

turnitin Originality Report

56 Efficient One-Step Conversion of a Low-Grade Vegetable Oil by Shella Santoso

From Similarity check (check paper Jakad SPS)

Similarity Index

17%

Similarity by Source

Internet Sources: Publications: Student Papers:

N/A 17% N/A

Processed on 01-Mar-2022 10:04 WIB ID: 1773489794 Word Count: 10555

sources:

1

2% match (publications)

Francisco G. Cirujano, Amarajothi Dhakshinamoorthy. "Engineering of Active Sites in Metal-Organic Frameworks for Biodiesel Production", Advanced Sustainable Systems, 2021

2% match (publications) 2

Sujit Sen, Ujjal Mondal, Gaurav Singh. "Dual Optimization in Phase Transfer Catalyzed Synthesis of Dibenzyl Sulfide using Response Surface Methodology", Organic Process Research & Development, 2016

1% match (publications) 3

Shuang-Lan Hu, Ying-Jie Zeng, De-Zhi Wu, Wen-Yong Lou. "Sucralose-Derived Solid Acid Catalysts Highly Selective Production of Cellulosic Hydrolysate: Source for Microbial Lipid Synthesis", Waste and Biomass Valorization, 2021

1% match (publications) 4

> Cornelia Bohne, Luis M. Liz-Marzán, Krishna N. Ganesh, Deging Zhang, "Chemistry, From Alpha to Omega, Open to All", ACS Omega, 2016

1% match (publications) 5

Stefanny Angela, Valentino Bervia Lunardi, Karissa Kusuma, Felycia Edi Soetaredjo et al. "Facile synthesis of hierarchical porous ZIF-8@TiO2 for simultaneous adsorption and photocatalytic decomposition of crystal violet", Environmental Nanotechnology, Monitoring & Management, 2021

1% match (publications) 6

Felycia Edi Soetaredio, Shella Permatasari Santoso, Valentino Bervia Lunardi, Alfin Kurniawan et al. "Highly efficient degradation of organic pollutant mixtures by a Fe(III)-based MOFcatalyzed Fenton-like process in subcritical water", Journal of Molecular Liquids, 2022

1% match (publications) 7

Vania Bundjaja, Tirta Mutiara Sari, Felycia Edi Soetaredjo, Maria Yuliana et al. "Aqueous sorption of tetracycline using rarasaponin-modified nanocrystalline cellulose", Journal of Molecular Liquids, 2020

< 1% match (publications) 8

Sumikama, Takashi, and Shigetoshi Oiki. "Digitalized K+ Occupancy in the Nanocavity Holds and Releases Queues of K+ in a Channel", Journal of the American Chemical Society, 2016.

< 1% match (publications) 9

Heng Zhang, Hu Li, Chunbao Charles Xu, Song Yang, "Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production", ACS Catalysis, 2019

< 1% match (publications)

10

11

14

Shella Permatasari Santoso, Artik Elisa Angkawijaya, Vania Bundjaja, Alfin Kurniawan et al. "Investigation of the influence of crosslinking activation methods on the physicochemical and Cu(II) adsorption characteristics of cellulose hydrogels", Journal of Environmental Chemical Engineering, 2022

< 1% match (publications)

Graziela Cristina Sedenho. "Bioelectrochemical and bioinspired energy conversion systems: from heterogeneous and extracellular electron transfer to applications in aqueous batteries and biofuel cells", Universidade de Sao Paulo, Agencia USP de Gestao da Informacao Academica (AGUIA), 2021

< 1% match (publications) 12

Andreas Andreas, Zefanya Gerald Winata, Shella Permatasari Santoso, Artik Elisa Angkawijaya et al. "Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue", Journal of Molecular Liquids, 2021

< 1% match (publications) 13

Mehmet Şakir Ece, Sinan Kutluay, Ömer Şahin, Sabit Horoz. " Development of Novel Fe O /AC@SiO @1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies ", Industrial & Engineering Chemistry Research, 2020

< 1% match (publications)

Imen Khouni, Benoît Marrot, Philippe Moulin, Raja Ben Amar. "Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes". Desalination, 2011

< 1% match (publications) 15

Francisco German Blanco Parte, Shella Permatasari Santoso, Chih-Chan Chou, Vivek Verma et al. "Current progress on the production, modification, and applications of bacterial cellulose", Critical Reviews in Biotechnology, 2020

< 1% match (publications) 16

Shalini Sahani, Tania Roy, Yogesh Chandra Sharma. "Studies on fast and green biodiesel production from an indigenous nonedible Indian feedstock using single phase strontium titanate catalyst", Energy Conversion and Management, 2020

< 1% match (publications)

17 Eslam G. Al-Sakkari, Omar M. Abdeldayem, S.T. El-Sheltawy, Magdi F. Abadir, Ahmed Soliman, Eldon R. Rene, Ibrahim Ismail. "Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study", Fuel, 2020

< 1% match (publications) 18

S. Niju, R. Rabia, K. Sumithra Devi, M. Naveen Kumar, M. Balajii. "Modified Malleus malleus Shells for Biodiesel Production from Waste Cooking Oil: An Optimization Study Using Box-Behnken Design", Waste and Biomass Valorization, 2018

< 1% match (publications) 19

Jassinnee Milano, Hwai Chyuan Ong, H.H. Masjuki, A.S. Silitonga, Wei-Hsin Chen, F. Kusumo, S. Dharma, A.H. Sebayang. "Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology", Energy Conversion and Management, 2018

< 1% match (publications) 20

Betiku, Eriola, Victoria O. Odude, Niyi B. Ishola, Ayorinde Bamimore, Ajiboye S. Osunleke, and Adebisi A. Okeleye. "Predictive capability evaluation of RSM, ANFIS and ANN: A case of reduction of high free fatty acid of palm kernel oil via esterification process", Energy Conversion and Management, 2016.

< 1% match (publications) 21

> Abass A. Olajire. "Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future", Renewable and Sustainable Energy Reviews, 2018

< 1% match (publications) 22

Milad Zehtab Salmasi, Mohammad Kazemeini, Samahe Sadjadi. "Transesterification of sunflower oil to biodiesel fuel utilizing a novel K2CO3/Talc catalyst: Process optimizations and kinetics investigations", Industrial Crops and Products, 2020

< 1% match (publications) 23

"Nano- and Biocatalysts for Biodiesel Production", Wiley, 2021

< 1% match (publications) 24

Daniel DeSantis, Jarad A. Mason, Brian D. James, Cassidy Houchins, Jeffrey R. Long, Mike Veenstra. "Techno-economic Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage", Energy & Fuels, 2017

< 1% match (publications) 25

Ren, Li, Wenming Liu, Yaolei Wang, Jian-Chun Wang, Qin Tu, Juan Xu, Rui Liu, Shao-Fei Shen, and Jinyi Wang. "Investigation of Hypoxia-Induced Myocardial Injury Dynamics in a Tissue Interface Mimicking Microfluidic Device", Analytical Chemistry, 2013.

< 1% match (publications) 26

Alex Tangy, Indra Neel Pulidindi, Asmita Dutta, Arie Borenstein. "Strontium Oxide Nanoparticles for Biodiesel Production: Fundamental Insights and Recent Progress", Energy & Fuels, 2020

< 1% match (publications) 27

Betiku, Eriola, Aramide Mistura Akintunde, and Tunde Victor Ojumu. "Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon's plume (Bauhinia monandra) seed oil: A process parameters optimization study", Energy, 2016.

< 1% match (publications) 28

< 1% match (publications)

Kedir D. Mekonnen, Zenamarkos B. Sendekie. "NaOH-Catalyzed Methanolysis Optimization of Biodiesel Synthesis from Desert Date Seed Kernel Oil", ACS Omega, 2021

29 Shayan Jalalmanesh, Mohammad Kazemeini, mohamad hosein rahmani, milad zehtab. "Biodiesel Production from Sunflower Oil Using K2CO3 Impregnated Kaolin Novel Solid Base Catalyst", American Chemical Society (ACS), 2020

< 1% match (publications)

30

Tresia Pangestu, Yosafat Kurniawan, Felycia Edi Soetaredjo, Shella Permatasari Santoso et al. "The synthesis of biodiesel using copper based metal-organic framework as a catalyst", Journal of Environmental Chemical Engineering, 2019

< 1% match (publications)</pre>

Huixiao Duo, Yuhuan Wang, Licheng Wang, Xiaojing Liang, Xiaofeng Lu. "Zirconium (IV)based metal-organic frameworks (UiO-67) as solid-phase extraction adsorbents for extraction of phenoxyacetic acid herbicides from vegetables", Journal of Separation Science, 2018

< 1% match (publications)</pre>

Leyvison Rafael V. da Conceição, Livia M. Carneiro, Domingos S. Giordani, Heizir F. de Castro. "Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia", Renewable Energy, 2017

33 < 1% match (publications)</pre>

Sarawade, Pradip, Hua Tan, and Vivek Polshettiwar. "Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO₂ Capture Capacity", ACS Sustainable Chemistry & Engineering, 2012.

< 1% match (publications)</pre>

<u>Subramaniam, Bala, and Daryle H. Busch. "Use of Dense-Phase Carbon Dioxide in Catalysis", ACS Symposium Series, 2002.</u>

35 < 1% match (publications)</p>
Changebon Vo. Theorem Co.

Changshen Ye, Zhaoyang Qi, Dongren Cai, Ting Qiu. "Design and Synthesis of Ionic Liquid Supported Hierarchically Porous Zr Metal—Organic Framework as a Novel Brønsted—Lewis Acidic Catalyst in Biodiesel Synthesis", Industrial & Engineering Chemistry Research, 2019

36 < 1% match (publications)</pre>

Chong Chen, Bingxue Li, Lijin Zhou, Zefeng Xia, Nengjie Feng, Jing Ding, Lei Wang, Hui
Wan, Guofeng Guan. "Synthesis of Hierarchically Structured Hybrid Materials by Controlled
Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO Adsorption ", ACS
Applied Materials & Interfaces, 2017

< 1% match (publications)</pre>

Lee, S.. "An experimental investigation of biodiesel synthesis from waste canola oil using supercritical methanol". Fuel. 201201

< 1% match (publications)</pre>

Stefanus Kevin Suryajaya, Yohanes Ricky Mulyono, Shella Permatasari Santoso, Maria
Yuliana et al. "Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base
bifunctional catalyst for the conversion of low-quality oil to methyl esters", Renewable Energy, 2021

< 1% match (publications)</pre>

Ukaegbu Chinonso Ishmael, Rashid Samiur Shah, Jaya Veyajan Palliah, Mohammed Fazli Farida Asras et al. "Statistical Modeling and Optimization of Enzymatic Pretreatment of Empty Fruit Bunches with Laccase Enzyme", BioResources, 2016

< 1% match (publications)</pre>

Anggraini, Merry, Alfin Kurniawan, Lu Ki Ong, Mario A. Martin, Jhy-Chern Liu, Felycia E. Soetaredjo, Nani Indraswati, and Suryadi Ismadji. "Antibiotic detoxification from synthetic and real effluents using a novel MTAB surfactant-montmorillonite (organoclay) sorbent", RSC Advances, 2014.

< 1% match (publications)</pre>

Muhammad Farooq, Anita Ramli, Abdul Naeem, Muhammad Saleem khan. " Effect of different metal oxides on the catalytic activity of γ-Al O –MgO supported bifunctional heterogeneous catalyst in biodiesel production from WCO ", RSC Advances, 2016

< 1% match (publications)</pre>

Witri Wahyu Lestari, Maria Arvinawati, Ronny Martien, Triana Kusumaningsih. "Green and facile synthesis of MOF and nano MOF containing zinc(II) and benzen 1,3,5-tri carboxylate and its study in ibuprofen slow-release", Materials Chemistry and Physics, 2018

< 1% match (publications)

Yu-Xiu Jin, Fang Yang, Li-Min Yuan, Chao-Guo Yan, Wen-Long Liu. " A two-dimensional Cd coordination polymer with 2,2'-(disulfanediyl)dibenzoate and 1,10-phenanthroline ligands ", Acta Crystallographica Section C Structural Chemistry, 2014

paper text:

44

8This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. http://pubs.acs.org

/journal/acsodf Article

5Efficient One-Step Conversion of a Low-Grade Vegetable Oil to Biodiesel over a Zinc Carboxylate Metal-Organic Framework

2Valentino Bervia Lunardi,⊥ Fransiska Gunawan,⊥ Felycia Edi Soetaredjo, Shella Permatasari Santoso,* Chun-Hu Chen, Maria Yuliana, Alfin Kurniawan, Jenni Lie, Artik Elisa Angkawijaya, and Suryadi Ismadji

* Cite This: ACS Omega 2021, 6, 1834–1845 Read Online Downloaded via 36.89.168.50 on May 14, 2021 at 02:37:32 (UTC). ABSTRACT: In this study, a metal-organic framework, namely, Zn3(

1BTC)2 (BTC = 1,3,5-benzenetricaboxylic acid), was solvothermally synthesized and

23as a catalyst for biodiesel production from degummed vegetable oil via a onestep transesterification and esterification reaction. The

resulting Zn3(BTC)2 particles exhibit a well-defined triclinic structure with an average size of about 1.2 μm, high specific surface area of 1176 m2/g, and thermal stability up to 300 °C. The response surface methodology–Box–Behnken design (RSM– BBD) was employed to identify the optimal reaction conditions and to model the biodiesel yield in relation to three important parameters, namely, the

17methanol/oil molar ratio (4:1-8:1), temperature (45-65 °C), and time (1

.5–4.5 h). Under the optimized reaction conditions (i.e., 6:1 methanol/oil molar ratio, 65 °C, 4.5 h), the maximum biodiesel yield reached 89.89% in a 1 wt % catalyst, which agreed very well with the quadratic polynomial model's prediction (89.96%). The intrinsic catalytic activity of Zn3(BTC)2, expressed as the turnover frequency, was found to be superior to that of other MOF catalysts applied in the transesterification and esterification reactions. The reusability study showed that the as-synthesized Zn3(BTC)2 catalyst exhibited good stability upon three consecutive reuses without a noticeable decrease in the methyl ester yield (~4%) and any appreciable metal leaching (<5%). Furthermore, a preliminary technoeconomic analysis showed that the total direct operating cost for the kilogram-scale production of Zn3(BTC)2 is estimated to be US\$50, which may sound economically attractive.

11See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. ACCESS Metrics & More Article Recommendations *si Supporting Information

1. INTRODUCTION Biomass-derived energy sources are considered a promising solution to the global energy crisis resulting from the overconsumption and continuous depletion of finite fossil fuel reserves. In this context, biodiesel has drawn wide attention as a green and sustainable alternative to petroleum-derived diesel fuels owing to its similar properties, inherent lubricity, and lower net emissions of carbon monoxide (CO), particulate matter (PM), and unburned hydrocarbons. The high oxygen content of biodiesel can also contribute to reducing soot formation, leading subsequently to a cleaner and more efficient combustion.1,2 Apart from the less polluting exhaust emissions, the rapid escalation in biodiesel con- sumption and production worldwide may build up the atmospheric concentrations of CO2 and other greenhouse gases. Plant cultivation in biodiesel feedstocks can help establish a sustainable and net-zero carbon-neutral cycle through the Calvin–Benson–Bassham photosynthetic cycle.3 Moreover, plant biomass utilization provides additional benefits such as renewability, nontoxicity, and biodegrad- ability.4–6 While such an energy crop plantation scenario presents a promising opportunity for the sustainability of biodiesel production, one can reasonably expect adverse ©

282021 The Authors. Published by American Chemical Society

socioeconomic and biodiversity impacts as a result of the considerable land use and land-use changes. In addition, the use of edible crops for biodiesel feedstock may raise a contentious issue of food vs fuel, specifically in underdeveloped and developing regions. Therefore, the biodiesel industries' policy measures and implementation are vital in tackling the above issues and achieving a wider social acceptance. While

research and development of biodiesel have been continuously pursued during the last two decades, the economic viability of the process remains a significant barrier to widespread commercialization.7 In this context, the utilization of nonedible low-cost feedstock oils and the

21development of highly active, economic, and easily recyclable catalysts

represent two major strategies

21to make the biodiesel production process more economically

attractive. The latter strategy has become the main focus of the biodiesel research Received: August 10, 2020 Accepted: January 4, 2021 Published: January 14, 2021 Figure 1. Characterizations of the Zn3(BTC)2. (a) FTIR spectra of the H3BTC linker and as-synthesized Zn3(BTC)2. (b) Powder XRD patterns of the as-

43synthesized Zn3(BTC)2 along with the simulated diffraction pattern from CCDC

-664416. The Bragg reflections denoted with asterisks (*) and octothorpe (#) indicate the crystal lattice of Zn3(BTC)2 and impurity phases, respectively. (c) Nitrogen adsorption-desorption isotherms of Zn3(BTC)2 at 77 K. The solid and hollow circles represent the adsorption and desorption branches of the isotherm, respectively. (d) Thermogravimetric weight loss of Zn3(BTC)2 recorded under a N2 atmosphere. (e) SEM images of polydisperse Zn3(BTC)2 particles and (f) the particle size distribution histogram obtained by measuring more than 60 randomly selected particles on the SEM image using the Fiji-ImageJ software. The red line in the histogram represents the best-fit log-normal distribution (R2 = 0.96) obtained using the SigmaPlot software. community toward improving product yield, which in turn reduces the total manufacturing costs. Homogeneous catalytic systems based on alkali metal hydroxides (e.g., NaOH or KOH) or related alkoxides suffer from the intricate and costly separation and recycling of the catalyst after the reaction. Moreover, the practical utility of homogeneous alkaline catalysts is complicated by the stringent demand for expensive refined lipid feedstocks in the process. On the other hand, heterogeneous catalysts allow for the easy recovery and reuse for multiple reaction cycles, as well as possess a comparatively high activity to homogeneous catalysts. Various solid acid and base catalysts with tunable structural and surface functionalities have been extensively developed, and many of them show promising activity for improving the biodiesel production yield.4,8 Heterogeneous solid base catalysts generally afford faster reaction rates and therefore higher biodiesel yields compared with the acid counterparts under milder reaction conditions. However, they are sensitive to free fatty acids (FFAs; max. 2 wt %) and water content (<0.06 wt % or 600 ppm tolerable level) in the starting feedstock,9-11 which can promote saponification and hydrolysis side reactions and decrease both the catalyst activity and the ester yield. Hence, the solid acid catalysts remain the preferred choice when dealing with low-quality or nonedible vegetable oils containing significant quantities of FFAs and water. Metal-organic frameworks (MOFs) have emerged as an attractive and versatile porous crystalline material in the realm of

9heterogeneous catalysis, thanks to their unprecedented attributes, such as exceptionally high internal surface areas

, tailorable nanoscale porosity, enormous structural and chemical diversity, good thermal stability, and modular synthetic design.12 The open metal sites (OMS; also referred to as

40**coordinatively unsaturated metal** centers) **in the MOF** structure are known **to** behave as **the**

adsorption

9and Lewis acidic sites, thus playing a central role in modulating the

catalytic activity and selectivity for various reactions. To date, numerous studies have demonstrated the outstanding perform- ance of MOF catalysts to achieve both high conversion efficiency and selectivity in a variety of industrially relevant reactions; however, less attention has been paid to the transesterification and esterification reactions. With respect to the biodiesel production, only a few types of MOFs have been investigated, such as iron and copper benzenetricarbox- ylate (Fe-BTC and Cu-BTC), MIL-53(Fe), UiO-66, and Cr(III) and Co(II) terephthalate,7,8,13,14 While these MOF catalysts can afford fatty acid alkyl esters in good to excellent yields (85–98%), the conversion is accomplished by either esterification using well-defined fatty acid substrates (e.g., oleic acid)13,14 or a two-step trans/esterification of pre-esterified oil,7 while the model reaction featuring a one-step trans/ esterification remains unexplored. In this study, the catalytic performance of a three- dimensional (3D) Zn(II)-based carboxylate MOF (hereafter denoted as Zn3(BTC)2) is examined for direct conversion

1of degummed palm oil (DPO) to biodiesel

via the simultaneous transesterification and esterification in methanol. The one-step process of transesterification and esterification provides an economic advantage and improves the efficiency of biodiesel production.15 Based on the intensive review of available literature, the Zn3(BTC)2 MOF has been applied to various organic transformation reactions, such as the alkylation of toluene with benzyl bromide, cycloaddition of carbon dioxide to cyclic carbonates, synthesis of benzimidazole derivatives, and Knoevenagel condensation.16–19

12**To the best of our knowledge**, this study **is the first to report the** catalytic activity **of**

Zn3(BTC)2 for the

9transesterification and esterification of a low-grade vegetable oil

(DPO)

9to produce fatty acid methyl esters (FAMEs) or biodiesel. The second objective of

this study is to pinpoint the optimal conditions for maximizing the conversion efficiency of Zn3(BTC)2-catalyzed biodiesel production by the response surface methodology (RSM). The preliminary cost analysis of the MOF synthesis on a kilogram scale is also provided to assess the economic potential of Zn3(

40BTC)2 as an efficient and reusable solid acid catalyst

. 2. RESULTS AND DISCUSSION 2.1. Structure and Characterization of the Zn3(BTC)2 Catalyst. The 3D porous Zn3(BTC)2 MOF is constructed from the coordination interaction between the tritopic linker H3BTC and Zn2+ ions in a multidentate fashion.20 In the fdoerpmroattoionnateodf toZnf3o(rBmTCa)n2,egtahtievelHy3cBhTaCrgedlinBkTerCs3-arsepefcuiellsy. The polar aprotic DMF molecules act as a mobile phase that assists the interactions between Zn2+ ions and the deproto- nated BTC3- ligands. Meanwhile, the Zn metal centers are six- coordinated with two carboxyl oxygen atoms in two independent BTC3- ligands and four oxygen atoms belonging to water molecules to form an octahedral coordination geometry. The resultant octahedral coordination environment with an extensive hydrogen bonding among water eventually leads to the formation of a stable crystalline framework between the carboxylate groups of BTC3- and Zn2+ ion.20,21 interactions between triangular BTC3- bridging ligands and The formation of Zn3(BTC)2 from the coordination Zn2+ ions is investigated using FTIR spectroscopy. As shown in Figure 1a, the H3BTC linkers exhibit a strong, broad OH stretching band corresponding to the carboxylic groups at 3364 cm-1.22 The broad absorption features between 3000 and 2600

44cm-1 can be assigned to the C-H stretching vibrations. The are observed at 1735 and 1390 cm-1

, respectively. After the C?O and C-O vibrational modes of the carboxylic groups bands of H3BTC at 3000-2500 cm-1 vanish, while the OH coordination reaction with Zn2+ ions, the broad absorption band blueshifts and becomes more intense and broader. This OH band can be assigned to the asymmetric and symmetric vibrations of the coordinated water molecules in the Zn3(BTC)2 structure.23 The absorption bands associated wavenumbers of 1665 and 1414 cm-1, respectively, than those with the carbonyl groups also appear at lower and higher observed for the H3BTC linker. These shifts suggest the and coordination of the carboxylic groups with Zn2+ ions.24 complex formation of Zn3(BTC)2 through the deprotonation −COOH groups around 1700 cm-1 also implies the complete The absence of the absorption band corresponding to the the binding of Zn2+ ions.20 Moreover, the presence of the Zn- deprotonation of the H3BTC linkers after metal binding upon O stretching vibrations corresponding to the octahedral at 756 cm-1.23 coordinated zinc center is confirmed by the absorption band The powder XRD pattern of the as-synthesized Zn3(BTC)2 is presented in Figure 1b, while the details of the Bravais lattice parameter are given in Table S1. Compared with the simulated XRD pattern of Zn3(BTC)2 obtained from the Cambridge Crystallographic Data Centre (CCDC no. 664416), the as-synthesized sample exhibits quite distinctly different crystalline features, particularly for the Bragg reflections observed at higher 2θ angles of 15-40°. The relatively weak yet wellresolved reflections at higher Bragg angles may represent the impurity phases with smaller crystallite domains. The most intense (102) reflection located at $2\theta = 10.44^{\circ}$ in the experimental XRD pattern, however, well matches the simulated one ($2\theta = 10.37^{\circ}$). In addition, the two reflections that appear at $2\theta =$ 9.33 and 12.71° are also the typical crystal features of Zn3(BTC)2.23 This result thus suggests that the resultant product may contain multiphases, especially for the peaks at low Bragg angles of 9.39, 10.44, and 10.78°. The unit cell dimensions (Table S2) from the obtained XRD pattern show the triclinic crystal geometry of Zn3(BTC)2. The average crystallite size (D) obtained from the Scherer equation for the strongest (102) reflection was 8.5 nm. The N2

41adsorption-desorption isotherms of Zn3(BTC)2 at 77 K show a

typical IUPAC Type I(a)/II hybrid characteristic with well-defined steps at low and high relative pressures (Figure 1c). The significant uptake of N2 in the low relative filling of narrow micropores in the MOF structure.

The second pressure region (P/P0 < 0.05) can be attributed to the volume of the isotherms may reflect the multilayer adsorption of N2 on steep uptake observed at

```
5high relative pressures (P/P0 > 0.95) the large mesopores and
```

the external surface (i.e., macropores) of the samples,25 thus characterizing the hierarchical architecture of porosity of Zn3(BTC)2. The

```
5presence of large mesopores and macropores inside the MOF material can
```

facilitate the mass transport of large-sized reactant molecules into the catalytically active Lewis acid Zn2+ sites and desorption of products from the porous framework. The Zg-n13, (rBeTspCe)ct2ivweelyr.eCfoomunpdarteod btoe t1h1e7m5.e8s1opmo2rogu-s1Zann-dBT0C.81McOmF3

```
21BET surface area (SBET) and total pore volume (VT) of (SBET = 12-50 m2 g
```

-1) reported in the Wang et al. work,23 the much higher SBET of the Zn3(BTC)2 particles synthesized in this work can be ascribed to the existence of a micro/ macroporous structure. In this regard, the high surface area of Table 1. ANOVA Results for the FAME Yield Response at an Optimal Zn3(BTC)2 Loading of 1 Wt % factora SSb coef. estimated (α) DFc MSd F value P valuee model 1036.73 79.80 9 115.19 68.79 <0.0001* Linear ef fect X1 156.65 4.42 1 X2 559.49 9.15 1 X3 162.73 4.22 1 Interaction ef fect X1X2 11.87 -1.86 1 X1X3 23.14 2.24 1 X2X3 4.49 -1.14 1 Quadratic ef fect 156.65 93.54 559.49 334.10 162.73 97.17 11.87 7.09 23.14 13.82 4.49 2.68 <0.0001* <0.0001* <0.0001* 0.0374* 0.0099* 0.1525NS X12 0.7665 0.4642 1 0.7665 0.4577 0.5239NS X22 236.24 -9.11 1 236.24 141.07 <0.0001* X32 16.26 -2.26 1 16.26 9.71 0.0207* residual 10.05 6 1.67 lack of fit 10.05 5 2.01 0.7218NS

```
39pure error 0.0000 1 0.0000 corrected total
```

1046.78 15

```
35std. dev. mean R2 adj. R2 pred. R2 precision
```

1.29 75.05 0.9904 0.9760 0.9113 29.6294 aX1 = reaction

```
17time (h); X2 = methanol/oil molar ratio; X3 = reaction temperature (°C
```

). bSS =

```
32sum of squares. cDF = degree of freedom. dMS = mean squares
```

. e^* = statistically significant; NS = not significant. the Zn3(BTC)2 particles with a significant micropore contribution (\sim 60% of the SBET, Table S3) would benefit the catalytic reaction by affording abundant OMSs, which allow the reactant molecules (i.e., triglycerides/free fatty acids and methanol) to interact more

frequently with these active sites and promote the conversion efficiency toward the reaction product. The TGA curve of Zn3(BTC)2 reveals a two-step thermal degradation process, as shown in Figure 1d. A mass loss (8.7%) observed below 100 °C could

13be attributed to the evaporation of the adsorbed moisture and the

elimination of the lattice water molecules in the framework structure. The TGA curve shows a negligible

36weight loss between 100 and 270 °C, which denotes the absence of

any coordinated DMF molecules after the activation process; the elimination of the DMF molecules occurs in the temperature range of 100–170 °C under a N2 atmosphere.26 The as-synthesized MOF possesses good thermal stability with no appreciable weight loss (<2 wt %) up to 300 °C. This result unambiguously confirms that the Zn3(BTC)2 MOF is thermally stable and does not lose its crystalline order or undergo structural collapse during the transesterification reaction at low temperatures (45–65 °C). The representative examples of MOF materials possessing good thermal stability and applied to the transesterification and esterification reactions can be found in Table S4. Upon increasing the temperature above 300 °C, a rapid weight loss (~40%) was observed, which reflects the collapse of the framework structure of Zn3(BTC)2 due to the decomposition of organic linkers. The weight loss profile reaches a plateau at temperatures between 400 and 600 °C, yielding a residual crystalline ZnO around 40 wt %. Beyond 600 °C, neither weight loss nor phase transition of the ZnO particles was observed,

6which is in good agreement with previous reports.20,27 The SEM image of

the Zn3(BTC)2 particles shows a nonisometric and triclinic morphology with relatively broad size distributions from 0.3 to 3.5 µm (Figure 1e,f). The observed discrepancy between the crystallite and particle sizes measured from the XRD and SEM image may suggest that the resultant products are polycrystalline. The morphology of the Zn3(BTC)2 particles is also somewhat different from that reported earlier for a similar method.28 A possible explanation for this morphological difference is due to the variation of the solvothermal synthetic conditions in the Zn3(BTC)2 system, such as the solvent type, metal salt, precursor molar ratio, temperature, reaction time, and others. Compared to the rod morphology reported by Wang et al.,23 the addition of triethylamine as a co-solvent was not included in the present approach. Feng et al. also reported the rod-shaped Zn3(BTC)2 particles through a solvothermal method using ethanol– water.28 Hao et al. demonstrated that the pore size and framework topology of Zn3(BTC)2 can be modulated by the solvent molecular size.29 The results of the SEM observation are in agreement with the powder XRD pattern. 2.2. Effect of the Catalyst Loading on the FAME Yield. The optimization of the catalyst loading is pivotal not only to maximize the reaction yield but also to minimize the production cost. Thus, the dependence of the catalyst loading on the yield of FAMEs was examined through

39a one-factor-at- a-time (OFAT) optimization method. The

OFAT approach was selected due to its simplicity and with the consideration of excluding the catalyst loading factor from the intrinsic reaction parameters. As shown in Figure S1, a volcano-like relationship between the catalyst loading and FAME yield was observed, where the maximum conversion of 84.4% was accomplished at a catalyst load of 1 wt %. At a 0.5 wt % Zn3(BTC)2 catalyst loading, the simultaneous conversion of triglycerides and free fatty acids into FAMEs reaches about 80%. As the catalyst loading increased to the optimal value, the FAME yield slightly rose from 80 to 84.4%, which can be explained by the

increased availability of the Lewis acid sites of Zn3(BTC)2, thus favoring the conversion of the reactant. The FAME conversion gradually declined upon increasing the catalyst concentration beyond 1 wt %. This phenomenon may be attributed to the decrease of the

30dispersion of active centers that hinder the molecular interactions between the reactants

Figure 2. The 3D surface mesh plots with contour lines underneath illustrating the binary

19interaction effects of the independent reaction parameters on the ester yield

: (a) temperature (X3) and

27methanol/oil molar ratio (X2), (b) methanol/oil molar ratio (X2) and time (X1), and

(c) time (X1) and temperature (X3). and active sites.30 The blank reaction test without a catalyst under the same conditions shows no appreciable formation of FAMEs, affording only \sim 3% yield. This result confirms the indispensable role of catalysts in accelerating the trans- esterification reaction rate by decreasing the free energy barrier (Δ G‡). 2.3.

16 Optimization and Modeling Studies of Biodiesel Production

. The

16analysis of variance (ANOVA) results showing the effects of linear, quadratic

, and interaction terms of the three investigated reaction parameters (i.e., reaction time (X1), methanol/oil molar ratio (X2), and reaction temperature (X3)) on the FAME yield are summarized in Table 1. The statistical significance of the coefficient of each model term was examined through the Fisher's exact (F value) and probability (P value) tests, where P values less than 0.05 are considered statistically significant. Our preliminary analysis based on the P value, goodness of fit (R2), and lack of fit suggested that the quadratic polynomial model is the most suitable for describing the response values compared to the linear and cubic functions.

3Based on this significance testing, the quadratic polynomial model (eq 1) was found to be appropriate and statistically acceptable at the 95% confidence level (P value < 0.0001) with an insignificant lack of fit (P value > 0.05) for predicting FAME yields. Moreover, the predicted results agree well with those obtained from the experiments (see Table 1), with the satisfactorily adjusted coefficient of determination (adj. R2) of 0.976. This value implies that 97.6% of the FAME yield response variability could be described well by the model

. Figure S2 also shows that

18all the data points lie close to the 45° reference line

. The predicted R2 value of 0.91 may reflect that the obtained model adequately approximates the response values under the experimental range studied without overfitting. Furthermore, the

2very low value of the coefficient of variation (CV = 1.72%) and

the considerably high adequate precision (i.e., signal-to- noise ratio > 4) point out that the model provides an accurate fit of the observed response and can navigate the design space.31,32 The ANOVA test results reveal that

2all the linear, quadratic, and interaction parameters are statistically significant

in the implemented model with P values lower than 0.05 (highlighted with an asterisk (*) in Table 1), except for the quadratic X12 (P = 0.5239) and interactive X2X3 effects (P = 0.1525). The

27linear effect of the methanol/oil molar ratio (X2) emerges as the most

important contributor to increasing FAME yields (P < 0.0001 and F value = 334.1) among the other linear effects, namely, reaction temperature (F value = 97.17) and time (F value = 93.54). The same trend was also observed for the square terms of reaction parameters, where X22 (F value = 141.07) > X32 (F value = 9.71) > X12 (F value = 0.46). The optimal polynomial regression model after discarding the insignificant model terms (i.e., X12 and X2X3) are expressed in eq 1 with respect to the coded variables. FAME yield (%) = 79.80 + 4.42X1 + 9.15X2 + 4.22X3 - 1.86X1X2 + 2.24X1X3 - 9.11X2 2 - 2.26X3 2 (1) In eq 1, the positive and negative signs of the model terms represent the synergistic and antagonistic behavior, respec- X3) have positive coefficients, suggesting that an increase of the tively. It can be seen that all the main effects (i.e., X1, X2, and reaction time, methanol/oil molar ratio, and temperature leads to higher reaction yields in the biodiesel production catalyzed confirms the more significant role of the methanol/oil molar by Zn3(BTC)2. A more positive value of X2 factor (α 2 = 9.15) ratio in maximizing the FAME conversion rather than the reaction time (α 1 = 4.42) and temperature (α 3 = 4.22), which will be discussed in more detail in the next section. The positive coefficient of X1X3 (α 13 = 2.24) suggests the mutualistic effects

37between the reaction time and temperature in facilitating the conversion rate and yield

of FAMEs. On the contrary, the negative signs for the X1X2, X22, and X32 significant model terms demonstrate the antagonistic effect of the square terms of the methanol/oil molar ratio and reaction temperature on the DPO conversion to biodiesel. 2.4. Parametric Study of the Biodiesel Production.

202.4.1. Effect of the Methanol/Oil Molar Ratio. Based on the ANOVA results, the methanol/oil molar ratio

has the strongest influence on the FAME production in the presence of Zn3(BTC)2. To further verify the significant influence of this factor, the interactions

20between the methanol/oil molar ratio and temperature (X2X3) or time

(X2X1) in promoting FAME conversion are investigated, as portrayed in Figure 2a,b. As

13can be seen from the response surface plots, the

curvature tends to be elliptical in shape, which indicates a significant interaction between each axis variable to the FAME response yield.33 The increase in the molar ratio of methanol to DPO from 4:1 to 6:1 positively affects the FAME production. This can be simply explained by the fact (and in accord with Le Chatelier's principle) that an excess amount of alcohol is required to drive the chemical equilibrium toward the product side. However, further increasing the methanol/oil molar ratio from 6:1 to 8:1 results in lower FAME yields. In this regard, the presence of excess methanol may encapsulate some active sites of the catalyst, leading to the hindered dipole interactions between the catalytically active sites with TG and FFA.34 Moreover, the excessive methanol loading can promote the emulsification of the reaction mixture due to a recombination of FAMEs and glycerol to produce monoglycerides,35,36 thus hindering the separation process of the product. Also, a large excess of methanol can improve the

38solubility of glycerol in the FAME- rich phase, which could

adversely affect the purity and yield of the final biodiesel product. Thus, optimizing the methanol/oil molar ratio in the transesterification process is crucial not only for maintaining the high conversion efficiency of FAMEs and product quality but also for minimizing the operating cost for unreacted methanol recovery. 2.4.2.

33Effects of the Reaction Temperature and Time. The

37interaction effect between the reaction temperature and time (X3X1) on FAME

productivity is presented in Figure 2c. From the 3D response surface plot,

19it can be observed that the reaction temperature and time play a less significant role in modulating the FAME conversion efficiency compared to the

methanol/oil molar ratio. The transesterification and ester- ification reactions are both endothermic and reversible, and thus, an increase in temperature provides more energy to the reaction mixture that shifts the chemical equilibrium in favor of the FAME formation. The elevated reaction temperatures also help to decrease the mass-transfer limitation between the methanol and oil phases, leading to the enhanced adsorption and diffusion of reactant molecules toward the catalytically active sites.37 Meanwhile, a prolonged reaction time improves the FAME production, allowing a greater number of reactant molecules to be consumed and converted to FAMEs over the catalyst surface. However,

33a further increase in the reaction temperature and time

beyond their optimum conditions has negligible effects on the ester yield and may incur additional cost and energy requirements of the process.8 2.5. FAME Compositions and Fuel Properties of the DPO-Derived Biodiesel. Based on the above statistical optimization study, the maximum yield of biodiesel obtained from the

1 one-step transesterification and esterification reactions of DPO over $\mbox{Zn3}(\mbox{BTC})2$

was achieved at a

29methanol/oil molar ratio of 6:1, temperature of 65 °C, and reaction time of 4.5 h. The percent yield of

biodiesel obtained from the second-order polynomial model prediction (eq 1) under these optimized reaction conditions was found to be 89.96%, which agrees remarkably well with the experimental value of 89.89% (see Table 4, entry 12). The total mass fractions of the FAME species in the product were 95 wt %, with predominantly palmitic and oleic acid methyl esters present (see Figure S3 for details on the FAME concentration profiles and the corresponding GC-FID chromatogram). The

38fuel properties of the DPO-derived biodiesel are presented in Table

2, which conform to the quality standard requirements specified in ASTM D6751 and the Indonesian National Standard (SNI 7182-2015), thereby suggesting the potential use of the as-produced biodiesel as either a neat fuel or petroleum diesel blends. 2.6. Catalyst Reusability and Catalytic Performance Comparison of Zn3(BTC)2. Reusability

13is an important aspect to consider when evaluating the robustness of

a heterogeneous solid catalyst and its commercial potential, particularly from Table 2. Fuel Properties of the Biodiesel Obtained from DPO along with a Comparison to the ASTM D6751 and SNI 7182-2015 Standard Specifications fuel specifications acid value cetane number cloud point density at 40 °C flashpoint kinematic viscosity at 40 °C moisture content unit mg KOH/g °C kg/m3 °C mm2/s ppm ASTM D6751a 0.50 max 47 min report NS 100–170 1.9–6.0 NS SNIb 0.50 max 51 min 18 max 850–890 100 min 2.3–6.0 500 max DPO biodiesel 0.36 58.7 min –11 885 148 5.44 291 aASTM: American Society for Testing and Materials; NS = not specified. bSNI: Indonesian National Standard. economic and practical viewpoints. In this regard, the catalytic stability of Zn3(BTC)2 was assessed for

1up to five reaction cycles under optimal reaction conditions

. As depicted in Figure 3a, the FAME yields were maintained at 85–90% over three consecutive runs but then gradually decreased

1to \sim 80 and \sim 75% at the fourth and fifth cycles, respectively

. Such a decline in the catalytic activity could be attributed to the partial blocking of active catalytic sites by the surface adsorbed oil residue and byproduct (glycerol) molecules or the decreased Lewis acidic OMSs present in the MOF from the leaching event. To confirm the correlation between the activity decrease and metal leaching, we carried out flame atomic absorption spectroscopic (FAAS) measurements of FAME- and glycerol- rich layers at the end of each catalytic cycle. The results indicate that no appreciable leaching of the Zn metal (<5% with respect to the initial content in the catalyst) into the reaction mixture occurred during the first three reuse experiments. In comparison, a more pronounced Zn leaching takes place in the

1fourth (8.7%) and fifth (12.1%) catalytic cycles

(see Figure S4). We also compare the catalytic performance of Zn3(BTC)2

23in the conversion of triglycerides and fatty acids to alkyl esters

through the trans/esterification routes with other MOF materials reported in the literature.8,38–40 To provide a valid comparison and to better reflect the intrinsic activity of the as- prepared MOF catalyst, the

34turnover frequency (TOF), herein defined as the moles of the reactant converted per mole of the catalyst per hour,41 was employed in the

comparative performance evaluation. Determining the identity and number of active sites can be difficult in the MOF composite catalysts; thus, the moles of the catalyst were used instead

42of the number of active catalytic sites for the calculation of

TOF values.42 As schaotawlynticin aFctigivuirtye 3wbi,ththea ZTnO3(FBTvCalu)2e eoxhfib1i8ts.2 a hh–i1g,h winhtircihnsiics comparable and/or exceeds that of the MOF materials reported by others.38–40 For example, the intrinsic catalytic

aCZ croti((vITiIt)OyMFanO=dF1s(3t1a.5)bi(hITi-ty1O)Foinf=Zth2ne.03(tBhra-Tn1Cs)e) as 2nted arirN fiecHastu2i-poMenrIioLofr-1pt0loa1n(ttChoori)sl-eSanaold-f

1esterification of oleic acid, respectively, albeit with the use of

lower catalyst loading and methanol/oil molar ratio. The as- prepared catalyst also exhibits an intrinsic activity comparable ttohethBartøonfstFeed3Oio4n@icNlHiq2u-MidILD-

8A8ILB(F(Te)OMFO=F1f7u.n5cthio-n1)alifzoerd theye Figure 3. (a) Recyclability of the Zn3(BTC)2 catalyst for the simultaneous transesterification-esterification of DPO

42under opti- mized reaction conditions (i.e

٠,

```
22methanol/oil molar ratio = 6:1; temperature = 65 °C; time = 4.5 h
```

) along with its catalytic performance compared to the other MOF materials previously reported for FAME production, such as DAIL-Fe3O4@NH2-

```
1MIL-88B(Fe), NH2-MIL-101(Cr)-Sal-Zr, Co(II) MOF 1, and Cu-BTC. The
```

recovery and reuse experiments of the MOF catalysts in the present work and cited studies were performed according to the procedure described in Section 4.4, with slight variations in the separation process and drying conditions. Note that the catalytic activity of the representative MOF materials over several cycles in the 3D bar chart was redrawn and presented based on the corresponding literature data. (b) Comparison of the intrinsic activity (TOF) of the as-synthesized Zn3(BTC)2 and other MOF catalysts in the transesterification and esterification reactions, along with the achieved conversion yield.

26esterification of oleic acid with methanol

, while also affording milder and more economical

28reaction conditions, such as lower methanol/oil molar ratio, temperature, and catalyst loading

. Moreover, it is important to remark that the solvothermal preparation of Zn3(BTC)2 MOF is quite simple and involves less expensive precursor chemicals (including an organic linker) than the abovementioned MOF materials, thus presenting an economic benefit. Taken together, these results suggest the great potential of the Zn3(BTC)2 MOF with abundant active sites as an efficient, high-activity, and robust catalyst

1 for the one-step transesterification and esterification reactions

. 2.7. Proposed

1 Mechanism for the One-Step Trans- esterification – Esterification Reaction of DPO. The

proposed

1mechanism for the one-step transesterification – esterification reaction of DPO

to FAMEs is illustrated in Figure 4. In this kind of reaction, the preactivated Zn3(BTC)2 with open and unsaturated metal centers acts as a mediator that facilitates the convergence of methanol and DPO,

resulting in biodiesel conversion.43,44 These active sites can facilitate the adsorption of reactant species (i.e., triglycerides and methanol) by forming coordination reactions via the interface dipole,45,46 electron delocalization,47 or nucleophilic attack.48 The reaction mechanism steps are explained in details as follows: Step 1: The TG (RCOOR' as monoglycerides) and FFA (RCOOH) species present in the DPO bind to the central hexa-coordinated zinc atom via their carbonyl oxygen atom, resulting in the formation of carbocation intermediates. The formation of Zn–O bonding could be ascribed to the presence of the dipole on the metal surfaces and the protonation of oleic acid (taken as representative of FFA). At the same time, methanol molecules may also bind to the unsaturated metal sites. Then, a nucleophilic attack occurs between the two neighboring molecules. Steps 2: In the esterification reaction pathway, FAME (RCOOCH3) conversion occurs along with water molecules. proton (H+) transfer to the ester group (R'O) to produce Meanwhile, the transesterification of monoglycerides involves a glycerol (R'OH) through the delocalization of the oxygen atom. Step 3: The resulting FAME molecules are desorbed

30from the catalyst through the electron delocalization at the oxygen

atom, where FAMEs as the main product are collected, and the catalyst can be reused for the next catalytic run after regeneration treatment. 2.8. Cost Analysis of the Zn3(BTC)2 Synthesis. The biodiesel production economics depend predominantly on the direct operating cost (DOC), which reflects the costs of raw materials (i.e., feedstock oil, alcoholic reaction solvent, and catalyst) and the operating labors. According to the previous cost analysis study by You et al.,49 the catalyst cost represents the second most significant proportion of the DOC after the cost of the feedstock oil. Accordingly, a great economic advantage in the commercial-scale biodiesel production, aside from utilizing low-grade fatty feedstocks, can also be realized using efficient, low-cost, and reusable solid catalysts. In this section, we examined the economics and energy cost of the kilogram-scale solvothermal synthesis of the Zn3(BTC)2 catalyst

24based on the reaction conditions and process steps demonstrated at the laboratory scale

(see Section 4.3). The metal salt and organic linker precursors, reaction solvent, and necessary capital equipment

24in each process step (i.e., synthesis, filtration, activation, and drying

) are presented in Table 3 along with their price quotes in US dollars, unless otherwise noted. The cost evaluation results demonstrate that the production cost of the Zn3(BTC)2 catalyst is about US\$51

12per kg, which is found to be considerably cheaper than those of commercial

acidic ion-exchange resin catalysts, such as

1Amberlyst 15 (\sim US \$100 per kg), Amberlyst 36 (\sim US\$120 per kg), and Purolite D5081/CT175 (\sim US\$120 per kg

). Moreover, compared with the production costs of representative MOFs reported in Figure 3a, the synthesis of Zn3(BTC)2 is intrinsically more affordable by considering (i) the less expensive bridging organic

ligands (the linker price can be found in Table S5), (ii) milder solvothermal reaction conditions, and (iii) fewer synthesis steps. A technoeconomic analysis of the solvothermal MOF synthesis reported by DeSantis and coworkers has identified that the linker costs are the second largest contributor to the MOF production costs after the organic solvents.50 Although the production cost of Zn3(BTC)2 is expected to be higher than those of heterogeneous solid base Figure 4. Proposed

1mechanism for the one-step transesterification and esterification reactions of DPO over the Zn3(BTC)2 MOF catalyst

. Table 3. Detailed DOC for the Solvothermal Synthesis of Zn3(BTC)2

12on the Kilogram Scale DOC specification price (US\$ kg-1) amount (kg)b total (US

\$) chemicalsa 1. ZnSO4·7H2O 99.9% 5.6 2.0 11.2 2. H3BTC min 99% 20.0 0.9 18.0 3. DMF min 99.9% 0.9 18 16.2 4. methanol min 99.9% 0.35 4.0 1.4 5. H2O 18.2 M Ω 0.1 14.0 1.4 Utility electricity 0.1 US\$ per kWh 20.0 kWh 2.0 Total DOC 50.2 aH3BTC = 1,3,5-benzenetricarboxylate; DMF = N,N-dimethylformamide. bThe estimated total amount of DMF solvent for the synthesis and washing steps. Methanol was used for the washing and activation steps. catalysts, such as the alkaline earth metal oxides (CaO and MgO), the feasibility of using substantially cheaper low-quality or waste feedstock oils can lead to the lower overall cost of biodiesel production. A detailed economic cost analysis of the large-capacity biodiesel production is beyond the scope of this study, and the interested readers can refer to a comprehensive study by You et al.49 3.

10CONCLUSIONS In summary, we have demonstrated the catalytic utility of

a Zn(II)-based carboxylate MOF (Zn3(BTC)2) for the simulta- neous transesterification and esterification of a low-grade vegetable oil (DPO) to biodiesel. The influential

18reaction parameters, including the methanol/oil molar ratio, temper- ature, and time

, are optimized through the RSM-BBD method. A one-way ANOVA test points out a more significant role of the methanol/

16oil molar ratio over both temperature and time to achieve the

maximum FAME conversion. Moreover, the reusability of the Zn3(BTC)2 catalyst is also successfully demonstrated across five consecutive runs with only a marginal decrease in the FAME conversion. In addition, the following points represent the important results of this study: • The solvothermally synthesized Zn3(BTC)2 MOF exhibits a triclinic crystal structure with a hierarchical macro/microporous structure and Lewis acidic OMSs. • The maximum biodiesel yield (89.9%) with a 95% DPO- to-FAME conversion

а

22methanol/oil molar ratio = 6:1, temperature = 65 °C, and time = 4.5 h with the presence of

a 1 wt % catalyst. • The DPO-derived biodiesel properties satisfy the standard fuel specification requirements of ASTM6751 and SNI 7182-2015. • The total DOC of the Zn3(BTC)2 catalyst

1 is estimated to be US\$50 per kg, which is less expensive

than those of previously reported MOF materials and the benchmark acid resin catalysts. 4. EXPERIMENTS ≥99.95% trace metal basis), H3BTC (C6H3(CO2H)3, 98% 4.1. Materials. Zinc sulfate heptahydrate (ZnSO4·7H2O, purity), methanol (CH3OH, anhydrous, ≥99.8% purity), n- hexane (HPLC grade, ≥95% purity), N,N-dimethylformamide (DMF, ACS reagent, ≥99.8% purity), and the FAME reference Table 4. RSM-BBD Experimental Design Showing the Coded and Actual Values of the Reaction Parameters in the Transesterification of DPO Using the Zn3(BTC)2 Catalyst coded parameters response % FAME yield (Y) run time, h (

17X1) methanol/oil molar ratio (X2

) 1 0 (3) 0 (6) 2 1 (4.5) 0 (6) 3 -1 (1.5) -1 (4) 4 -1 (1.5) -1 (4) 5 0 (3) 0 (6) 6 0 (3) 0 (6) 7 1 (4.5) -1 (4) 8 1 (4.5) -1 (4) 9 -1 (1.5) 0 (6) 10 0 (3) 0 (6) 11 0 (3) 0 (6) 12 1 (4.5) 0 (6) 13 -1 (1.5) 1 (8) 14 0 (3) 1 (8) 15 0 (3) 1 (8) 16 1 (4.5) 1 (8) 17 0 (3) 0 (6) aThe actual values of the coded parameters are given in parentheses. temperature, °C (X3) 1 (65) 0 (55) -1 (45) 1 (65) 0 (55) -1 (45) 1 (65) 0 (55) -1 (45) 1 (65) 0 (55) -1 (45) 1 (65) 0 (55) -1 (45) 1 (65) 0 (55

10were purchased from Sigma-Aldrich, Singapore, and used as received without further purification

. Crude palm oil (CPO) was supplied by

10a local company in Surabaya, East Java

(Bintang Era Sinar Tama, PT). 4.2. Degumming Pretreatment of CPO. CPO was degummed using a conventional dry method with phosphoric acid according to the procedure described elsewhere.51 The acid value (AV) and saponification value (SV) of DPO

13were determined to be 12.1 and 227.5 mg KOH/g, respectively, according to the

AOCS official methods Cd-3d-63 and Cd-3-25. The average molecular weight of DPO was determined from the AV and SV using the equation described by Akusu et al.52 and found to be 780.1 g mol-1. The fatty acid composition of DPO (Table S6) was determined using gas chromatog- raphy-flame ionization detector (GC-FID) analysis (GC- 2014, Shimadzu, Japan) as described by Ong et al.53 The labeling of fatty acid peaks in the chromatogram was performed by comparing their retention times with those of authentic standards. 4.3. Solvothermal Synthesis of Zn3(BTC)2. The one-pot solvothermal synthesis of Zn3(BTC)2 was carried out following a previously reported procedure with minor modifications.23 Briefly, ZnSO4·7H2O (2.16 g, 7.51 mmol)

36and H3BTC (1.05 g, 5.0 mmol) were dissolved in

30 mL of the DMF/H2O (1/1; v/ v) mixture and then magnetically stirred at 200 rpm for an hour at room temperature. Subsequently, the

31mixture was transferred to a Teflon-lined stainless steel autoclave and heated isothermally at 85 $^{\circ}$ C for 24 h

35Afterward, the autoclave was gradually cooled to room temperature. The

resultant white powder (~1.2 g; 76% molar yield based on Zn)

6was collected by vacuum filtration followed by washing with fresh DMF and

anhydrous methanol to remove the unreacted starting material. The obtained Zn3(BTC)2 was activated using methanol reflux for 4 h followed by drying in an oven at 150 °C for 12 h. 4.4. Biodiesel Production. The catalytic activity of Zn3(BTC)2 was assessed for the simultaneous transesterifica- tion and esterification reactions of DPO in a batch mode. The methanol/oil molar ratios were varied from 4:1 to 6:1 to 8:1, while the catalyst loading was adjusted to 0.5, 1.0, 3.0, and 5.0 wt % relative to the DPO. The mixtures were then heated to the desired temperatures (i.e., 45, 55, and 65 °C) using an electric heating mantle and held isothermally for 1.5, 3, and 4.5 h with continuous magnetic stirring at 500 rpm. After the reaction, the flask was quenched in an ice-water bath. The resulting products composed of the upper fatty acid methyl esters (FAMEs)-rich and lower glycerol-rich phases were separated by centrifugation at 4900 rpm for 5 min. The FAME compositional analysis was carried out by the GC-FID method described in our previous study.53 The yield of FAMEs was determined based on the following equation: FAME yield (%) = weight of biodiesel (g) weight of DPO (g) × FAME content FAME content = 100 × i ΣA – AIS γ × ji CIS × j VIS γ k AIS z { k m z { (2) (3) The FAME content was calculated as the sum of the integrated peak areas of all individual FAMEs identified in the samples ($\sum A$) according to eq 3.54 The notations AIS, CIS, and VIS denote the peak area, concentration, and volume of the methyl heptadecanoate (C17:0) solution as the internal standard, respectively. The spent catalyst powder was further collected by centrifugation and purified

16by multiple washing with n-hexane to remove

any residual oil left on the catalyst surface. The recovered catalyst was dried under vacuum at 60 °C for 12 h and then used in the subsequent reaction cycles for the reusability test. 4.5. Material Characterizations. Characterizations of the as-synthesized Zn3(BTC)2 were carried out using field- emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitro- gen (

5N2) adsorption-desorption isotherms, and Fourier transform infrared (FTIR) spectroscopy

. SEM images were collected using an FEI Inspect F50 at an accelerating voltage of 10 kV. XRD patterns were acquired using a

5Bruker D2 Phaser X-ray diffractometer equipped with a Cu Kα radiation source ($\lambda = 0.15406$ nm) in the 20 range of 10–50° at a scan speed of 0

.1°/s.

32N2 adsorption-desorption measurements were con- ducted at −196 °C using a

Micromeritics ASAP 2020

6analyzer. Prior to the sorption measurements, the sample was degassed at 200 $^{\circ}\text{C}$ under vacuum for 12 h. The

43thermal stability of the catalyst was examined using a Perkin-Elmer TGA

8000 analyzer

10from 30 to 600 °C with a heating ramp of 10 °C/ min under

a N2 flow at 20 mL/min. FTIR spectra were collected in transmission mode using a Shimadzu 8400S spectrometer in the wavenumber range of 4000–500 cm-1 with a KBr pellet method. 4.6. Design of Experiments and Mathematical Modeling.

26RSM based on the Box-Behnken design (BBD) was adopted to investigate the effects of

the reaction parameters and their interactions toward optimizing a particular response. The mathematical modeling and statistical analysis were performed using the Design-Expert version 12 software (Stat-Ease Inc., Minneapolis, MN, USA). Three reaction parameters affecting the production of FAMEs were investigated, namely, time (coded as X1), methanol/oil molar ratio (coded as X2), and temperature (coded as X3). The experimental design was constructed using 17 runs with three levels for each parameter, including three replications at the center point, as presented in Table 4. The experimental data were then

analyzed using a second-order polynomial response surface model as follows: K K K K Y = α 0 + $\sum \alpha$ iXi + $\sum \alpha$ iXi2 + $\sum \sum \alpha$ iXiXj + e i=1

```
18i=1 i=1 j=i+1
```

(4) where Y is the target response (i.e., % FAME yield), Xi is the coded levels of independent variables, αο

14is the regression constant, α i is the linear term corresponding to the input factor Xi, α ij corresponds to the interaction term between the input factors Xi and Xj, α ii is the quadratic term of input factor Xi, and e is the experimental error value of Y. The

term K represents the total number of experimental variables involved in the optimization of the response. ■

11ASSOCIATED CONTENT *si Supporting Information The Supporting Information is available free of charge at

https://pubs.acs.org/doi/10.1021/acsomega.0c03826. • Bravais lattice parameter of Zn3(BTC)2 (Table S1), unit cell parameters of Zn3(BTC)2 (Table S2), textural properties of the Zn3(BTC)2 (Table S3), representative MOF catalysts applied in the transesterification and esterification reactions (Table S4), cost details of the organic linkers used in the synthesis of representative MOFs (Table S5), fatty acid composition of DPO obtained from GC−FID analysis (Table S6), OFAT analysis of the Zn3(BTC)2 catalyst loading (Figure S1), plot of actual vs predicted FAME yield response (Figure S2), GC−FID chromatogram and mass fraction of FAME species in DPO-derived biodiesel (Figure S3), leaching profiles of zinc metal post-usage of Zn3(BTC)2 (Figure S4) (PDF) ■ AUTHOR INFORMATION Corresponding Authors Shella Permatasari Santoso Department of Chemical − Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia; orcid.org/0000-0003-4698- 583X; Phone: +62 31 3891264; Email: shella_p5@ yahoo.com; Fax: +62 31 3891267

15Suryadi Ismadji Department of Chemical Engineering, – Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; orcid.org/0000-0002-5005- 2824

; Phone: +62 31 3891264; Email:

41suryadiismadji@ yahoo.com; Fax: +62 31

3891267 Authors Valentino Bervia Lunardi -

7Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia Fransiska Gunawan – Department of Chemical Engineering, Widya Mandala Surabaya Catholic University,

Surabaya 60114, Indonesia Felycia Edi Soetaredjo – Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan Chun-Hu Chen Department of Chemistry, National

Sun – Yat-Sen University, Kaohsiung 80424, Taiwan; orcid.org/ 0000-0002-3512-6880 Maria Yuliana Department of Chemical Engineering, Widya – Mandala Surabaya Catholic University, Surabaya 60114, Indonesia; orcid.org/0000-0002-3915-9401 Alfin Kurniawan Department of Chemistry, National Sun – Yat-Sen University, Kaohsiung 80424, Taiwan; orcid.org/ 0000-0003-2867-355X Jenni Lie Department of Chemical Engineering, National – Taiwan University of Science and Technology, Taipei 10607, Taiwan Artik Elisa Angkawijaya Graduate Institute of Applied – Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; orcid.org/0000-0002-4405-5068 Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c03826 Author Contributions \(\pm \) V.B. and F.G. have

25contributed equally to this work. Notes The authors declare no competing financial interest. ■ ACKNOWLEDGMENTS This study was financially supported by the

6Ministry of Research and Technology/National Agency for Research and Innovation, the Republic of Indonesia, through a project with contract number 130C/WM01.5/N

/2020. We also greatly appreciate the

6Department of Chemistry, National Sun Yat- Sen University (NSYSU), Taiwan

, for the assistance in material characterization. ■ REFERENCES (1) Park, Y.-M.; Lee, D.-W.; Kim, D.-K.; Lee, J.-S.; Lee, K.-Y. The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today 2008, 131, 238-243. (2) Puna, J. F.; Gomes, J. F.; Correia, M. J. N.; Dias, A. P. S.; Bordado, J. C. Advances on the development of novel heterogeneous catalysts for transesterification of triglycerides in biodiesel. Fuel 2010, 89, 3602–3606. (3) Hara, M. Environmentally Benign Production of Biodiesel Using Heterogeneous Catalysts. Chem. Sus. Chem. 2009, 2, 129-135. (4) de Lima, A. L.; Ronconi, C. M.; Mota, C. J. A. Heterogeneous basic catalysts for biodiesel production. Catal. Sci. Technol. 2016, 6, 2877-2891. (5) Islam, M. K.; Wang, H.; Rehman, S.; Dong, C.; Hsu, H.-Y.; Lin, C. S. K.; Leu, S.-Y. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresour. Technol. 2020, 298, 122558. (6) Dong, C.; Wang, Y.; Wang, H.; Lin, C. S. K.; Hsu, H.-Y.; Leu, S.- Y. New Generation Urban Biorefinery toward Complete Utilization of Waste Derived Lignocellulosic Biomass for Biofuels and Value-Added Products. Energy Procedia 2019, 158, 918-925. (7) Marso, T. M. M.; Kalpage, C. S.; Udugala-Ganehenege, M. Y. Application of Chromium and Cobalt Terephthalate Metal Organic Frameworks as Catalysts for the Production of Biodiesel from Calophyllum inophyllum Oil in High Yield Under Mild Conditions. J. Inorg. Organomet. Polym. 2020, 30, 1243-1265. (8) Pangestu, T.; Kurniawan, Y.; Soetaredjo, F. E.; Santoso, S. P.; Irawaty, W.; Yuliana, M.; Hartono, S. B.; Ismadji, S. The synthesis of biodiesel using copper based metal-organic

framework as a catalyst. J. Environ. Chem. Eng. 2019, 7, 103277. (9) Ali, B.; Yusup, S.; Quitain, A. T.; Alnarabiji, M. S.; Kamil, R. N. M.; Kida, T. Synthesis of novel graphene oxide/bentonite bi-functional heterogeneous catalyst for one-pot esterification and transesterification reactions. Energy Convers. Manage. 2018, 171, 1801-1812. (10) Nakpong, P.; Wootthikanokkhan, S. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy 2010, 35, 1682-1687. (11) Ruzich, N. I.; Bassi, A. S. Investigation of lipase-catalyzed biodiesel production using ionic liquid [BMIM] [PF6] as a co-solvent in 500 mL jacketed conical and shake flask reactors using triolein or waste canola oil as substrates. Energy Fuels 2010, 24, 3214-3222. (12) Valvekens, P.; Vermoortele, F.; de Vos, D. Metal-organic frameworks as catalysts: the role of metal active sites. Catal. Sci. Technol. 2013, 3, 1435-1445. (13) Nikseresht. A.: Daniyali. A.: Ali-Mohammadi. M.: Afzalinia. A.: Mirzaie. A. Ultrasoundassisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem. 2017, 37, 203-207. (14) Zhang, Q.; Lei, D.; Luo, Q.; Wang, J.; Deng, T.; Zhang, Y.; Ma, P. Efficient biodiesel production from oleic acid using metal-organic framework encapsulated Zr-doped polyoxometalate nano-hybrids. RSC Adv. 2020, 10, 8766-8772. (15) Lien, Y.-S.; Hsieh, L.-S.; Wu, J. C. S. Biodiesel synthesis by simultaneous esterification and transesterification using oleophilic acid catalyst. Ind. Eng. Chem. Res. 2010, 49, 2118-2121. (16) Farzaneh, F.; Mortazavi, S. S. Zn metal organic framework as a heterogeneous catalyst for the alkylation of toluene with benzyl bromide. Reac. Kinet. Mech. Cat. 2017, 120, 333-344. (17) Huang, X.; Chen, Y.; Lin, Z.; Ren, X.; Song, Y.; Xu, Z.; Dong, X.; Li, X.; Hu, C.; Wang, B. Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion. Chem. Commun. 2014, 50, 2624-2627. (18) Madasamy, K.; Kumaraguru, S.; Sankar, V.; Mannathan, S.; Kathiresan, M. A Zn based metal organic framework as a heterogeneous catalyst for C-C bond formation reactions. New J. Chem. 2019, 43, 3793-3800. (19) Sajjadifar, S.; Arzehgar, Z.; Ghayuri, A. Zn3(BTC)2 as a Highly Efficient Reusable Catalyst for the Synthesis of 2-Aryl-1H- Benzimidazole. J. Chin. Chem. Soc. 2017, 65, 205-211. (20) Yaghi, O. M.; Davis, C. E.; Li, G.; Li, H. Selective guest binding by tailored channels in a 3-D porous zinc(II) -benzenetricarboxylate network. J. Am. Chem. Soc. 1997, 119, 2861-2868. (21) Pentyala, V.; Davydovskaya, P.; Ade, M.; Pohle, R.; Urban, G. Metal-organic frameworks for alcohol gas sensor. Sensor. Actuat. B- Chem. 2015, 222, 904-909. (22) Mahalakshmi, G.; Balachandran, V. FT-IR and FT-Raman spectra, normal coordinate analysis and ab initio computations of Trimesic acid. Spectrochim. Acta A 2014, 124, 535-547. (23) Wang, X.; Ma, X.; Wang, H.; Huang, P.; Du, X.; Lu, X. A zinc(II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides. Microchim. Acta 2017, 184, 3681-3687. (24) da Silva, C. T. P.; Safadi, B. N.; Moiseś, M. P.; Meneguin, J. G.; Arroyo, P. A.; Favaro, S. L.; Girotto, E. M.; Radovanovic, E.; Rinaldi, A. W. Synthesis of Zn-BTC metal organic framework assisted by a home microwave oven and their unusual morphologies. Mater. Lett. 2016, 182, 231-234. (25) To, J. W. F.; Chen, Z.; Yao, H.; He, J.; Kim, K.; Chou, H.-H.; Pan, L.; Wilcox, J.; Cui, Y.; Bao, Z. Ultrahigh Surface Area Three- Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework. ACS Cent. Sci. 2015, 1, 68-76. (26) Chanthapally, A.; Oh, W. T.; Vittal, J. J. [2 + 2] Cycloaddition reaction as a tool to monitor the formation of thermodynamically stable ladder coordination polymers. CrystEngComm 2013, 15, 9324-9327. (27) Noack, V.; Eychmuller, A. Annealing of Nanometer-Sized Zinc Oxide Particles. Chem. Mater. 2002, 14, 1411-1417. (28) Feng, C.; Cao, X.; Zhang, L.; Guo, C.; Akram, N.; Wang, J. Zn 1,3,5-benzenetricarboxylate as an efficient catalyst for the synthesis of cyclic carbonates from CO2. RSC Adv. 2018, 8, 9192-9201. (29) Hao, X.-R.; Wang, X.-L.; Shao, K.-Z.; Yang, G.-S.; Su, Z.-M.; Yuan, G. Remarkable solvent-size effects in constructing novel porous 1,3,5benzenetricarboxylate metal-organic frameworks. Cryst. Eng. Comm. 2012, 14, 5596-5603. (30) Han, M.; Li, Y.; Gu, Z.; Shi, H.; Chen, C.; Wang, Q.; Wan, H.; Guan, G. Immobilization of thiol-functionalized ionic liquids onto the surface of MIL-101(Cr) frameworks by S-Cr coordination bond for biodiesel production. Colloid Surf. A Physicochem. Eng. Asp. 2018, 553, 593-600. (31) Temel, F.; Kutluay, S. Investigation of high-performance adsorption for benzene and toluene vapors by calix[4]arene based organosilica (CBOS). New J. Chem. 2020, 44, 12949-12961. (32) Sen, S.; Mondal, U.; Singh, G. Dual Optimization in Phase Transfer Catalyzed Synthesis of Dibenzyl Sulfide using Response Surface Methodology. Org. Process Res. Dev. 2016, 20, 1765-1773. (33) Singh, V.; Belova, L.; Singh, B.; Sharma, Y. C. Biodiesel production using a

novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM), Energy Convers, Manage, 2018, 174, 198-207, (34) Amouhadi, E.; Fazaeli, R.; Aliyan, H. Biodiesel production via esterification of oleic acid catalyzed by MnO2@Mn(btc) as a novel and heterogeneous catalyst. J. Chin. Chem. Soc. 2019, 66, 608-613. (35) Encinar, J. M.; Gonzalez, J. F.; Rodríguez-Reinares, A. Ethanolysis of used frying oil. Biodiesel preparation and character- ization. Fuel Process. Technol. 2007, 88, 513-522. (36) Liu, Y.; Wang, L.; Yan, Y. Biodiesel synthesis combining preesterification with alkali catalyzed process from rapeseed oil deodorizer distillate. Fuel Process. Technol. 2009, 90, 857-862. (37) Sievers, C.; Noda, Y.; Qi, L.; Albuquerque, E. M.; Rioux, R. M.; Scott, S. L. Phenomena Affecting Catalytic Reactions at Solid-Liquid Interfaces. ACS Catal. 2016, 6, 8286-8307. (38) Wu, Z.; Chen, C.; Wan, H.; Wang, L.; Li, Z.; Li, B.; Guo, Q.; Guan, G. Fabrication of Magnetic NH2-MIL-88B (Fe) Confined Brønsted Ionic Liquid as an Efficient Catalyst in Biodiesel Synthesis. Energ. Fuel. 2016, 30, 10739-10746. (39) Hassan, H. M. A.; Betiha, M. A.; Mohamed, S. K.; El-Sharkawy, E. A.; Ahmed, E. A. Salen-Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions. Appl. Surf. Sci. 2017, 412, 394-404. (40) Penã-Rodríguez, R.; Marquez-Lopez, E.; Guerrero, A.; Chinãs, L. E.; Hernandez-Gonzalez, D. F.; Rivera, J. M. Hydrothermal synthesis of cobalt (II) 3D metal-organic framework acid catalyst applied in the transesterification process of vegetable oil. Mater. Lett. 2018, 217, 117-119. (41) Kozuch, S.; Martin, J. M. L. "Turning Over" Definitions in Catalytic Cycles. ACS Catal. 2012, 2, 2787–2794. (42) Abel, B. A.; Lidston, C. A. L.; Coates, G. W. Mechanism- inspired design of bifunctional catalysts for the alternating ring- opening copolymerization of epoxides and cyclic anhydrides. J. Am. Chem. Soc. 2019, 141, 12760-12769. (43) Kim, H. K.; Yun, W. S.; Kim, M.-B.; Kim, J. Y.; Bae, Y.-S.; Lee, J.; Jeong, N. C. A Chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009-10015. (44) Wade, C. R.; Dinca, M. Investigation of the Synthesis, Activation, and Isosteric Heats of CO2 Adsorption of the Isostructural Series of Metal-Organic Frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). Dalton Trans. 2012, 41, 7931–7938. (45) Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Bredas, J.-L. Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 2002, 124, 8131-8141. (46) Hu, Z.; Zhong, Z.; Zhang, K.; Hu, Z.; Song, C.; Huang, F.; Peng, J.; Wang, J.; Cao, Y. Dipole formation at organic/metal interfaces with predeposited and post-deposited metal. NPG Asia Mater. 2017, 9, No. e379. (47) Herges, R.; Geuenich, D. Delocalization of electrons in molecules. J. Phys. Chem. A 2001, 105, 3214-3220. (48) Lam, M. K.; Lee, K. T.; Mohamed, A. R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 2010, 28, 500-518. (49) You, Y.-D.; Shie, J.-L.; Chang, C.-Y.; Huang, S.-H.; Pai, C.-Y.; Yu, Y.-H.; Chang, C. H. Economic Cost Analysis of Biodiesel Production: Case in Soybean Oil. Energ. Fuel. 2008, 22, 182-189. (50) DeSantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-economic Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage. Energ. Fuel. 2017, 31, 2024–2032. (51) Nur Sulihatimarsyila, A. W.; Lau, H. L. N.; Nabilah, K. M.; Nur Azreena, I. Refining process for production of refined palm-pressed fibre oil. Ind. Crop. Prod. 2019, 129, 488-494. (52) Akusu, M. O.; Achinewhu, S. C.; Mitchell, J. Quality attributes and storage stability of locally and mechanically extracted crude palm oils in selected communities in Rivers and Bayelsa States, Nigeria. Plant Foods Hum. Nutr. 2000, 55, 119-126. (53) Ong, L. K.; Effendi, C.; Kurniawan, A.; Lin, C. X.; Zhao, X. S.; Ismadji, S. Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents. Energy 2013, 57, 615-623. (54) Gunawan, F.; Kurniawan, A.; Gunawan, I.; Ju, Y.-H.; Ayucitra, A.; Soetaredjo, F. E.; Ismadji, S. Synthesis of biodiesel from vegetable oils wastewater sludge by in-situ subcritical methanol transesterification: Process evaluation and optimization. Biomass Bioenergy 2014, 69, 28–38. ACS Omega http://pubs.acs.org/journal/acsodf Article ACS Omega

4http://pubs.acs.org/journal/acsodf Article ACS Omega 4http://pubs.acs.org/journal/acsodf Article ACS Omega 4http://pubs.acs.org/journal/acsodf Article ACS Omega 4http://pubs.acs.org/journal/acsodf Article ACS Omega 4http://pubs.acs.org/journal/acsodf Article ACS Omega 4http://pubs.acs.org/journal/acsodf Article ACS Omega 4http://pubs.acs.org/journal/acsodf Article ACS Omega 4http://pubs.acs.org/journal/acsodf Article ACS Omega http://pubs.acs.org/journal/acsodf Article 1834 https://dx.doi.org/10.1021/acsomega.0c03826 2ACS Omega 2021, 6, 1834-1845 1835 https://dx.doi.org/10.1021/acsomega.0c03826 2ACS Omega 2021, 6, 1834-1845 1836 https://dx.doi.org/10.1021/acsomega.0c03826 2ACS Omega 2021, 6, 1834-1845 1837 https://dx.doi.org/10.1021/acsomega.0c03826

2ACS Omega 2021, 6, 1834-1845 1838

https://dx.doi.org/10.1021/acsomega.0c03826

2ACS Omega 2021, 6, 1834-1845 1839 https://dx.doi.org/10.1021/acsomega.0c03826

2ACS Omega 2021, 6, 1834–1845 1840 https://dx.doi.org/10.1021/acsomega.0c03826

2ACS Omega 2021, 6, 1834-1845 1841 https://dx.doi.org/10.1021/acsomega.0c03826

2ACS Omega 2021, 6, 1834-1845 1842 https://dx.doi.org/10.1021/acsomega.0c03826

2ACS Omega 2021, 6, 1834-1845 1843 https://dx.doi.org/10.1021/acsomega.0c03826

2ACS Omega 2021, 6

, 1834–1845 1844 https://dx.doi.org/10.1021/acsomega.0c03826 ACS Omega 2021, 6, 1834–1845 1845 https://dx.doi.org/10.1021/acsomega.0c03826 ACS Omega 2021, 6, 1834–1845