-stable
foams. Using the unique drying technique, the dry-foams with closed holes (cellular solid
material-CSM) were made. Although the three-dimensional closed-hole structure presents
a fascinating drug delivery system for the prolonged release of the drug because of con-
fined stable air in the internal foam’s structure, such structure may induce an elongated
diffusional path of medicine to modify the characteristic drug release. CNFs foam as a drug
carrier with the positive buoyancy characteristic was synthesized by Svagan et al. [189].
Positive buoyancy characteristics resulting from the presence of air are retained in the
closed cells. These primary characteristics highlight the practicability of CNFs foam as a
floating agent for gastro retentive drug delivery systems for site-specific drug release such
as intestinal and stomach systems.

CNF foams were synthesized by combining the cationic suspension of CNF with
the consumable surfactant (lauric acid sodium salt) as a foaming reagent. Subsequently,
hydrophilic drug riboflavin was confined in the wet-stable CNFs foam structure and
was further dried to acquire dry foam with a close hole structure with up to 50% drug
loading (Figure 15A). The CNFs foam offers structural flexibility with different porosity
and tortuosity, which can be modified in terms of shape and thickness and can be sliced
into different pieces. An increase in the foam thickness leads to a decrease in the riboflavin
release rate. In addition, the morphological foam structure showed a long and tortuous
diffusion path, prolonging drug diffusion (Figure 15B). Therefore, the diffusion coefficient
of the drug through the porous foam structure was lower than the diffusivity of the drug
in the film structure [189].

The addition of surfactant is required to synthesize stable dry-foam-based cellulose
nanofibers. Lobmann et al. [190] proposed an innovative way to synthesize stable foams
by combining cationic CNF and hydrophobic drug indomethacin. Hydrophobic drugs
provided a positive molecular interaction by partially covering the hydrophobic side of
CNFs, which further changes the surface energy of CNFs. However, the indomethacin
loading in the foams was limited to up to 21% of the loaded drug. An excessive amount of
drug loading would destabilize and collapse the foam’s structure since a higher fraction of
free indomethacin and solvent in the solution was present in the air–water interface, which
limited the surface-modified CNF aggregation [190].
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Svagan et al. [191] performed similar assembling of controlled-release CNFs foam
with buoyance characteristics utilizing the poorly soluble drug furosemide as a foaming
agent. They highlighted several factors such as the amount of drug loading, the foam
piece dimension, and the solid-state of the incorporated drug that influenced the kinetic
release of the drugs. Regarding the solid-state of the drug within the closed cell of foam,
at 21% furosemide loading in foam, furosemide mainly exists in an amorphous state of
furosemide salt, which leads to rapid release with the increase of the drug loading. In
addition, the mass of incorporated drugs inside the foam structure can provide different
foam dimensions, which alter the drug release kinetics. Bannow et al. [192] investigated the
influence of processing parameters on the foaming characteristic and structure of nanofoam
CNF/indomethacin. They found that the nanofoam density and the number of entrapped
air bubbles depend on the pH, the mass of confined drugs, and the preparation route (pre-
or post-adjustment of pH) [192].

The development of sponge-based nanocellulose for the drug delivery system by
adding citric acid (CA) as a co-cross-linker between branched polyethyleneimine (bPEI)
and TOCNFs was conducted by Fiorati and coworkers [193]. CA was added as an auxiliary
carboxyl moieties source to improve the cross-linking process to bPEI. They investigated
the as-synthesized sponge capability as a drug vehicle for amoxicillin and ibuprofen. The
confined drug in the sponge structure with non-contained citric acid moieties exhibited
a higher drug release percentage than that with the cross-linker. The presence of citric
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acid progressively increased the ibuprofen adsorption, while no significant effect was
observed for amoxicillin adsorption. The presence of citric acid provided an additional
carboxylic group, which was actively involved in the particular interaction with the ibupro-
fen molecules. In addition, the existence of CA also refined the mechanical strength and
chemical stability of the material through the occurrence of amide bond formation between
the primary amines of bPEI and with carboxylic groups of TOCNFs and CA (Figure 16).
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The progress of nanocellulose based sponges is still quite limited in the drug delivery
field. Nevertheless, several types of sponge-based nanocellulose have been used in other
biomedical applications. For instance, Xiao et al. [194] developed sponge-based CNFs
via multiple cross-linking of CNFs by cellulose acetoacetate (CAA) and aminopropyl (tri-
ethoxy) silane (APTES), which further covalently bonded with surface-modified gentamicin
through enamine coordination. The sponges’ composite exhibits outstanding antibacterial
characteristics towards S. aureus and E. coli, allowing 99.9% sterilization capability [194].

8. Integrated Inorganic/Organic-Based Nanocellulose for Drug Delivery

Recently, magnetic nanocomposites in drug delivery, particularly in cancer therapy,
have drawn considerable attention. The targeted delivery of antitumor agents towards
cancerous tissues can be carried through the advanced hybrid material with stimuli or spe-
cific recognition characteristics to pass through the targeted sites selectively. Nanohybrids
with the stimuli effect respond to the external stimulus (e.g., pH, temperature, magnetic,
and ultrasound) and further alter their physiological characteristic to release the therapeu-
tic agent with a specific concentration towards the affected tissues. Therefore, the treatment
system and the drug specificity can be improved, contributing to lessening systemic toxicity.
Nonetheless, the drug carrier biocompatibility, immunogenicity, toxicity, responsiveness to
magnetic gradients, and proper drug transportability still need much improvement.

NCC may also be utilized as a nanoparticle coating for colloidal stability improvement,
biodegradability, biocompatibility, and chemical functionalization. Rahimi et al. [195] func-
tionalized NCC with tris(2-aminoethyl)amine (AMFC) for Fe3O4 magnetic nanoparticles
coating (AMFC-NPs). Initially, the nanocellulose underwent tosyl chloride treatment for
tris(2-aminoethyl)amine functionalization (AMFC was chosen to be assigned to the amino
moieties and cationic characteristics). The presence of amino groups in AMFC-NPs was
linked to the methotrexate (MTX, an anticancer immunosuppressive drug) carboxyl groups.
This method was employed to surpass the MTX limitation by keeping down the off-target
side-impact towards healthy cells while optimizing the efficacy of anticancer drug deliv-
ery. The drug confinement efficacy reached 91.2% with 30.4% efficiency of drug loading
in the AMFC-NPs. The MTX-AMFC-MNPs system exhibited pH responsivity in which,
at an acidic condition (pH of 5.4), up to 79% of the drug was released, while over five
days, it exhibited up to 29% drug release by the protonation behavior of MTX carboxylic
groups. In addition, the nanoparticles containing MTX exhibit a higher uptake of cellular
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compared to the AMFC-MNPs, which were contributed to by the chemical similarity of
MTX with folic acid (FA), which assists the internalization of receptor-mediated cellulose.
This enhances the potential of MTX for cancer cell targeting (Figure 17) [195].
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Figure 17. (a) Magnetic NCC-based nanocarrier with pH-responsive capability construction.
The nanocellulose was undergoing tosylation, which reacted with tosyl chloride for tris(2-
aminoethyl)amine (AMFC) functionalization, incorporating amino moieties for electrostatic interac-
tion improvement, which connected into the methotrexate (MTX, anticancer drug) carboxyl groups
(MTX@AMFC@MNPs); and (b) schematic illustration of pH-responsive and localization of cancer
treatment that benefited from the structural similarity between folic acid and MTX, which assists the
folate-receptor-mediated cell internalization (this figure is redrawn from [195]. Copyright 1987 Royal
Society Of Chemistry).
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Recently, Supramaniam et al. [196] introduced magnetic characteristics towards
nanocellulos-based hydrogels, which were further utilized for controlling drug deliv-
ery. The co-precipitation with Fe (II) and Fe (III) ions was incorporated into the NCCs,
followed by the insertion of the magnetic characteristic, and subsequently, morphologically
modified into beads with sodium alginate. It was observed that the magnetic nanocellu-
lose existence refines the physical and mechanical characteristics of hydrogel beads and
swelling degree improvement and limits the drug release due to the formation of physical
entanglement inside the hydrogel. Jeddi and Mahkam [197] developed magnetic hydro-
gel beads composite-based carboxymethyl nanocellulose to deliver dexamethasone. The
composite can control the dexamethasone delivery up to 12 h.

Carbon nanotubes have outstanding characteristics such as high thermal stability,
homogenous pore arrangement, high specific area, and excellent electrical features. This
advanced material has also been employed as a vehicle in the drug delivery system
in recent years. The combination of this material with the NC material provides some
advantages. The incorporation of nanocellulose in the composite increased biocompatibility
and biodegradability while the CNTs provided good stability, magnetic and electromagnetic
behavior, and high cellular uptake [198]. Although the cytotoxicity of material still became
an issue, CNTs were widely exploited in drug delivery systems, particularly cancer therapy
applications [199].

Integration of nanocellulose into graphene-based materials through the layer-by-
layer assembly as a drug carrier was carried out by Anirudhan et al. [200]. Chemically
modified GO was used as a template for the layer-by-layer assembly of aminated nano-
dextran (AND) and carboxylic acid functionalized nanocellulose (NCCs) to form a MGO-
AND/NCCs nanocomposite. Curcumin can be loaded into the carrier through π–π stacking
and hydrogen bonding interactions due to the phenolic and aromatic rings of curcumin.
Based on the release study, the acidic environment promotes COO- groups’ protonation
and amino in aminated in nano-dextran to form NH3

+. This phenomenon decreased the
static interaction between MGO-AND/NCC, resulting in the electrostatic repulsion of each
component, consequently provoking the drug release. In addition, a cytotoxicity assay on
HCT116 cells exhibited high efficacy of curcumin-loaded MGO-AND/NCC.

The electrochemical activity of the carbon nanotube was utilized to modulate the
drug release. The release of ibuprofen from a novel hybrid hydrogel composed of sodium
alginate (SA), bacterial cellulose (BC), and multi-walled carbon nanotubes (MWCNTs) was
studied by Shi et al. [176]. The release of ibuprofen can be provoked by electrostatic repul-
sion. Thereby, the on–off release mechanism can be attained by introducing electrochemical
potential [176].

9. Conclusions

Modified and functionalized nanocelluloses with low toxicity and high biocompatibil-
ity render them promising materials as advanced drug carriers. Various hydroxyl groups
on the surface of the nanocellulose serve as attachment sites of drugs through covalent
and/or physical interactions. In addition, nanocellulose modification results in a different
morphological structure for the carrier, which contributes to an increase in the diffusion
pathway of the drug within the carrier. Therefore, surface chemistry is a crucial factor
that should be considered in the design of nanocellulose as a drug carrier for effective
drug delivery. High-purity nanocelluloses are also required to obtain drug carriers with
the well-constructed framework, thus facilitating drug adsorption and release control.
Considering all these factors, carrier-based nanocellulose is a promising candidate for
developing novel sustained drug delivery systems.
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