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A B S T R A C T

Rapid urbanization and technological advancement have led to worrisome challenges associated with increasing
waste production, and its management is overly burdensome. Indonesia annually produces 100,000 tons of
leather tanning waste (LTW) and 2600 tons of waste capiz-shell (WCS). This study proposed a zero-waste ap-
proach by utilizing WCS as the catalyst for biodiesel production from LTW. Based on the characterization results,
the WCS-based catalyst is proven to possess high porosity and comparable catalytic activity to the other het-
erogeneous catalysts. The maximum yield of FAEE was 93.4 wt%, obtained at 60 °C, 4 h reaction time, 3 wt%
catalyst loading, and ethanol to LTW molar ratio of 6:1. High FAEE yield (> 90wt%) can be obtained by reusing
the WCS-based catalyst until the third reaction cycle. To examine the feasibility of this zero-waste act, a simple
viability study was also performed by comparing this process to the conventional basic transesterification
process.

1. Introduction

Leather tanning and aquaculture industries are known to generate a
higher amount of waste than products [1–3]. Approximately 80 wt% of
the raw hide is generated as waste in leather processing [1,2], while
more than 50wt% of total production in the aquaculture industries is
discharged as solid waste [3]. The financial and environmental costs for
waste disposal from these industries can be burdensome and costly.
Therefore, establishing a zero-waste act in these two industrial sectors
to reduce the environmental impact is necessary through careful plan-
ning, recycling, reusing, or composting as many as possible of the waste
materials. Reusing and converting waste materials into highly valorized
products is one way to conduct this zero-waste act.

The valorization of biological sources to biodiesel has attracted
extensive interests as it reduces the global petroleum demand and
pollution [4,5]. Various types of feedstock, namely edible oils [6–8],
non-edible oils [9,10], algae [11–13], industrial fats and greases

[14–16], have been developed to produce high-quality biodiesel using
sundry of transesterification routes. The transesterification reaction is
generally catalyzed by the presence of acids, bases, and enzymes, which
can be added to the reaction system in the form of a homogenous or
heterogeneous phase [17]. Currently, industrial-scale biodiesel pro-
duction uses edible oil as raw material and NaOH or KOH solution in
methanol as a homogenous alkali catalyst. However, high expenses of
raw material and operation including the cost of homogenous catalyst
and separation process become the major drawbacks in the use of
biodiesel, particularly from the economic viewpoint [18]. Therefore,
the use of leather tanning waste (LTW) as the raw material and waste
capiz shell (WCS), one of the aquaculture wastes, as the catalyst source
in biodiesel production may result in a declining operational ex-
penditure.

While the homogenous catalyst provides faster reactions and mild
processing conditions [19], heterogeneous catalyst offers several ad-
vantages over the homogenous ones, due to its reusability, easier
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separation, and insensitivity to high contaminants, such as FFA, water
and other minor components [20]. Furthermore, the regeneration of
heterogeneous catalyst after the transesterification process is easier and
produces less toxic wastewater, leading to a more environmentally
friendly process [21]. Various heterogeneous catalysts for biodiesel
production have been reported in literatures, including immobilized
intracellular lipase [22], KOH/bentonite composite [23], sulphated
zirconia [24,25], base/acid-supported resin [26,27], zeolites [25,28],
metal-organic framework [29] and alkali/acid-impregnated meso-
porous silica [30]. The main problem for the utilization of these het-
erogeneous catalysts is in their environmental and economic values
since most of these catalysts are synthetic, expensive, and difficult to
prepare in large scale production [20]; which restrain their practical
implementation in industrial scale. Aside from the above mentioned
heterogeneous catalysts, calcium oxide (CaO) has been widely in-
vestigated as a low-cost solid catalyst in biodiesel production due to its
abundant availability in nature and simple preparation [31–35]. CaO is
also known to possess comparable catalytic activity to several homo-
genous catalysts [36]. Limestone or seashells are common sources to
produce CaO [31,33,34,37].

In Indonesia, the production of capiz-shell reached more than
4000 tons annually. The average weight of its shells is approximately
65 wt% and they are commonly discarded as waste [38]. Based on the
data above, it is predicted that there will be a minimum of 2600 tons of
WCS is annually produced. WCS contains high calcium content,
reaching almost 20 wt% and can be used as an alternative source of CaO
[39]. Currently, the utilization of WCS in the food sector has been so far
reviewed by Agustini et al. (2011) to develop calcium-rich food based
on WCS. Besides its wide studies in the food-related area, Suryaputra
et al. (2013) studied the possibility of using WCS as raw material for
new heterogeneous catalyst production in the biodiesel preparation
using refined palm oil (RPO). The maximum methyl ester yield
(93 ± 2.2 wt%) was obtained at 6 h reaction time and 3wt% catalyst
loading, indicating that WCS has potential application as a renewable
resource of CaO-based catalyst for biodiesel production [20].

However, despite its high catalytic activity in converting refined oil
to biodiesel, there has been no further study on the utilization of WCS
as a heterogeneous catalyst source to convert a lipid-rich waste into
biodiesel. In this study, LTW was co-used as the raw lipid material to
complete the zero-waste act. According to the data provided by the
Indonesian Ministry of Industry, around 100,000 tons of LTW is pro-
duced annually in Indonesia, with a crude fat content of more than
60 wt% [1,40,41]. One of its valorization efforts has been converting
the waste into biodiesel. Several studies have been performed to pro-
duce LTW-based biodiesel using the following routes: base-catalyzed
transesterification [14,42], solid-catalyzed transesterification using
Cs2O loaded nano-magnetic particle [43], solid-state fermentation
using micro bacterium species from soak liquor [44], and catalyst-free
supercritical ethanol [41].

As the government plans to achieve sustainable development goals
in 2030 which include affordable and clean energy, maintaining cli-
mate, and protect the ecosystem, the study on the zero-waste approach
by exploiting these two waste materials (WCS and LTW) is an inter-
esting topic to be studied. The focus of this study is to observe the
potential use of WCS as a catalyst for biodiesel production from LTW.
The catalytic activity of WCS-based CaO was monitored at various
operating parameters, namely reaction time, catalyst loading, and the
molar ratio of LTW to ethanol. Ethanol was selected as the alcohol
source instead of methanol, due to its sustainability since ethanol can
be obtained from renewable sources [45,46]. The solubility of ethanol
in oil will also increase the reaction rate and is favorable in a reaction
system using a heterogeneous catalyst [46]. The recyclability of the
WCS-based CaO was studied at the operating condition giving the
maximum yield. Moreover, a viability study has been also conducted to
compare biodiesel preparation in this study with the conventional one.

2. Materials and methods

2.1. Materials

WCS was collected from a local fish market in Gresik, Indonesia, and
repeatedly rinsed to remove dirt and unwanted materials prior to pre-
treatment, following the procedure conducted by Suryaputra et al.
(2013). The WCS-based catalyst powder obtained after the pre-treat-
ment was then stored in a desiccator for further use. Meanwhile, LTW
obtained from a leather tanning factory in Bogor, Indonesia was used as
a lipid source for biodiesel preparation. Several pretreatment steps of
LTW was performed before use according to the following procedures:
LTW was washed three times with deionized water (1:1, w/w) to re-
move gangue and other unwanted impurities. The water content in
LTW was then removed by heating at a constant temperature of 120 °C
and subsequently subjected to membrane filtration to obtain the treated
LTW.

Absolute ethanol and analytical grade n-hexane were purchased
from Sigma-Aldrich and Merck (Germany), respectively. All chemicals
used for the analysis were of high purity grade and require no further
purification. The fatty acid ethyl esters (FAEEs) composition in the final
biodiesel product were identified using an external standard pack
(10008188) purchased from Cayman Chemicals (Ann-Arbor, MI, USA),
while methyl heptadecanoate was used as an internal standard (IS) in
the analysis of FAEE purity. Nitrogen (99.99 %) and helium (99.9 %)
gases for the gas chromatography-flame ionization detector (GC-FID)
analysis were provided by Aneka Gas Industry Pty. Ltd., Surabaya.

2.2. Characterization of WCS based-CaO and LTW

The characterization of WCS-based catalyst (WCS-based CaO) was
conducted using field emission scanning electron microscopy (FESEM),
X-Ray powder diffraction (XRD) and thermogravimetric analysis (TGA).
WCS-based CaO was analyzed for its morphologies using FESEM JEOL
JSM-6500 F (Jeol Ltd., Japan), with an accelerating voltage of 15 kV
and 12.4 mm working distance. The XRD pattern of the catalyst was
acquired in the range of 15° to 90° (2θ angle) by using an X’PERT
Panalytical Pro X-Ray diffractometer (Philips-FEI, Netherlands) with
monochromatic Cu Kα1 radiation at a wavelength (λ) =0.154 nm,
40 kV of voltage and 30mA of tube current. The thermal stability of
WCS-based CaO was studied using TG/DTA Diamond instrument
(Perkin Elmer, Japan). A 6-mg sample was placed in a platinum pan and
heated from 30 °C to 900 °C with a rate of 10 °C/min to monitor the
decomposition temperature of the catalyst. To maintain the system O2-
free, nitrogen with a velocity of 20mL/min was purged into the system
throughout the entire process.

The determination of fat and FFA content, as well as the fatty acid
composition in LTW as raw material for biodiesel preparation, were
performed according to the standard methods of AOAC 991.36, ASTM
D5555-95 and ISO 12966, respectively. GC-2014 (Shimadzu Ltd.,
Japan) equipped with Restek Rtx-65TG (30m x0.25 mm ID x0.10 μm
film thickness, Restek, USA) as the capillary column was used to mea-
sure the fatty acid composition in LTW. Meanwhile, the molar weight of
LTW was measured using the equation below:

⎛
⎝

⎞
⎠

=
−

Molar weight of LTW M
g

mol
x x

SV AV
, 56.1 1000 3

( )LTW (1)

where SV is the saponification value of LTW ( mg g, / )m
m
KOH

oil
and AV is the

acid value of LTW ( mg g, / )m
m
KOH

oil
[47–49]. The characteristics of LTW are

presented in Table 1.

2.3. The study of catalytic activity of WCS-based CaO in various
transesterification conditions

The catalytic activity of WCS-based CaO was determined by
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conducting the catalytic transesterification of LTW to FAEE at various
operating conditions. Three investigated parameters include the reac-
tion time (h), catalyst loading (wt%), and the molar ratio of ethanol to
LTW. The range of variation of the parameters was selected based on
the study conducted by Suryaputra et al. (2013) and their relevance to
the industrial feasibility, both in processing and economic viewpoint
[20]. The procedure was carried out as follows: Ethanol and LTW at two
molar ratios (6:1 and 12:1) were introduced to a three-neck round
bottom flask equipped with a reflux condenser, mechanical stirrer, and
heating mantle. A certain amount of WCS-based CaO (1 wt%, 2 wt%,
3 wt%, 4 wt%, 5 wt% of LTW) was added to the system. The mixture
was subsequently heated at 60 °C with continuous stirring at 700 rpm
for specified reaction time (2, 3, 4 h). After the reaction completed, the
WCS-based CaO was recovered by centrifugation and re-calcined at
900 °C for 2 h, while the filtrate was allowed to settle in the separatory
funnel overnight to obtain two layers. The FAEE-rich phase (top layer)
was then separated from the bottom layer consisted of glycerol, excess
methanol, and other by-products, before being subjected to vacuum
evaporation for the excess methanol removal to obtain the final bio-
diesel product.

The analysis of FAEE purity and composition was carried out using
GC-2014 (Shimadzu, Japan), completely equipped with a split/splitless
injector and a flame ionization detector (FID). The separation was
performed using the narrow bore DB-WAX nonpolar capillary column
(30m x0.25mm ID x0.25 μm film thickness, Agilent Technology, CA).
The column temperature was initially set at 50 °C and maintained iso-
thermal for 15min, before subsequently ramped to 220 °C at the rate of
4 °C/min. The column temperature was then held constant for another
15min. The temperature of the injector and detector were adjusted
constant at 250 °C and 260 °C, respectively. 100mg of final biodiesel
product was dissolved in 2mL of internal standard solution
(0.01 mgml−1) and subjected to filtration using polyvinylidene di-
fluoride (PVDF) filter prior analysis. The prepared sample (1 μl) was
injected into the GC with a split ratio of 1:50. The velocity of nitrogen
(N2, 99.9 %) as the carrier gas was fixed at 30 cm/s at 80 °C. The
identification of FAEE composition in the final biodiesel product was
conducted by comparing the peaks in chromatogram with the external
FAEE standard pack (10008188), while the purity of FAEE was calcu-
lated using the following equation:

⎜ ⎟= ⎛
⎝

∑
× ⎞

⎠
×FAEE Purity (F , wt%)

A - A
A

V C
m

100%p
FAEE IS

IS

IS IS

(2)

Where ∑ A FAEE is the sum of the area of FAEE peaks, AIS is the cor-
responding peak area of IS, VIS is the volume of IS solution (ml), CIS is
the concentration of IS solution (g/mL), m is the actual sample weight
of the final biodiesel product (g). According to the Fp measured from
Eq. (2), the determination of FAEE yield can be performed using Eq. (3):

⎜ ⎟= ⎛
⎝

⎞
⎠

×FAEE Yield (wt%) m
m

x F 100%BD

LTW
p

(3)

Where mBD is the weight of final biodiesel product (g), mLTW is the
initial weight of LTW (g) and Fp is the FAEE purity (wt%) obtained from
Eq. (2).

2.4. Recyclability study of WCS-based CaO

To measure the catalyst resistance to deactivation, the recyclability
of WCS-based CaO was determined by reusing the catalyst for the
transesterification process at the condition giving the maximum yield of
FAEE. The transesterification product was then analyzed for its purity
and yield using GC-FID according to the procedure mentioned in
Section 2.4. The repetitive transesterification process was conducted
using the same catalyst until the FAEE yield obtained was below 90 wt
% with the number of repetitions regarded as the recyclability number
of WCS-based CaO. All experiments were carried out in triplicates.

3. Results and discussions

3.1. Characterization of WCS-based CaO

The surface morphologies of natural shell, WCS, and the treated
WCS-based CaO were captured by using FESEM, as shown in Fig. 1(a)
and (b), respectively. It can be seen from the corresponding figure that
the structure of natural WCS is changed significantly from smooth
surface and lumpy architecture to a more powdery structure. Fig. 1(b)
showed that the CaO catalyst obtained from the calcination treatment
of WCS at 900 °C has a honeycomb-like porous and rough surface. The
porous structure is probably due to the fact that a large number of
bound water in the molecular state is released from the WCS-based CaO
during the calcination, creates high porosity in the catalyst [50]. This
result is in agreement with the studies conducted by Hu et al. (2011)
and Niju et al. (2014) for the treated egg-shells and mussel shells, re-
spectively [50,51]. Some particles seem to be entangled to each other,
causing aggregation on the particle and non-uniformity particle size.
This phenomenon is likely due to the presence of pure carbon in the
WCS, as shown in the EDX pattern (Fig. 1(c)), which was oxidized to
carbon dioxide during the calcination and reacted with CaO to form
CaCO3 which is the main trigger of the agglomeration [52].

As seen from the BET data which was summarized in Table 2, the
specific surface area and pore volume between WCS and WCS-based
CaO catalyst also obviously differ each other, which was attributed to
the calcination process of the catalyst. WCS-based CaO catalyst pos-
sesses 10-folds larger surface area and 5-times higher porosity as
compared to the untreated WCS, indicating the occurrence of impurities
and bound water removal during the heat-activation treatment which
play a vital role in improving the two important parameters related to
the porosity of a catalyst. High surface area and pore volume of a solid
catalyst have a direct and proportional impact on its catalytic activity
[35]. The experimental results showed that the surface area of WCS-
based CaO obtained in this study is in the range of the two studies
performed by Hu et al. (2011) and Niju et al. (2014), representing that
WCS-based CaO has the comparable ability as a catalyst for biodiesel
production [50,51].

The WCS-based CaO was further analyzed by XRD and its diffraction
pattern is shown in Fig. 1(d). The diffraction pattern of the WCS-based
catalyst is in accordance with the characteristics of CaO (JCPDS card
NO. 82-1691) and calcite (JCPDS card NO. 29-0306), with CaO as the
major component and the remaining calcite after decomposition as the
minor phase. The thermal stability of the catalyst was observed from
the TGA curve, shown in Fig. 1(e). Only one major weight-loss peak was
identified, with a weight loss of around 5% at 571–736 °C, which cor-
responds to the removal of chemisorbed water [53], decomposition of
CaCO3 and its phase transition to CaO [50]. This result is consistent

Table 1
The characteristics of LTW as the raw material for biodiesel
production.

Parameters Result

Water content, wt% 13.48
FFA, wt% 14.20
Crude fat, wt% 65.82
Molecular weight (g/mol) 878.5
Fatty acid profile, wt%

C14:0 2.08
C16:0 30.71
C16:1 4.03
C17:0 0.25
C18:0 16.42
C18:1 44.59
C18:2 5.95
C18:3 1.65
C20:0 0.27
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with that previously reported by Tang et al. (2013) and Zhu et al.
(2011), which reported that the weight remains almost constant after
the decomposition of calcite completed in the temperature of around
700 °C [53,54]. Based on the TGA results, it can be concluded that a
temperature of 900 °C is suitable for the calcination since it decomposes

almost all the calcite and its base derivatives (calcium hydroxide) and
forms the porous structure which is desirable for a catalyst. Hu et al.
(2011) mentioned that higher activation temperature is also required to
escalate the activity of a solid catalyst [50].

Fig. 1. The characterization results of WCS and WCS-based CaO after calcination at 900 °C for 2 h: (a) SEM image of WCS, (b) SEM image of WCS-based CaO, (c)
energy dispersive X-Ray (EDX) spectra of WCS, (d) diffraction pattern of WCS-based CaO, and (e) thermogravimetric analysis (TGA) curve of WCS-based CaO.
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3.2. Transesterification of LTW to biodiesel using WCS-based CaO as a
catalyst

Table 1 presented the characteristics of LTW as the raw material for
biodiesel preparation, and a quite substantial amount of lipid was
monitored in LTW, with a value of 80.02 wt%. Among those percen-
tages, the FFA value covers around 14.20 wt% of the total mass of LTW,
leaving around 65.82 wt% of crude fat including TG, other acyl gly-
cerides, and minor lipid compounds. The GC chromatogram verified
that the major fatty acids constituting LTW are palmitic acid (C16:0),
stearic acid (C18:0), and oleic acid (C18:1).

Looking at the FFA value, the traditional conversion of LTW to FAEE
using homogenous catalyst would require at least two processing steps:
(1) esterification to lower the FFA value by converting them into FAEE
in the presence of acid catalyst and (2) transesterification to convert the
other lipid components into biodiesel using a basic type of catalyst, due
to the sensitivity of homogenous catalyst to the presence of impurities,
e.g. water and FFA. On the other hand, heterogeneous catalyst shows
the insensitive characteristics to the high content of water and FFA in
the system [55], making it possible to reach a high yield of conversion
using only one-step process.

Fig. 2(a)–(b) summarized the FAEE yield obtained at various reac-
tion time, catalyst loading, and the molar ratio of LTW to ethanol. Based
on the experimental results, the maximum FAEE yield (93.4 wt%) with
the purity of 97.8 wt% was obtained at the following conditions: 60 °C,
4 h, 3 wt% catalyst loading, and a molar ratio of ethanol to LTW 6:1. It
can be seen from the figure that the catalyst loading has an overall
positive effect on the FAEE yield. The experimental results demon-
strated that the increase of catalyst loading from 1wt% to 3wt%
greatly escalates the FAEE yield by 1.5 folds in all conditions. WCS-
based CaO plays its catalytic function as the alkaline active sites gen-
erated from the surface excited the proton from ethanol to form calcium
ethylate and hydroxyl ion. The calcium ethylate formed then acts as a
nucleophile attacking the carbonyl carbon in the FFA and acyl glycer-
ides chain, leading to the initiation of base-catalyzed reaction to form
FAEE and glycerol as a by-product. Once a substantial amount of gly-
cerol was produced, the existing WCS-based CaO in the system reacted
with glycerol to produce calcium glyceroxide [56,57] which further
reacted with the excess ethanol to form C2H5O-Ca-O(OH)2C3H5. This
component deactivates the catalytic activity of CaO since it possesses
lower basic strength. Therefore, further addition of catalyst loading
from 3wt% to 5wt% gave an unfavorable influence to the yield of FAEE
as it declines from ∼90wt% to around 70wt% [20,57]. Wei et al.
(2009) also mentioned that adsorption and desorption of reactants from
the catalyst is the actual rate-determining step in the overall reaction
[58]. Therefore, adding more catalyst is not favorable to increase the
yield of FAEE.

The effect of reaction duration was investigated at three different
levels from 2 h to 4 h. Fig. 2 presented that longer duration of reaction
promoted a moderate enhancement of the FAEE yield in the constant
value of ethanol to LTW molar ratio and catalyst loading. Longer con-
tact between the reactants (alcohol and lipids) and catalyst ensures the
conversion of triglycerides and FFA into FAEE. However, its sig-
nificance is not comparable to the effect of catalyst loading.

Another key parameter in the process is the molar ratio of ethanol to
LTW. Theoretically, the stoichiometric molar ratio of ethanol to LTW
for biodiesel production is 3:1. However, in practice, the ratio should be
higher in order to purposely drive the reaction toward the product side

and gain high product yield, since transesterification itself is a re-
versible reaction [18,59]. As described in Fig. 2(a)–(b), the influence of
ethanol to LTW molar ratio gave beneficial results on the FAEE yield at
the lower half of catalyst loading (1–2wt%). Excessive alcohol is de-
sirable to ensure full contact between reactants and catalyst to accel-
erate the rate of reaction. However, a lower molar ratio of ethanol to
LTW (6:1) gave a more favorable effect on the yield of FAEE when the
catalyst loading used is 3–5wt%. It is likely due to the excess of me-
thanol caused the rapid formation of glycerol which will drive the re-
action back towards the reactant side, causing lower FAEE yield. Hu
et al. (2011) reported similar phenomena in their study that excess
alcohol to lipid ratio seems to be favorable to the FAEE yield only to a
certain extent and reaches a stagnant line thereafter [50]. As a matter of
fact, the higher molar ratio of ethanol to LTW will only escalate the raw
material cost and consume larger amounts of energy for the purification
and rectification processes [18].

3.3. Recyclability of WCS-based CaO

One of the most important purposes of using heterogeneous catalyst
for biodiesel conversion is the recyclability of a catalyst. For the pur-
pose of determining the recyclability of WCS-based CaO, subsequent
reaction cycles were performed, with the following operating condi-
tions: reaction temperature of 60 °C, 4 h reaction time, 3 wt% catalyst
loading, and the molar ratio of ethanol to LTW 6:1. After each cycle, the
solid catalyst was recovered following the method stated in Section 2.4,
while fresh reactants were used in every cycle. The experimental results
are depicted in Fig. 3. The results indicated that high FAEE yield of

Table 2
BET surface area and porosity of WCS and WCS-based CaO.

Materials SBET (m2 g−1) Vm (cm3 g−1)

WCS 0.82 0.011
WCS-based CaO 8.49 0.049

Fig. 2. The FAEE yield (wt%) based on the experimental results with the in-
teraction between catalyst loading (wt%) and time (h) at ethanol to LTW molar
ratio of (a) 6:1 and (b) 12:1.
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above 90wt% was achieved until the third run with the purity of FAEE
ranges from 97.1 to 97.8 wt%. However, the conversion of FAEE de-
clines rapidly in the fourth run, reaching only 64.4 wt% of FAEE yield.
The catalytic deactivation of CaO is generally caused by the direct
contact between basic sites on the catalyst surface and the deactivation-
induced components [36]. Gaseous CO2 and water vapor in the ambient
air form CaCO3 and Ca(OH)2 when in contact with the oxide catalyst,
leading to a decrease in the surface area of the catalyst and subse-
quently reduce the catalytic activity of CaO [56]. Moreover, as pre-
viously mentioned above, the presence of glycerol in the reaction
mixture drives the formation of a less active catalyst, C2H5O-Ca-O
(OH)2C3H5. High FFA content in LTW also plays a major role in the
deactivation of CaO catalyst because the acidic FFA tends to neutralize
basic sites in the surface, resulting in the generation of calcium-car-
boxylate, a component that is miscible in the lipid phase and induces
the formation of ethanol-oil emulsion [36].

The fuel characteristics of LTW-based biodiesel produced using
WCS-based CaO as the catalyst and its comparison to the ASTM
Standards D6751−19 are reported in Table 3. The measurement results
indicated that LTW-based biodiesel possesses a comparable combustion
and flow properties to the standard required. High flash point also
showed that LTW-based biodiesel can be safely handled, stored, and
transported. The cloud point of LTW-based biodiesel was found to be
10.1 °C, which is lower than that required by Indonesian National
Standard (SNI 7182:2015,< 18 °C), but still considerably high in
countries with severe winter. Several techniques can be industrially
applied to improve the cloud point of biodiesel, including cold filtration
[60], adsorption using various natural and synthetic sorbent materials
[61,62] as well as the addition of cold flow improvers, namely olefin-
ester copolymer, poly-methyl acrylate and ethylene-vinyl acetate co-
polymer [63].

3.4. Simple viability study of the utilization of WCS-based CaO as a catalyst
for the biodiesel production from LTW

To highlight the possible utilization of WCS as the catalyst to pro-
duce biodiesel from LTW, particularly in Indonesia, a simple viability
study was performed. Taking into account the rapid growth of renew-
able energy consumption and its competitive situation, the non-edible
oil including LTW was preferred over the edible ones. Moreover, it is a
good addition to use the widely developed heterogeneous catalysts
generated from waste-origin.

As mentioned, approximately 2600 tons of WCS [38] and
100,000 tons of LTW [40,41] were annually produced. The market

price of WCS in Indonesia costs around 900 US$ per tons, while in the
case of LTW, this type of waste is generally discarded to the environ-
ment. Looking at the low market price, the two components possess a
high possibility to be used as a replacement for the current edible oils
and homogenous catalysts to produce biodiesel. Based on the experi-
mental results, every 100 g of LTW contains lipid fraction of 80.02 g
that can be converted into FAEE with the maximum yield of 93.4 wt%
(74.74 g) at the following conditions: temperature of 60 °C, reaction
time of 4 h, catalyst loading of 3 wt% and molar ratio of ethanol to LTW
of 6:1. Therefore, the annual production of biodiesel from LTW is able
to reach 74,740 tons and fulfill approximately 1.0 wt% of the total
biodiesel demand in Indonesia [64], with the total WCS-based catalyst
and ethanol amount of 2,242.2 tons (3 wt% of LTW) and 25,194.7 tons
(6:1 ethanol to LTW molar ratio), respectively.

Our viability study compared the proposed technique of using WCS-
based CaO as the catalyst to convert LTW into biodiesel (process A) to
the conventional base transesterification using a homogenous catalyst
to convert RPO into biodiesel (process B) and considered that the
processing steps between the two processes are similar, with the major
differences in the raw material and its pre-treatment, alcohol, catalyst
costs (including the catalyst preparation and regeneration), and the
separation steps in biodiesel/by-products purification. The investment
costs for process A include (1) the powder mill and furnace for the
catalyst preparation section, (2) solid-liquid filter, dryer and furnace for
the catalyst regeneration section, and (3) washing vessel, centrifuge and
membrane filter for the pre-treatment of LTW, while its yearly pro-
duction costs are divided into the expenditures of (1) LTW as the raw
material, (2) WCS as the catalyst material, (3) ethanol as the alcohol
source, (4) energy required to purify LTW, prepare and regenerate the
catalyst, and (5) utility, which includes process water for the feedstock
pre-treatment. On the other hand, the traditional process B requires (1)
mixing vessel and centrifuge for biodiesel purification, and (2) mixing
vessel for the neutralization of acidic glycerine (by-product). The an-
nual operational costs of the classic transesterification process B are
represented by five major expenses, namely RPO as feedstock, methanol
as acyl acceptor (12 wt% of RPO1), sodium methylate 30 % solution in
methanol (1.67 wt% of RPO1) as the homogenous catalyst, hydrochloric
acid (1.2 wt% of RPO1) and liquid caustic soda (0.12 wt% of RPO1) for
biodiesel washing and glycerine purification, as well as the energy
needed for the separation. The other expenditures are considered neg-
ligible since aside from the mentioned operational steps, both of the
processes are executed in a similar manner.

Meanwhile, the annual gross revenues for the biodiesel production
consists of the sum of credit obtained by selling of main product (bio-
diesel) and by-products (glycerol and fatty matter). The yield of main
and side products in this proposed technique was assumed to be the
same as that of the traditional one, leading to a negligible value of the
product revenues. The summary of the investment costs of the two
processes is presented in Table 4, while the corresponding operating
costs are given in Table 5.

As presented in Table 4, having the same capacity of 9.44 tons/h,
the investment cost for process A is higher by 2.9 folds as compared to
process B, since process A requires more processing equipment. How-
ever, the economic analysis of their operating costs (Table 5) showed
that the total processing cost of process A takes only 17.4 % of that for
process B, even though the energy consumption of process A is more
than 4 times higher than its corresponding value for process B. Using
waste-originated feedstock and catalyst played the significant role in
reducing the operating expenditures. This result is in agreement with
the studies reported by Santosa et al. (2019) and Soufi et al. (2017),
which stated that the cost of feedstock and supporting chemicals gen-
erally pose as the major operating expenditures [18,65]. Therefore, the
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Fig. 3. The recyclability of WCS-based CaO as the catalyst for biodiesel pre-
paration from LTW at the transesterification condition of 60 °C, 4 h, catalyst
loading of 3 wt% and ethanol to LTW molar ratio 6:1.

1 The required composition of supporting materials in process B were ob-
tained from a local biodiesel manufacturer in Indonesia.
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utilization of LTW and WCS as the materials to produce biodiesel could
be significant support for the zero-waste act and the feasible solution to
the energy challenge.

4. Conclusions

The WCS-based catalyst was successfully used as a heterogeneous
catalyst for biodiesel preparation from LTW. The maximum FAEE yield
was 93.4 wt%, obtained at the temperature of 60 °C and 4 h reaction
time using catalyst loading of 3 wt% and ethanol to LTW molar ratio of
6:1, with the purity of 97.8 wt%. The study proved that the WCS-based
catalyst has comparable activity to the other heterogeneous catalysts.
The viability study concluded that the positive use of WCS and LTW in
the energy-related sector provided a major benefit for the zero-waste
act and is a potential key in solving the energy problems.
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