Lampiran 1

RENCANA PELAKSANAAN PEMBELAJARAN

Satuan Pendidikan : SMA

Mata Pelajaran : Fisika

Kelas : XI - IPA

Pokok Bahasan : Kinematika Dengan

Analisis Vektor

Sub Pokok Bahasan : Gerak Parabola

I. Standar Kompetensi

Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

II. Kompetensi Dasar

Menganalisis gerak lurus, gerak melingkar, dan gerak parabola dengan menggunakan vektor.

III. Indikator

A. Kognitif

1. Produk

- 1.1 Menjelaskan pengertian gerak parabola
- 1.2 Menjelaskan kecepatan pada gerak parabola.
- 1.3 Menjelaskan posisi pada gerak parabola.
- 1.4 Menjelaskan tinggi maksimum
- 1.5 Menjelaskan jarak terjauh

2. Proses

2.1 Mendefinisikan pengertian gerak parabola.

- 2.2 Menuliskan persamaan komponen posisi pada gerak parabola.
- 2.3 Menuliskan persamaan komponen kecepatan pada gerak parabola.
- 2.4 Menuliskan rumus besar dan arah kecepatan pada gerak parabola.
- 2.5 Menuliskan rumus tinggi maksimum.
- 2.6 Menuliskan rumus jarak terjauh
- 2.7 Mengerjakan soal yang berhubungan dengan kecepatan pada gerak parabola.
- 2.8 Mengerjakan soal yang berhubungan dengan posisi pada gerak parabola.
- 2.9 Mengerjakan soal yang berhubungan dengan tinggi maksimum
- 2.10 Mengerjakan soal yang berhubungan dengan jarak terjauh

B. Afektif

1. Karakter

- 1.1 Disiplin
- 1.2 Jujur
- 1.3 Rasa ingin tahu

IV. Tujuan Pembelajaran

A. Kognitif

1. Produk

Siswa diharapkan dapat:

- 1.1 Menjelaskan pengertian gerak parabola.
- 1.2 Menjelaskan kecepatan pada gerak parabola.
- 1.3 Menjelaskan posisi pada gerak parabola.
- 1.4 Menjelaskan tinggi maksimum
- 1.5 Menjelaskan jarak terjauh

2. Proses

Siswa diharapkan dapat:

- 2.1 Mendefinisikan pengertian gerak parabola.
- 2.2 Menuliskan persamaan komponen posisi pada gerak parabola.
- 2.3 Menuliskan persamaan komponen kecepatan pada gerak parabola.
- 2.4 Menuliskan rumus besar dan arah kecepatan pada gerak parabola.
- 2.5 Menuliskan rumus tinggi maksimum pada gerak parabola.
- 2.6 Menuliskan rumus jarak terjauh pada gerak parabola.
- 2.7 Mengerjakan soal yang berhubungan dengan kecepatan pada gerak parabola.
- 2.8 Mengerjakan soal yang berhubungan dengan posisi pada gerak parabola.
- 2.9 Mengerjakan soal yang berhubungan dengan tinggi maksimum.
- 2.10 Mengerjakan soal yang berhubungan dengan jarak terjauh.

B. Afektif

1. Karakter

Selama mengikuti kegiatan pembelajaan, siswa dapat bekerja dengan jujur dan disiplin.

V. Alokasi Waktu

1 jam pelajaran (2 x 45 menit)

VI. Sumber Bahan

Kanginan, Marthen. 2006. Fisika untuk SMA Kelas XI. Jakarta: Erlangga.

VII. Alat dan Bahan

- Laptop
- LCD
- Media Pembelajaran

VIII. Metode Pembelajaran

Ceramah dengan menggunakan media pembelajaran

IX. Langkah Kegiatan Pembelajaran

- Pendahuluan (5 menit)
 - Menyapa siswa dan menanyakan kabar siswa saat itu.
 - Mengulas materi sebelumnya yang akan digunakan pada materi yang akan diberikan.
 - Menjelaskan tujuan dan materi pembelajaran yang akan dipelajari.

➤ Inti (80 menit)

- Memperlihatkan gerak parabola dalam kehidupan seharihari.
- Menjelaskan definisi tentang gerak parabola.
- Menjelaskan komponen kecepatan dan posisi pada gerak parabola.
- Memberikan contoh soal tentang gerak parabola.
- Memberikan latihan soal yang berhubungan dengan gerak parabola.
- Membahas latihan soal secara bersama.
- Penutup (5 menit)
 - Menyimpulkan materi pelajaran.
 - Memotivasi siswa agar tetap bersemangat dalam mempelajari fisika dan tetap semangat dalam menyelesaikan soal-soal atau masalah yang ada.

X. Materi

Gerak parabola

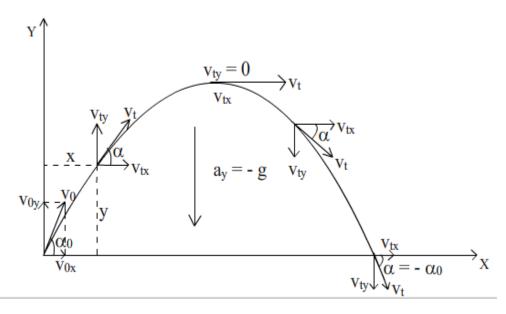
Gerak parabola pada dasarnya merupakan perpaduan antara gerak horizontal (pada sumbu x) dan gerak vertikal (pada sumbu y). Pada horizontal bersifat GLB (Gerak Lurus Berubah Beraturan) kerena gesekan udara diabaikan sedangkan pada vertikal bersifat GLBB (Gerak Lurus Berubah Beraturan) karena pengaruh percepatan gravitasi bumi (g).

Persamaan Posisi dan Kecepatan pada Gerak Parabola

Gerak parabola dapat dialisis dengan meninjau gerak lurus beraturan pada sumbu X dan gerak lurus berubah beraturan pada sumbu Y

Pada sumbu X berlaku persamaan gerak lurus beraturan

$$v = v_0$$
 tetap dan $x = v_0$ t


Jika pada sumbu X, kecepatan awal adalah v_{0x} , kecepatan pada saat t adalah v_x , dan posisi adalah x, maka persamaannya menjadi :

$$v_x = v_{0x}$$

$$x = v_{0x} t$$

Pada sumbu Y berlaku persamaan umum gerak lurus berubah beraturan, yaitu :

$$v = v_0 + at \, dan \, x = v_0 \, t + \frac{1}{2} \, at^2$$

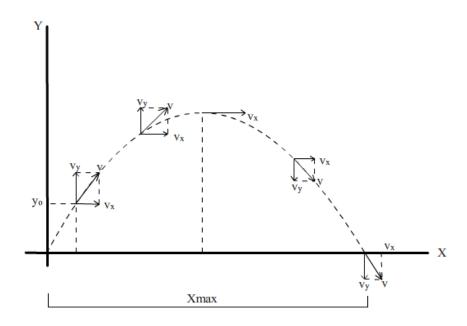
Jika pada sumbu Y kecepatan awal adalah v_{0y} , kecepatan pada saat t adalah v_y , percepatan a=-g (berarah ke bawah), dan posisi adalah y, maka persamaannya menjadi :

$$v_y = v_{0y} - gt$$

$$y = v_{oy} t - \frac{1}{2} gt^2$$

Kita juga dapat menyatakan kecepatan awal v_{0x} dan v_{oy} dengan besarnya v_0 (kelajuan awal) dan sudut α_0 terhadap sumbu X positif. Dalam besaranbesaran ini, komponen kecepatan awal v_{0x} dan v_{oy} dapat diperoleh dari perbandingan trigonometri $\cos \alpha_0$ dan $\sin \alpha_0$.

$$\cos \alpha_0 = \frac{v_{0x}}{v_0} atau v_{0x} = v_0 \cos \alpha_0$$


$$\sin \alpha_0 = \frac{v_{0y}}{v_0} atau v_{0y} = v_0 \sin \alpha_0$$

Komponen kecepatan v pada sumbu X adalah vx dan pada sumbu Y adalah vy, sehingga berlaku:

Besar kecepatan
$$v = \sqrt{v_x^2 + v_y^2}$$

Arah kecepatan
$$\tan \alpha = \frac{v_y}{v_x}$$

Tinggi maksimum dan Jarak terjauh

Syarat suatu benda mencapai titik tertinggi adalah $v_y = 0$, maka kecepatan pada titik tertinggi :

$$v_H = v_x$$

Untuk mencari tinggi maksimum, maka:

$$v_y = 0$$

$$v_{0y} - gt_{0H} = 0$$

$$t_{0H} = \frac{v_{0y}}{g} = \frac{v_0 \sin \alpha_0}{g}$$

Dengan t_{0H} adalah waktu untuk mencapai ketinggian maksismum.

Untuk mencari koordinat titik tertinggi pada sumbu x adalah :

$$x = v.t$$

$$x_H = v.t_{0H}$$

$$x_H = (v_0 \cos \alpha_0) \left(\frac{v_0 \sin \alpha_0}{g}\right)$$

Sehingga:

$$x_H = \frac{v_0^2}{2g} \sin 2\alpha_0$$

Untuk mencari koordinat titik tertinggi pada sumbu x adalah :

$$y = v_{0y} t - \frac{1}{2} g t^{2}$$

$$y_{H} = v_{0y} t_{0H} - \frac{1}{2} g t_{0H}^{2}$$

$$y_{H} = (v_{0} \sin \alpha_{0}) \left(\frac{v_{0} \sin \alpha_{0}}{g} \right) - \frac{1}{2} g \left(\frac{v_{0} \sin \alpha_{0}}{g} \right)^{2}$$

$$y_{H} = \frac{2 v_{0}^{2} \sin^{2} \alpha_{0}}{2g} - \frac{v_{0}^{2} \sin^{2} \alpha_{0}}{2g}$$

Sehingga:

$$y_H = \frac{v_0^2}{2g} \sin^2 \alpha_0$$

Waktu untuk mencapai jarak terjauh:

$$t_{max} = \frac{2 \, v_0 \sin \alpha_0}{g}$$

Jarak terjauh:

$$X_{max} = \frac{v_0^2}{g} \sin 2\alpha_0$$

XI. Contoh Soal

1. Seorang anak melempar batu dengan kecepatan 10 m/s pada arah yang membentuk sudut 37^0 terhadap tanah (sin $37^0 = 0.6$). Tentukanlah kedudukan batu setelah 0.5 s. (Percepatan gravitasi adalah 10 m/s^2).

Penyelesaian:

Diketahui:

$$v_0 = 10 \text{ m/s}$$

$$\alpha_0 = 37^0$$

$$\sin \alpha_0 = \sin 37^0 = 0.6$$

$$\cos\alpha_0 = \cos 37^0 = 0.8$$

$$g = 10 \text{ m/s}^2$$

Ditanya: kedudukan (x,y).....?

Jawab:

Mencari kedudukan (x,y), dengan rumus :

$$x = v_{ox}$$
. t

$$y = v_{oy} t - \frac{1}{2} gt^2$$

oleh karena itu terlebih dahulu akan mencari kecepatan awal pada sumbu x (v_{0x}) dan kecepatan awal pada sumbu y (v_{0y}) .

$$\begin{array}{lll} v_{ox} &= v_o \cos \alpha_0 & & v_{oy} &= vo \sin \alpha_0 \\ &= 10 \ .0,8 & & = 10 \ .0,6 \\ \\ v_{ox} &= 8 \ m/s & & v_{oy} &= 6 \ m/s \end{array}$$

Setelah itu, mencari kedudukan benda (x,y) :

$$x = v_{ox} \cdot t$$
 $y = v_{oy} t - \frac{1}{2} gt^2$
 $x = 8 \cdot 0.5$ $y = 6 \cdot 0.5 - \frac{1}{2} 10 \cdot (0.5)^2$
 $x = 4 m$ $y = 1.75 m$

Jadi kedudukan batu adalah pada koordinator (4;1,75) m.

2. Sebuah pohon mangga yang sedang berbuah berada pada jarak 10 m dari seorang anak. Anak tersebut sedang mengincar sebuah mangga yang menggantung pada ketinggian 8 m. Jika anak tersebut mengarahkan batu pada sudut 45⁰ terhadap horizontal, berapa kecepatan lemparan supaya batu mengenai sasaran? (g=10 m/s²).

Penyelesaian:

Diketahui:

$$x = 10 \text{ m}$$

$$y = 8 \text{ m}$$

$$\alpha_0 = 45^0$$

$$g = 10 \text{ m/s}^2$$

Ditanya: v₀

Jawab:

$$\mathbf{v}_{\text{ox}} = \mathbf{v}_{\text{o}} \cos \alpha_0$$
 $\mathbf{v}_{\text{oy}} = \mathbf{v}_{\text{o}} \sin \alpha_0$
 $= \mathbf{v}_{\text{o}} \cos 45^0$ $= \mathbf{v}_{\text{o}} \sin 45^0$
 $= \mathbf{v}_{\text{o}} (1/2 \sqrt{2})$ $= \mathbf{v}_{\text{o}} (1/2 \sqrt{2})$

Menggunakan persamaan jarak horizontal

$$x=v_{0x}$$
 .

$$t$$

$$10=(v_o~1/2~\sqrt{2})~.~t$$

$$t=20/v_0~\sqrt{2}$$

Menggunakan persamaan jarak vertikal

$$\begin{split} y &= v_{oy} \, t - \frac{1}{2} \, g t^2 \\ 8 &= \left[v_o(1/2 \, \sqrt{2}) \right] \, . \, \left[(20/v_0) \, \sqrt{2} \right] - \frac{1}{2} \, 10. \, \left[(20/v_0) \, \sqrt{2} \right]^2 \\ 8 &= 10 - 5 \, \frac{(10 \, .20)}{v_0^2} \\ -2 \, . \, v_0^2 &= -1000 \\ v_0^2 &= \sqrt{500} \\ v_0 &= 10 \, \sqrt{5} \, \, \text{m/s} \end{split}$$

3. Sebuah bola golf dipukul dengan kecepatan 10 m/s, bersudut 30^0 terhadap horizontal. Berapa ketinggian maksimum yang dicapai bola golf dan berapa lama waktu yang diperlukan bola golf untuk sampai di tanah lagi? dengan $g = 10 \text{ m/s}^2$.

Penyelesaian:

Diketahui:

$$v_0 = 10 \text{ m/s}$$
$$g = 10 \text{ m/s}^2$$

$$\alpha_0 = 30^0$$

Ditanya : $y_{max} & t$

Jawab:

Pada saat bola mencapai titik tertinggi $v_y = 0$, sehingga dapat digunakan rumus :

$$y_{max} = \frac{v_0^2 sin^2 \alpha_0}{2 g}$$
$$y_{max} = \frac{10^2 sin^2 (30^0)}{2.10}$$
$$y_{max} = 1,25 m$$

Untuk mencari waktu sampai bola kembali ke tanah lagi, dapat diartikan bahwa waktu yang ditempuh sama dengan dua kali waktu menempuh dari posisi awal sampai titik puncak.

Dapat menggunakan rumus:

$$\begin{split} t_{max} &= 2.t_{ymax} \\ &= 2.(v_0 \sin \alpha_0)/g \\ &= 2.(10 \sin 30^0)/10 \\ t_{max} &= 1 \text{ s} \end{split}$$

4. Sebuah peluru dilontarkan dari atap sebuah gedung yang tingginya adalah y=15 m dengan kelajuan awal $v_0=72$ km/jam. Jika percepatan gravitasi bumi adalah 10 m/s², sudut yang terbentuk antara arah lemparan peluru dengan arah horizontal adalah 30° dan gesekan meriam dengan udara diabaikan. Berapakah waktu yang diperlukan peluru untuk menyentuh tanah?

Penyelesaian:

Diketahui:

$$v_0 = 72 \text{ km/jam} = 20 \text{ m/s}$$

 $y = 15 \text{ m}$
 $g = 10 \text{ m/s}^2$
 $\alpha_0 = 30^0$
Ditanya: t......?

Jawab:

Untuk mencari t dapat menggunakan rumus

$$Y = v_{oy}.t - \frac{1}{2} g t^{2}$$

$$-15 = v_{o} \sin \alpha_{0} \cdot t - \frac{1}{2} g t^{2}$$

$$-15 = 20 \sin 30^{0} \cdot t - \frac{1}{2} 10 t^{2}$$

$$-15 = 10t - 5t^{2}$$

$$5t^{2} - 10t - 15 = 0$$

$$(t - 3) v (t + 1) = 0$$

$$t = 3 s$$

5. Sebuah pesawat terbang menjatuhkan sebuah paket kepada sekelompok penjelajah yang terdampar. Jika pesawat terbang dengan kecepatan 40 m/s pada ketinggian 100 m di atas tanah. Dimanakah paket menyentuh tanah? (dihitung dari titik paket dijatuhkan, dengan percepatan gravitasi 10 m/s².

Penyelesaian:

Pertama, tinjau gerak mendatar (sumbu x), yaitu gerak lurus beraturan dengan kecepatan v_{0x} sehingga koordinat x :

$$\begin{aligned} x &= v_{0x} \text{ . t} & & \text{---> dengan } v_{0x} = 40 \text{ m/s} \\ x &= 40 t \end{aligned}$$

Jadi, untuk menghitung x harus dihitung selang waktu t terlebih dahulu. Selang waktu t kita tentukan dengan meninjau gerak pada sumbu y, yaitu gerak lurus berubah beraturan dengan :

$$a = -g$$
, sehingga y :
 $y = v_{0y}$. $t - 1/2$ gt^2

Komponen kecepatan pada sumbu y, v_{0y} sama dengan nol,

sehingga:

$$y = -1/2$$
 gt² dengan $y = 100$ m (di bawah sumbu x)
 $-100 = -1/2$ (10) t²
 $t^2 = 20$
 $t = 2\sqrt{5}$ sekon

Setelah waktu t diketahui, selanjutnya dicari letak paket menyentuh tanah (sumbu x) dengan menggunakan persamaan :

$$x = 40.t$$

Dengan $t = 2 \sqrt{5}$ sekon, maka :
 $x = 40 \cdot 2 \sqrt{5}$
 $x = 80 \sqrt{5}$ m

Jadi paket menyentuh tanah pada jarak $80\sqrt{5}$ m dari titik pada saat paket dijatuhkan.

XII. Evaluasi

Latihan 1

- 1. Sebuah benda dilemparkan dengan sudut elevasi 30^{0} dan dengan kecepatan awal 20 m/s. Tinggi maksimum yang dicapai benda......
 - a. 4 m
 - b. 5 m
 - c. 5,5 m
 - d. 6 m
 - e. 6,5 m

Penyelesaian:

Diketahui : $\alpha = 30^{\circ}$; $v_o = 20 \text{ m/s}$

Ditanya: Ymax....?

Jawab :

Dengan syarat pada saat Ymax

$$v_v = 0$$

Sehingga rumus yang digunakan

$$y_{max} = \frac{v_0^2 sin^2 \alpha_0}{2 g}$$

$$y_{max} = \frac{20^2 \sin^2 30^0}{2.10}$$

$$y_{max} = 5 m$$

Jadi jawabannya adalah B

- 2. Peluru ditembakkan condong ke atas dengan kecepatan awal v=1,4 x 10^3 m/s dan mengenai sasaran yang jarak mendatarnya sejauh 2 x 10^5 m. Bila percepatan gravitasi 9,8 m/s², maka elevasinya adalah n derajat, dengan n sebesar....
 - a. 10^0

c.
$$45^0$$

d.
$$60^0$$

e.
$$75^0$$

Penyelesaian:

Diketahui :
$$v_0 = 1.4 \times 10^3 \text{ m/s}$$

$$x_{\text{maks}} = 2 \times 10^5 \,\text{m}$$
; $g = 9.8 \,\text{m/s}^2$

Ditanya :
$$\theta = \dots$$
?

Jawab : Dari rumus jarak mendatar maksimum

$$x_{max} = \frac{v_0^2 \sin 2\alpha}{g}$$

$$2x10^5 = \frac{(1,4x10^3)^2 \sin 2.\alpha}{9,8}$$

$$\sin 2. \alpha = \frac{2x10^5.9,8}{(1,4x10^3)^2}$$

$$\sin 2. \alpha = 1$$

$$2 \alpha = 90^{\circ}$$

$$\alpha = 45^{0}$$

Jadi jawabnnya adalah C

- 3. Sebuah peluru ditembakkan dengan kecepatan awal v_o dengan sudut elevasi 45^0 derajat, ternyata peluru mencapai titik tertinggi setelah 2 s. Jika g=10 m/s 2 , hitunglah kecepatan peluru di titik tertingginya!
 - a. 20 m/s
 - b. 22 m/s
 - c. 24 m/s
 - d. 25 m/s
 - e. 27 m/s

Penyelesaian:

Diketahui :
$$\alpha = 45^{\circ}$$

$$t_{puncak} = 2 s$$

$$g = 10 \text{ m/s}^2$$

Ditanya :
$$v_0 = \dots$$
?

Jawab :

$$t_{puncak} = \frac{v_0 \sin \alpha}{g}$$

$$2 = \frac{v_0 \sin 45^0}{10}$$

$$20 = \frac{1}{2} \sqrt{2} v_0$$

$$v_0 = 20\sqrt{2} \, m$$

Kecepatan pada titik tertinggi:

$$v_x = v_0 \cos \alpha$$

$$v_x = 20\sqrt{2} \cdot \frac{1}{2}\sqrt{2}$$

$$v_x = 20 \ m/s$$

Jadi jawabannya adalah A

- 4. Sebuah meriam dimiringkan pada sudut 15° terhadap horisontal. Meriam tersebut menembakkan sebutir peluru dengan kecepatan sebesar 60 m/s. Jarak maksimum yang dapat dicapai peluru...
 - a. 150 m
 - b. 160 m
 - c. 175 m
 - d. 180 m

e. 215 m

Penyelesaian:

Diketahui : $\alpha = 150$

$$v_o = 60 \text{ m/s}$$

$$g = 10 \text{ m/s}^2$$

Ditanya : $x_{\text{maks}} = \dots$?

Jawab :

$$x_{max} = \frac{v_0^2 \sin 2\alpha}{g}$$

$$x_{max} = \frac{60^2 \sin 30^0}{10}$$

$$x_{max} = 180 m$$

Jadi jawabannya adalah D

- 5. Sebuah peluru ditembakkan oleh meriam dengan kecepatan awal 80 m/s dan sudut elevasinya 45⁰. Tentukanlah koordinat titik tertinggi dan jarak terjauh yang dapat dicapai peluru!
 - a. (160;320) m & 640 m
 - b. (320;160) m & 320 m
 - c. (340;180) m & 640 m
 - d. (320;160) m & 640 m
 - e. (160;340) m & 320 m

Penyelesaian:

Diketahui : $\alpha = 450$

$$v_o = 80 \text{ m/s}$$

$$g = 10 \text{ m/s}^2$$

Ditanya : $(x_p; y_p)$, $x_{maks} = \dots$?

Jawab : Untuk menentukan koordinat titk tertinggi :

$$x_p = \frac{v_0^2 \sin 2\alpha}{2g}$$

$$x_p = \frac{80^2 \sin 2.45^0}{2.10}$$

$$x_p = 320 m$$

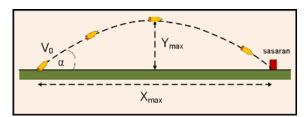
$$y_p = \frac{v_0^2 \sin^2 \alpha}{2.g}$$

$$y_p = \frac{80^2 \sin^2 45^0}{2.10}$$

$$y_p = 160 \ m$$

$$(x_p; y_p) = (320; 160) \text{ m}$$

Untuk menentukan jarak terjauh yang ditempuh:


$$x_{\text{max}} = 2. x_{\text{p}}$$

= 2. 320

 $x_{max} = 640 \text{ m}$

Jadi jawabannya adalah D

Latihan 2

1. Perhatikan gambar berikut ini!

Sebuah meriam menembakkan peluru dengan kelajuan awal 100 m/s dan sudut elevasi 37^0 . Jika percepatan gravitasi bumi 10 m/s^2 , sin $37^0 = 3/5$ dan cos $37^0 = 4/5$. Berapakah Tinggi peluru saat t = 1 sekon dan Jarak mendatar peluru saat t = 1 sekon?

Penyelesaian:

Tinggi peluru saat t = 1 sekon

Saat 1 sekon ketinggian peluru namakan saja Y

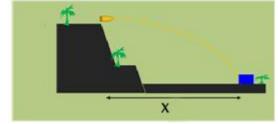
$$Y = v_0 \cdot \sin \alpha \ t - \frac{1}{2} g \cdot t^2$$

$$Y = 100 \frac{3}{5} . 1 - \frac{1}{2} 10 . 1^{2}$$

$$Y = 55 \, m$$

Jarak mendatar peluru saat t = 1 sekon

Saat 1 sekon jarak mendatar peluru namakan saja X


$$X = v_0 \cos \alpha . t$$

$$X = 100 \frac{4}{5} .1$$

$$X = 80 \ m$$

Jadi tinggi peluru pada saat 1 sekon adalah 55 meter dan jarak mendatar yang ditempuh peluru pada saat 1 sekon adalah 80 meter.

2. Sebuah peluru ditembakkan dari moncong sebuah meriam dengan kelajuan 50 m/s arah mendatar dari atas sebuah bukit, ilustrasi seperti gambar berikut!

Jika percepatan gravitasi bumi adalah 10 m/s^2 dan ketinggian bukit 125 m. Berapakah waktu yang diperlukan peluru untuk mencapai tanah dan jarak mendatar yang dicapai peluru (X)?

Penyelesaian:

Waktu yang diperlukan peluru untuk mencapai tanah

Tinjau gerakan sumbu Y, yang merupakan gerak jatuh bebas.

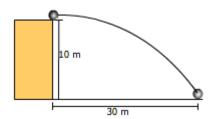
Sehingga $v_{oy} = 0$ dan ketinggian bukit namakan Y

$$Y = v_0 \cdot \sin \alpha \ t - \frac{1}{2} g \cdot t^2$$

$$Y = 0 - \frac{1}{2} g \cdot t^2$$

$$-125 = -\frac{1}{2} 10 \cdot t^2$$

$$t = 5 s$$


Jarak mendatar yang dicapai peluru (X)

Jarak mendatar gerakan berupa GLB karena sudutnya nol terhadap horizontal langsung saja pakai rumus:

$$X = v.t$$

 $X = (50).(5) = 250$ meter

Jadi waktu yang diperlukan peluru untuk mencapai tanah adalah 5 sekon dan jarak mendatar yang dicapai peluru adalah 250 meter.

3. Sebuah bola dilempar horisontal dari ketinggian 10 m dan mendarat 30 m dari dasar bangunan. Berapa laju awal bola tersebut? Tentukan juga kelajuan bola ketika mengenai permukaan tanah. Dengan g = 9,8 m/s²

Penyelesaian:

Laju awal bola tersebut ($v_0 = v_{ox}$)

laju awal bola dihitung seperti menghitung laju pada gerak lurus beraturan.

Diketahui :
$$x = 30$$
 m, $t = ...$?

Terlebih dahulu kita hitung selang waktu bola di udara (t).

Diketahui :
$$y = 10 \text{ m}$$
, $v_{ov} = 0 \text{ m/s}$, $g = 9.8 \text{ m/s}^2$

$$y = v_0 t - \frac{1}{2} gt^2$$
 —> $v_{oy} = 0 m/s$

$$-10 = -\frac{1}{2}(9.8) \cdot t^2$$

$$10 = (4,9) t^2$$

$$t^2 = 10 : 4.9 = 2.04$$

$$t=1,43$$
 sekon

Laju awal bola = laju awal bola pada arah horisontal.

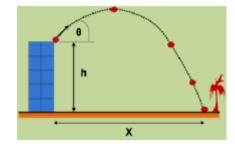
$$v_{ox} = s / t = 30 \text{ m} / 1,43 \text{ s} = 21 \text{ m/s}$$

Laju bola ketika mengenai permukaan tanah

$$v_{tx} = v_{ox} = 21 \text{ m/s}, v_{ty} = ?$$

Terlebih dahulu kita hitung v_{ty}:

Diketahui :
$$v_{oy} = 0 \text{ m/s}, g = 9.8 \text{ m/s}^2, t = 1.43 \text{ s}$$


Ditanyakan: v_{tv}

$$v_{ty} = v_{oy} + gt = 0 + (9.8) \cdot (1.43) = 14 \text{ m/s}$$

Jadi laju awal bola adalah 21 m/s dan kelajuan bola ketika mengenai permukaan tanah adalah 14 m/s

4. Sebuah bola dilontarkan dari atap sebuah gedung yang tingginya adalah h = 10 m dengan kelajuan awal v_0 = 10 m/s. Jika percepatan gravitasi bumi adalah 10 m/s², sudut yang terbentuk antara arah lemparan bola dengan arah horizontal adalah 60^0 dan gesekan bola dengan udara diabaikan. Berapakah waktu yang diperlukan bola untuk menyentuh tanah dan jarak

mendatar yang dicapai bola?

Penyelesaian:

Waktu yang diperlukan bola untuk menyentuh tanah ketinggian gedung h atau sama dengan Y disini, sehingga:

$$Y = v_0 \cdot \sin \alpha \ t - \frac{1}{2} g \cdot t^2$$

$$-10 = 10 \cdot \frac{1}{2} \cdot t - \frac{1}{2} \cdot 10 \cdot t^2$$

$$5t^2 - 5t - 10 = 0$$

$$t^2 - t - 2 = 0$$

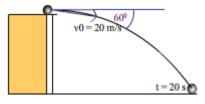
$$(t - 2) \cdot (t + 1) = 0$$

$$t = 2 s \text{ atau } t = -1 s$$

ambil nilai positif sehingga t = 2 sekon

Jarak mendatar yang dicapai bola:

$$x = (v^{0} \cos \alpha) t$$


$$x = (10 \cdot \cos 60^{0}) \cdot 2$$

$$x = 10 \text{ meter}$$

Jadi waktu yang diperlukan bola untuk menyentuh tanah adalah 2 sekon dan jarak mendatar yang dicapai bola adalah 10 meter.

5. Sebuah bola dilempar ke bawah dari tepi puncak bangunan dengan sudut - 60^{0} terhadap horisontal. Jika kecepatan awal bola 20 m/s dan bola mencapai tanah setelah 20 detik, hitung ketinggian bangunan dan kecepatan bola ketika mencapai permukaan tanah ! (Dengan g = 9,8 m/s²)

dan
$$\sin 60^0 = 0.87$$
)

Penyelesaian:

Terlebih dahulu kita hitung komponen vertikal (v_{oy}) dan komponen horisontal (v_{ox}) dari kecepatan awal (v_{o})

$$v_{ox} = v_o \cos 60^0 = (20) \cdot (0.5) = 10 \text{ m/s}$$

 $v_{oy} = v_o \sin 60^0 = (20) \cdot (0.87) = 17.4 \text{ m/s}$

a) Ketinggian bangunan

Diketahui:

$$v_{oy} = 17,4 \text{ m/s}, t = 20 \text{ s}, g = 9,8 \text{ m/s}^2$$

Ditanyakan: y.....?

$$y = v_{oy}\,t + \frac{1}{2}\,gt^2 = (17,\!4)\;.\;(20) + \frac{1}{2}\,(9,\!8)\;.\;(20)^2$$

$$y = 348 + (4.9)$$
. $(400) = 348 + 1960 = 2308$ m

b) Kecepatan bola ketika mengenai permukaan tanah

$$v_x = v_{ox} = 10 \text{ m/s}, v_y = ?$$

Terlebih dahulu kita hitung v_{ty} :

Diketahui : $v_{oy} = 17,4 \text{ m/s}, g = 9,8 \text{ m/s}^2, t = 20 \text{ s}$

Ditanyakan: v_{ty}

$$v_{ty} = v_{oy} + \, gt = 17.4 + (9.8)$$
 .
 (20) = 17.4 + 196 = 213.4 m/s

Jadi ketinggian bangunan adalah 2308 meter dan kecepatan bola ketika mencapai permukaan tanah adalah 213,4 m/s

Lampiran 2

ActionScript yang Digunakan dalam Program

Berikut ini adalah ActionScript yang digunakan dalam pembuatan Media Pembelajaran Fisika SMA Berbasis Komputer untuk Mempermudah Pemahaman pada Sub Pokok Bahasan Gerak Parabola.

- a. Pada bagian tampilan utama (tampilan depan)
 - ActionScript pada frame 1 fscommand("fullscreen", true);
 - ActionScsript pada frame 70 stop();
 - ♦ ActionScript pada tiap button

```
Pada button Materi
   on (press) {
           loadMovieNum("materi ok.swf", 1);
> Pada button Contoh Soal
   on (press) {
           loadMovieNum("contoh soal.swf", 1);
➤ Pada button Praktikum
   on (press) {
           loadMovieNum("Praktikum.swf", 1);
    }
> Pada button Drama
   on (press) {
           loadMovieNum("drama.swf", 1);
> Pada button Latihan 1
   on (press) {
           loadMovieNum("Latihan1.swf", 1);
    }
```

- b. Pada bagian Video Pembuka
 - ActionScript pada frame 1 stop();
 - ♦ ActionScript pada button Mulai

```
on (release) {
    gotoAndStop(2);
}
```

- c. Pada bagian Materi
 - ActionScript pada frame 1 fscommand(fullscreen, true); stop();
 - ActionScript pada frame 2 stop();
 - ActionScript pada frame 3 stop();
 - ActionScript pada frame 17 stop();
 - ActionScript pada frame 45 stop();
 - ActionScript pada frame 46 stop();
 - ActionScript pada frame 48 stop();
 - ActionScript pada frame 49 stop();

- ActionScript pada frame 50 stop();
- ActionScript pada frame 51 stop();
- ActionScript pada frame 52 stop();
- ActionScript pada frame 53 stop();
- ♦ ActionScript pada frame 120

```
stop();
_root.p1._visible = true;
_root.n1._visible = true;
stop();
_root.p2._visible = true;
_root.n2._visible = true;
stop();
_root.p80._visible = true;
_root.n80._visible = true;
```

♦ ActionScript pada tiap button

➤ Pada button Lanjut

```
on (press) {
    nextFrame();
```

> Pada button Kembali

> Pada button Klik Di Sini

```
on (press) {
            loadMovieNum("Animasi monyet.swf", 1);
}
```

> Pada button Kesimpulan

```
on (rollOver) {
    gotoAndPlay(2);
}
```

```
on (rollOut) {
                   gotoAndPlay(1);
Pada bagian Contoh Soal
 ♦ ActionScript pada frame 15-24
    stop();
   ActionScript pada tiap button
        Pada button Jawab nomor 1
           on (press) {
                   gotoAndPlay(16);
        > Pada button Jawab nomor 2
           on (press) {
                   gotoAndPlay(18);
          Pada button Jawab nomor 3
           on (press) {
                   gotoAndPlay(20);
        > Pada button Jawab nomor 4
           on (press) {
                   gotoAndPlay(22);
            }
        > Pada button Jawab nomor 5
           on (press) {
                   gotoAndPlay(24);
        Pada button Gambar
           on (rollOver) {
                   gotoAndPlay(2);
            }
           on (rollOut) {
                   gotoAndPlay(1);
```

}

d.

```
Pada button Kembali
```

```
on (press) {
      gotoAndPlay(16);
}
```

> Pada button Lanjut

```
on (press) {
    nextFrame();
}
```

- e. Pada bagian Praktikum
 - ActionScript pada frame 1 stop();
 - ♦ ActionScript pada button Mulai

```
on (release) {
    gotoAndStop(2);
}
```

- f. Pada bagain Drama
 - ActionScript pada frame 1 stop();
 - ♦ ActionScript pada button Mulai

```
on (release) {
    gotoAndStop(2);
}
```

- g. Pada bagian Latihan 1
 - ♦ ActionScript pada frame 1

```
stop();
skor = 0;
petunjuk._visible = 0;
war._visible = 0;
nama = "";
no = "";
```

♦ ActionScript pada frame 2

```
stop();
lanjut._visible = 0;
solve._visible = 0;
input = "";
```

```
respon = "";
  ActionScript pada frame 3
   stop();
   lanjut._visible = 0;
   solve1._visible = 0;
   input = "";
   respon = "";
♦ ActionScript pada frame 4
   stop();
   lanjut._visible = 0;
   solve2._visible = 0;
   input = "";
   respon = "";
  ActionScript pada frame 5
   stop();
   lanjut._visible = 0;
   solve3.\_visible = 0;
   input = "";
   respon = "";
   ActionScript pada frame 6
   stop();
   lanjut._visible = 0;
   solve4._visible = 0;
   input = "";
   respon = "";
  ActionScript pada frame 7
   stop();
   nilai = \frac{\text{skor}}{5*100};
   nama_anda = nama;
   nrp_anda = nrp;
  ActionScript pada frame 8-12
   stop();
  ActionScript pada tiap button
```

> Pada button Petunjuk

on (press) {

```
petunjuk._visible = 1;
    }
Pada button Masuk
    on (release) {
            if (nama == "" && no == "") {
                     war._visible = 1;
             } else {
                     nextFrame();
             }
    }
    Pada soal nomor 1
  Pada button Solusi
    on (press) {
             gotoAndPlay(8);
> Pada button Klik
    on (release) {
            if (respon == "Benar") {
                     skor = skor + 20;
                     nextFrame();
             } else {
                     skor = skor + 0;
             }
             solve._visible = true;
    }
> Pada button pilihan 1
    on (release) {
             respon = "Salah";
            lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
```

```
> Pada button pilihan 2
    on (release) {
             respon = "Benar";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3._visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 3
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3._visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
> Pada button pilihan 4
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3._visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 5
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
```

 $bt2._visible = 0;$

```
bt3.\_visible = 0;
            bt4._visible = 0;
            bt5._visible = 0;
    }
> Pada button Lanjut
    on (release) {
            gotoAndPlay(3);
    }
    Pada soal nomor 2
> Pada button Solusi
    on (press) {
            gotoAndPlay(9);
> Pada button Klik
    on (release) {
            if (respon == "Anda Benar") {
                     skor = skor + 20;
                     nextFrame();
             } else {
                     skor = skor + 0;
             }
            solve1._visible = true;
    }
> Pada button pilihan 1
    on (release) {
            respon = "Salah";
            lanjut._visible = true
            bt1._visible = 0;
            bt2._visible = 0;
            bt3.\_visible = 0;
            bt4._visible = 0;
            bt5._visible = 0;
  Pada button pilihan 2
    on (release) {
            respon = "Salah";
```

```
lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
  Pada button pilihan 3
    on (release) {
             respon = "Anda Benar";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3._visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 4
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 5
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
```

```
> Pada button Lanjut
    on (release) {
             gotoAndPlay(4);
    }
   Pada soal nomor 3
Pada button Solusi
    on (press) {
             gotoAndPlay(10);
    }
  Pada button Klik
    on (release) {
            if (respon == "Benar") {
                     skor = skor + 20;
                     nextFrame();
             } else {
                     skor = skor + 0;
             }
             solve1._visible = true;
    }
> Pada button pilihan 1
    on (release) {
             respon = "Benar";
             lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3.\_visible = 0;
            bt4._visible = 0;
             bt5._visible = 0;
> Pada button pilihan 2
    on (release) {
             respon = "Salah";
            lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3._visible = 0;
```

```
bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 3
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3._visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
  Pada button pilihan 4
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 5
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1.\_visible = 0;
             bt2.\_visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button Lanjut
    on (release) {
             gotoAndPlay(5);
```

```
}
   Pada soal nomor 4
> Pada button Solusi
    on (press) {
             gotoAndPlay(11);
> Pada button Klik
    on (release) {
             if (respon == "Bagus") {
                     skor = skor + 20;
                     nextFrame();
             } else {
                     skor = skor + 0;
             solve1._visible = true;
    }
> Pada button pilihan 1
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 2
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
```

```
> Pada button pilihan 3
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 4
    on (release) {
             respon = "Bagus";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 5
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3._visible = 0;
             bt4.\_visible = 0;
             bt5._visible = 0;
    }
> Pada button Lanjut
    on (release) {
             gotoAndPlay(6);
```

}

```
Pada soal nomor 5
> Pada button Solusi
    on (press) {
             gotoAndPlay(12);
> Pada button Klik
    on (release) {
             if (respon == "Benar") {
                      skor = skor + 20;
                      nextFrame();
             } else {
                      skor = skor + 0;
             }
             solve1._visible = true;
    }
> Pada button pilihan 1
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2.\_visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 2
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1.\_visible = 0;
             bt2._visible = 0;
             bt3.\_visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
```

```
> Pada button pilihan 3
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3._visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
    }
> Pada button pilihan 4
    on (release) {
             respon = "Benar";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3._visible = 0;
             bt4._visible = 0;
             bt5._visible = 0;
> Pada button pilihan 5
    on (release) {
             respon = "Salah";
             lanjut._visible = true
             bt1._visible = 0;
             bt2._visible = 0;
             bt3._visible = 0;
             bt4.\_visible = 0;
             bt5._visible = 0;
    }
Pada button Lanjut
    on (release) {
             gotoAndPlay(7);
Pada button Akhir
    on (release) {
            if (skor == "100") {
```

```
komen = "Congratulation";
} else {
    komen = "Coba Lagi";
}
```

h. Pada bagian Latihan 2

♦ ActionScript pada frame 1

```
stop();
skor = 0;
nama = "";
no = "";
kotak2._visible = 0;
kotak._visible = 0;
fscommand("fullscreen", true);
```

♦ ActionScript pada frame 2

```
stop();
jawab1 = "";
jawab2 = "";
komen = "";
peringat._visible = 0;
solusi._visible = false;
next1._visible = 0;
```

♦ ActionScript pada frame 3

```
stop()
jawab1 = ""
jawab2 = ""
komen = ""
peringat._visible = 0;
solusi._visible = false;
next1._visible = 0
```

♦ ActionScript pada frame 4

```
stop();
jawab1 = "";
jawab2 = "";
komen = "";
solusi._visible = false;
```

```
peringat._visible = 0;
next1._visible = 0
```

♦ ActionScript pada frame 5

```
stop();
jawab1 = "";
jawab2 = "";
komen = "";
solusi._visible = false;
peringat._visible = 0;
next1._visible = 0
```

♦ ActionScript pada frame 6

```
stop();
jawab1 = "";
jawab2 = "";
komen = "";
solusi._visible = false;
peringat._visible = 0;
next1._visible = 0
```

♦ ActionScript pada frame 7-11

stop();

♦ ActionScript pada frame 12

```
stop();
nilai = skor/5*100;
nama_anda = nama;
nrp_anda = nama;
komen = "";
```

♦ ActionScript pada tiap button

> Pada button Petunjuk

```
on (press) {
    kotak2._visible = 1;
}
```

Pada button Masuk

```
on (release) { 
    if (nama == "" && no == "") { 
        kotak._visible = 1;
```

```
} else {
                     nextFrame();
             }
    }
> Pada button next
    on (release) {
            if (komen == "benar") {
                     skor = skor + 20;
                     nextFrame();
            } else {
                     skor = skor + 0;
                     nextFrame();
             }
    }
    Pada Soal no. 1
  Pada button Klik
    on (release) {
            if (_root.jawab1 == "" && _root.jawab2 == "") {
                     peringat._visible = 1;
                     komen = "";
                     solusi._visible = 0;
             } else if (_root.jawab1 == "55" && _root.jawab2 == "80") {
                     komen = "benar";
                     next1._visible = 1
             } else {
                     komen = "anda salah";
                     solusi._visible = true;
                     next1._visible = 1
             }
    }
Pada button Solusi
    on (press) {
            gotoAndPlay(7);
    }
> Pada button Selesai
    on (release) {
```

```
gotoAndPlay(3);
    }
   Pada Soal no. 2
> Pada button Klik
    on (release) {
            if (_root.jawab1 == "" && _root.jawab2 == "") {
                    peringat._visible = 1;
                    komen = "";
                    solusi._visible = 0;
            } else if (_root.jawab1 == "5" && _root.jawab2 == "250") {
                    komen = "benar";
                    next1._visible = 1;
            } else {
                     komen = "anda salah";
                    solusi._visible = true;
                    next1._visible = 1;
            }
    }
Pada button Solusi
   on (press) {
            gotoAndPlay(8);
    }
  Pada button Selesai
   on (release) {
            gotoAndPlay(4);
    }
   Pada Soal no. 3
  Pada button Klik
    on (release) {
            if (_root.jawab1 == "" && _root.jawab2 == "") {
                    peringat._visible = 1;
                    komen = "";
                    solusi._visible = 0;
            } else if (_root.jawab1 == "21" && _root.jawab2 == "14") {
                    komen = "benar";
                    next1._visible = 1
```

```
} else {
                     komen = "anda salah";
                     solusi._visible = true;
                     next1._visible = 1
             }
    }
> Pada button Solusi
    on (press) {
            gotoAndPlay(9);
    }
> Pada button Selesai
    on (release) {
            gotoAndPlay(5);
    Pada Soal no. 4
> Pada button Klik
    on (release) {
            if (_root.jawab1 == "" && _root.jawab2 == "") {
                     peringat._visible = 1;
                     komen = "";
                     solusi._visible = 0;
             } else if (_root.jawab1 == "2" && _root.jawab2 == "10") {
                     komen = "benar";
                     next1.\_visible = 1
            } else {
                     komen = "anda salah";
                     solusi._visible = true;
                     next1.\_visible = 1
            }
    }
> Pada button Solusi
    on (press) {
            gotoAndPlay(10);
> Pada button Selesai
    on (release) {
```

```
gotoAndPlay(6);
    }
    Pada Soal no. 5
> Pada button Klik
    on (release) {
            if (_root.jawab1 == "" && _root.jawab2 == "") \{
                    peringat._visible = 1;
                    komen = "";
                    solusi._visible = 0;
            } else if (_root.jawab1 == "2308" && _root.jawab2 == "213,4") {
                    komen = "benar";
                    next1._visible = 1
            } else {
                    komen = "anda salah";
                    solusi._visible = true;
                    next1.\_visible = 1
            }
    }
> Pada button Solusi
    on (press) {
            gotoAndPlay(11);
    }
  Pada button Selesai
    on (release) {
            gotoAndPlay(12);
    }
Pada button Komen
    on (release) {
            if (skor == "100") {
                    komen = "Congratulation";
            } else {
                    komen = "Coba Lagi";
            }
    }
```

SKRIP VIDEO OPENING

No	Visualisasi	Keterangan
1.	MEDIUM LONG SHOT PRESENTER	Q1. MUSIK (MENGALUN PELAN) Q2. Hai selamat pagi semuanya, Salam Fisika. Perjumpaan kita kali ini akan membahas tentang gerak peluru atau sering disebut dengan gerak parabola. Nah, ada yang tahu tidak tentang gerak parabola? Nah, untuk lebuh jelasnya mari kita simak penjelasan singkat tentang gerak parabola berikut ini.
2.	CAPTION: PENDAHULUAN FLASH PENGERTIAN GERAK PARABOLA DAN ANIMASI SINGKAT	Q3. MUSIK
3.	CAPTION: GERAK PARABOLA DALAM KEHIDUPAN SEHARI-HARI	Q4. MUSIK
4.	CAPTION: SAAT BERMAIN BOLA SEPAK	Q5. MUSIK
5.	LONG SHOT ORANG MENENDANG BOLA KE GAWANG	Q6. MUSIK
6.	CAPTION: SAAT BERMAIN BOLA BASKET	Q7. MUSIK
7.	MEDIUM SHOT ORANG MEMASUKKAN BOLA	Q8. MUSIK

	BASKET KE RING	
8.	<u>CAPTION:</u>	Q9. MUSIK
	SAAT BERMAIN BOLA VOLI	
9.	LONG SHOT	Q10. MUSIK
	ORANG MENSERVEN BOLA VOLI MELEWATI NET	
10.	MEDIUM SHOT	Q11. MUSIK
	IKLAN MIZONE	
	<u>CAPTION:</u>	
	DALAM IKLAN YANG SERING KITA TONTON	
11.	MEDIUM SHOT	Q12. MUSIK
	<u>CAPTION:</u>	
	INI DIA GERAK PARABOLANYA	
12.	MEDIUM SHOT PRESENTER	Q13 MUSIK
13.	MEDIUM SHOT PRESENTER	Q14. MUSIK (MENGALUN PELAN) Q15. Nahkalian sudah
	<u>CAPTION:</u>	menyaksikan peristiwa-peristiwa
	PRESENTER	tentang gerak parabola. Menarik bukan, karena disetiap kehidupan
	PATRIS F. HIGKUA	kita disaat kita melakukan kegiatan tertentu terdapat unsur tentang
		gerak parabola.
		Untuk lebih memahami lagi dan untuk lebih jelasnya lagi, silakan
		teman-teman untuk memilih
		tombol-tombol yang ada dibawah ini.
		Ok
		Selamat mencoba.

SKRIP VIDEO PRAKTIKUM

No	Visualisasi	Keterangan
1.	MEDIUM LONG SHOT PRESENTER	Q1. MUSIK (MENGALUN PELAN) Q2. Nahteman-teman, ada yang sudah tahu belum tentang praktikum gerak parabola? Pada cuplikan berikut ini, temanteman akan diajari tentang bagaimana menyiapkan alat-alat, merangkai alat-alat, jalannya percobaan sampai pada pengambilan data. Untuk lebih jelasnya mari kita sama-sama saksikan praktikum gerak parabola berikut ini.
2.	MCU PRESENTER	Q3. MUSIK (MENGALUN PELAN) Q4. Supaya lebih jelas, marilah kita lihat praktikumnya yuk
3.	MEDIUM SHOT PERAGA CAPTION: ALAT-ALAT YANG DIGUNAKAN	Q5. Alat-alat yang akan kita gunakan dalam praktikum ini adalah
4.	CLOSE UP ALAT PRAKTIKUM CAPTION: BALL LAUNCHER	Q6. MUSIK Q7. Ball Launcher
5.	CLOSE UP ALAT PRAKTIKUM CAPTION:	Q8. MUSIK Q9. Statip Launcher

	STATIP LAUNCHER	
6.	CLOSE UP	Q10. MUSIK
	ALAT PRAKTIKUM	Q11. Pendorong bola
	CAPTION:	
	PENDORONG BOLA	
7.	CLOSE UP	Q12. MUSIK
	ALAT PRAKTIKUM	Q13. Bola
	CAPTION:	
	BOLA	
8.	CLOSE UP	Q14. MUSIK
	ALAT PRAKTIKUM	Q15. Papan
	CAPTION:	
	PAPAN	
9.	CLOSE UP	Q16. MUSIK
	ALAT PRAKTIKUM	Q17. Statip
	CAPTION:	
	STATIP	
10.	CLOSE UP	Q18. MUSIK
	ALAT PRAKTIKUM	Q19. Karbon
	CAPTION:	
	KARBON	
11.	CLOSE UP	Q20. MUSIK
	ALAT PRAKTIKUM	Q21. Meteran
	CAPTION:	
	METERAN	
	<u>l</u>	

12.	CLOSE UP	Q22. Langkah-langkah
12.	CLOSE 01	praktikumnya adalah
	CAPTION:	pruntingu usurum
	LANGKAH-LANGKAH	
	PRAKTIKUM	
13.	CLOSE UP	Q23. Langkah pertama
	PERAGA MEMASANG ALAT-ALAT	merangkai alat-alat yang
	PERCOBAAN	digunakan
	TERCOBARN	
	CAPTION	
	1. MERANGKAI ALAT-ALAT	
	YANG DIGUNAKAN	
14.	CLOSE UP	Q24. Kedua, menentukan sudut
	DED A CLA MENCA TUD CUDUT	elevasi
	PERAGA MENGATUR SUDUT	
	ELEVASI PADA PENEMBAK	
	PROJECTILE	
	CAPTION	
	2. MENENTUKAN SUDUT	
	ELEVASI θ	
15.	MEDIUM SHOT	Q25. Memasang kertas karbon
		pada layar.
	PERAGA MEMASANG KERTAS	
	KARBON PADA PAPAN	
	CAPTION	
	3. MEMASANG KERTAS	
	KARBON PADA LAYAR	
16.	CLOSE UP	Q26. Langkah keempat
	PERAGA MEMASUKKAN BOLA	Memasukkan bola ke dalam
	KEDALAM PENEMBAK	penembak projectile pada gigi
	PROJECTILE	kedua.
	CAPTION	
	4. MEMASUKKAN BOLA KE	
	DALAM PENEMBAK	
	PROJECTILE	
17.	MEDIUM SHOT	Q27. Menembakkan projectile
		tersebut dan mencatat kedudukan
	PERAGA MENEMBAKKAN BOLA	x dan y
		_

	CAPTION	
	5. MENEMBAKKAN BOLA PADA LAYAR	
18.	MEDIUM SHOT PERAGA MENGUBAH KEDUDUKAN LAYAR	Q28. Mengulangi langkah ketiga dengan mengubah kedudukan layar.
	CAPTION 6. MENGULANGI LANGKAH KETIGA DENGAN MENGUBAH KEDUDUKAN LAYAR	
19.	MEDIUM SHOT PERAGA MENGULANGI LANGKAH-LANGKAH	Q29. Mengulangi langkah 4, 5, dan 6 dengan penembak projektil pada gigi ketiga.
	CAPTION 7. MENGULANGI LANGKAH KE 4, 5 DAN 6	
20.	CLOSE UP MENGUKUR NST CAPTION 8. MENCATAT NST ALAT UKUR	Q30. Mencatat nst alat ukur yang digunakan pada percobaan.
21.	CAPTION (ANIMASI KOMPUTER DATA DAN PERHITUNGAN GERAK PELURU)	Q31. MUSIK (MENGALUN PELAN) Q32. Dari data yang telah kita peroleh maka, kita dapat melakukan perhitungan untuk mencapai tujuan, untuk mencari kecepatan awal benda.
22.	CAPTION (ANIMASI KOMPUTER SUMBER-SUMBER KESALAHAN)	Q33. Dalam setiap kita melakukan praktikum selalu ada kesalahan relatif. Terjadinya kesalahan relatif itu disebabkan oleh
23.	CAPTION (ANIMASI	Q34. Dari praktikum yang telah kita lakukan dapat kita simpulkan

	KESIMPULAN)	bahwa
24.	MEDIUM SHOT	Q35. Bagaimana tentang cuplikan tadi, yaitu tentang praktikum
	ZOOM OUT	gerak parabola? Menarik bukan?!
	PRESENTER	
25.	MEDIUM LONG SHOT	Q36. Dari cuplikan tadi temanteman dapat melihat serta
	PRESENTER	mengetahui bagaimana
		menyiapkan alat-alat, langkah- langkah percobaan sampai dengan
		perhitungan datanya.
		OK.
		Semoga tayangan praktikum tadi dapat bermanfaat buat kalian semua.
		Akhir kata saya mengucapkan Salam Fisika.

SKRIP DRAMA

No.	Visualisasi	Keterangan
1.	VERY CLOSE UP KE ZOOM OUT:	Q1. MUSIK
	PINTU RUANG D-403 UNIKA	
	WIDYA MANDALA SURABAYA	
2.	MEDIUM LONG SHOT:	Q2. MUSIK
	PRESENTER	
3.	MEDIUM LONG SHOT	Q3. MUSIK (mengalun pelan)
	KEMUDIAN ZOOM IN KE	Q4. Nah, bagaimana sudah mengerti
	MEDIUM CLOSE UP:	tentang gerak parabola? Cukup
	PRESENTER	mudah bukan?! Sadarkah kalian
		dalam kehidupan kita sehari-hari baik dalam hal percintaan,
		permainan, maupun kenakalan
		kita, kita sering melakukan gerak
		parabola. Ingin tahu kisahnya
		lebih lanjut? Mari kita simak
4	MEDITAL OF ORE TIP	drama singkat berikut ini.
4.	MEDIUM CLOSE UP:	Q5. MUSIK
	PINTU RUANG D-401 UNIKA	
	WIDYA MANDALA SURABAYA	OC MUCHY
5.	LONG SHOT	Q6. MUSIK
	RUANG KELAS UNIKA WIDYA	
	MANDALA SURABAYA	
	CAPTION:	
6.	PART 1 MEDIUM LONG SHOT	O7 MUSIV (mangalun nalan)
0.	RUANG KELAS UNIKA WIDYA	Q7. MUSIK (mengalun pelan)
	MANDALA SURABAYA	Q8. Disuatu kampus yang tenang, ada seorang lelaki yang sedang
	MANDALA SURABATA	bahagia karena hatinya telah
		,
		terpaut dengan teman wanita kelasnya sendiri.
7.	MEDIUM SHOT	Q9. MUSIK (mengalun pelan)
/.	SEORANG LELAKI MENULIS	Q10. Ia pun berusaha mengungkapkan
	SURAT	perasaannya, dengan
	SUKAI	menuliskan sebuah surat dan
		mengumpulkan keberaniannya
		untuk menyampaikan

	T	
		perasaannya itu pada teman
		wanita yang dia sukai.
8.	LONG SHOT	Q11. MUSIK (mengalun pelan)
	SEORANG LELAKI MELEMPAR	Q12. Dan lihatlah, tanpa disadari dia
	KERTAS	telah melakukan gerak parabola untuk
		menyampaikan perasaannya.
9.	MEDIUM LONG SHOT	Q13. MUSIK (mengalun pelan)
	RUANG KELAS DAN BEBERAPA	Q14. Namun sayang, keberuntungan
	MAHASISWA	tidak berpihak padanya,
		perasaannya pun tak
		tersampaikan, malah malu yang
		ia dapatkan.
10.	MEDIUM SHOT	Q14. MUSIK
	SEORANG LELAKI YANG MALU	
	CAPTION:	
1.1	YAH KETAHUAN	015) (1977)
11.	MEDIUM LONG SHOT	Q15. MUSIK (mengalun pelan)
	RUANG KELAS UNIKA WIDYA	Q16. Pada saat-saat tertentu,
	MANDALA SURABAYA	kenakalan dan ide-ide konyol
	CAPTION:	muncul begitu saja, pada saat waktu luang.
	PART 2	waktu lualig.
12.	MEDIUM LONG SHOT	Q17. MUSIK (mengalun pelan)
	SEORANG MAHASISWA YANG	Q18. Heh, ga ada dosen
	MASUK KELAS	
13.	MEDIUM SHOT	Q19. MUSIK (mengalun pelan)
	RUANG KELAS DAN SEORANG	Q20. Hehayo dulinan
	MAHASISWA YANG BERJALAN	
	KEDEPAN	
14.	LONG SHOT	Q21. MUSIK
	RUANG KELAS DAN PARA	Q22. Lihatlah terkadang kenakalan
	MAHASISWA	kita pun mendorong kita untuk
		melakukan gerak parabola
15.	MEDIUM LONG SHOT	Q23. MUSIK (mengalun pelan)
	MAHASISWA BERGANTIAN	Q24. Dan lihatlah tanpa kita sadari
	BERMAIN	kehidupan kita berhubungan
		dengan fisika.
		Hal-hal remeh dan sepele yang
		sering kita lakukan malah
		berhubungan dengan fisika dan
		membuat kita semakin asyik
		serta merasakan nikmatnya
1.0	MEDIUM CHOT	hidup.
16.	MEDIUM SHOT	Q25. MUSIK (mengalun pelan)
		Q26. Nah bagaimana, sudah

		terbuktikan kalau dalam kisah
		percintaan kita maupun dalam
		kenakalan, kita sering melakukan
		gerak parabola.
		Semoga drama singkat yang telah
		teman-teman saksikan, dapat
		bermanfaat bagi teman-teman
		sekalian.
		Sampai jumpa dipertemuan
		selanjutnya ya.
		Salam fisika.
17.	LONG SHOT	Q27. MUSIK
	CAPTION	
	THE END	
	THANK YOU	
	SEE YOU	
	NEXT TIME	

Lampiran 6 Angket Siswa

Angket Pembuatan Media Pembelajaran Fisika Berbasis Komputer pada Sub Pokok Bahasan Gerak Parabola

Angket untuk siswa

NO	PERNYATAAN	PILIHAN			
NO		SS	S	TS	STS
1.	Tampilan program cukup menarik				
2.	Media mudah dioperasikan				
3.	Animasi yang disajikan sesuai materi				
4.	Video yang disajikan cukup menarik				
5.	Eksperimen yang ditampilkan melalui				
	video mudah dimengerti				
6.	Bahasa dalam video cukup jelas dan				
	mudah dipahami				
7.	Siswa lebih mudah mempelajari materi				
	dengan adanya video dan animasi				
8.	Dapat mempercepat pemahaman siswa				
9.	Program layak digunakan sebagai media				
	pembelajaran mandiri				
10.	Program ini menambah kebingungan				

Keterangan:

SS : Sangat Setuju

S : Setuju

TS: Tidak Setuju

STS : Sangat Tidak Setuju

Wawancara Siswa

FORMAT WAWANCARA TERSTRUKTUR SETELAH UJI COBA (UNTUK SISWA)

No.	Hal yang Ditanyakan	Inti Jawaban
1.	Apakah anda kesulitan untuk	
	mengoperasikan program?	
2.	Apakah video pembuka	
	tentang gerak parabola dapat	
	memancing rasa ingin tahu?	
3.	Setelah anda mempelajari isi	
	program lebih dalam, apakah	
	rasa ingin tahu anda terjawab?	
4.	Apakah video praktikum gerak	
	parabola dapat membantu	
	pemahaman gerak parabola?	
5.	Bagaimana dengan kualitas	
	video dan tampilan animasi	
	yang disajikan?	

Angket Guru

Angket Pembuatan Media Pembelajaran Fisika Berbasis Komputer pada Sub Pokok Bahasan Gerak Parabola

Angket untuk guru

NO	PERNYATAAN	PILIHAN					
	IERNIAIAAN	SS	S	TS	STS		
1.	Tampilan program cukup menarik						
2.	Media mudah dioperasikan						
3.	Animasi yang disajikan sesuai materi						
4.	Video yang disajikan cukup menarik						
5.	Eksperimen yang ditampilkan melalui						
	video mudah dimengerti						
6.	Bahasa dalam video cukup jelas dan						
	mudah dipahami						
7.	Siswa lebih mudah mempelajari materi						
	dengan adanya video dan animasi						
8.	Dapat mempercepat pemahaman siswa						
9.	Program layak digunakan sebagai media						
	pembelajaran di kelas						
10.	Program ini menambah kebingungan						

Keterangan:

SS : Sangat Setuju

S : Setuju

TS : Tidak Setuju

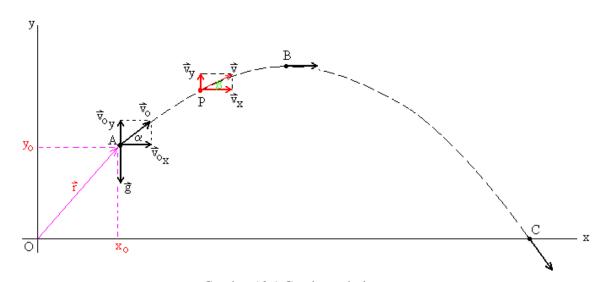
STS : Sangat Tidak Setuju

Wawancara Guru

FORMAT WAWANCARA TERSTRUKTUR SETELAH UJI COBA (UNTUK GURU)

No.	Hal yang Ditanyakan	Inti Jawaban
1.	Apakah media ini dapat	
	dimanfaatkan dalam proses	
	belajar mengajar atau tidak?	
2.	Apakah pengoperasian media	
	pembelajaran sangat mudah?	
3.	Bagaimana dengan kualitas	
	video?	

MODUL PRAKTIKUM


GERAK PELURU

I. Tujuan

Agar mahasiswa dapat lebih memahami konsep gerak peluru dan dapat menentukan kecepatan awal projektil melalui gerak peluru.

II. Teori

Dimisalkan sebuah peluru mula-mula berada di titik A (x_o, y_o) ditembakkan pada bidang vertikal (x-y) dengan sudut α terhadap horisontal (dinamakan sudut elevasi) dan dengan kecepatan \bar{v}_0 . Karena pengaruh percepatan gravitasi yang arahnya vertikal ke bawah $\bar{a} = -g \hat{\jmath}$ maka lintasan benda akan tampak seperti gambar di bawah ini (garis putus-putus warna hitam)

Gambar 10.1 Gerak parabola

Pada gambar diatas, titik B merupakan titik tertinggi yang dapat dicapai oleh peluru. Titik C merupakan titik terjauh horisontal yang dapat dicapai oleh peluru, sedangkan titik P merupakan posisi peluru pada sembarang tempat.

Persamaan gerak peluru dapat dirumuskan melalui devinisi dari percepatan dan kecepatan.

Dimisalkan pada saat t detik posisi peluru di titik P dengan kecepatan \bar{v}

$$\bar{a} = -g \,\hat{\jmath}$$

$$\frac{d\bar{v}}{dt} = -g \,\hat{\jmath}$$

$$\int d\bar{v} = -g \,\hat{\jmath} \,dt$$

$$\bar{v} = -g \,t \,\hat{\jmath} + \bar{c}$$

Dengan menggunakan syarat batas, pada saat t=0, $\bar{v}=\bar{v}_0$ dengan $\bar{v}_0=\bar{v}_{ax}+\bar{v}_{ay}$ atau $\bar{v}_0=v_0\cos\propto\hat{\iota}+v_0\sin\propto\hat{\jmath}$, maka diperoleh $\bar{c}=\bar{v}_0$ sehingga:

$$\bar{v} = \bar{v}_0 - gt \,\hat{j}$$

$$\bar{v} = v_0 \cos \propto \hat{i} + v_0 \sin \propto \hat{j} - gt \,\hat{j}$$

$$\bar{v} = (v_0 \cos \propto) \hat{i} + (v_0 \sin \propto - gt) \hat{j} \qquad \dots (1)$$

Berdasarkan definisi kecepatan:

$$\bar{v} = \frac{d\bar{r}}{dt}$$

$$\int d\bar{r} = \bar{v} dt$$

$$\bar{r} = \int \{ (v_0 \cos \alpha)\hat{i} + (v_0 \sin \alpha - g t)\hat{j} \} dt$$

$$\bar{r} = (v_0 t \cos \alpha)\hat{i} + \left(v_0 t \sin \alpha - \frac{1}{2}g t^2\right)\hat{j} + \bar{c}$$

Dengan menggunakan syarat batas $t=0, \, \bar{r}=\bar{r}_0$ dengan $\bar{r}_0=x_0\hat{\imath}+y_0\hat{\jmath}$ maka dapat diperoleh $\bar{c}=\bar{r}_0$ sehingga :

$$\bar{r} = (v_0 t \cos \alpha)\hat{i} + \left(v_0 t \sin \alpha - \frac{1}{2}g t^2\right)\hat{j} + x_0\hat{i} + y_0\hat{j}$$

$$\bar{r} = (v_0 t \cos \alpha + x_0)\hat{i} + \left(v_0 t \sin \alpha - \frac{1}{2}g t^2 + y_0\right)\hat{j} \quad \dots (2)$$

Berdasarkan persamaan (1) dan (2), tampak bahwa gerak peluru merupakan perpaduan antara Gerak Lurus Beraturan (GLB) pada sumbu x, dan Gerak Lurus Berubah Beraturan (GLBB) pada sumbu y. Sumbu x :

$$v_x = v_0 \cos \propto$$
$$x = v_0 t \cos \propto + x_0$$

Sumbu y:

$$v_y = v_0 \sin \alpha - g t$$
$$y = v_0 t \sin \alpha - \frac{1}{2} g t^2 + y_0$$

Apabila pada keadaan awal $x_0 = 0$ dan $y_0 = 0$, maka berdasarkan persamaan (2) diperoleh persamaan lintasan peluru pada bidang x-y:

$$y = x \tan \alpha - x^2 \frac{g}{2v_0^2 \cos^2 \alpha} \qquad \dots (3)$$

III. Alat-alat yang digunakan

- 1. 1 set alat Projectile Launcher
- 2. Karbon
- 3. Mistar
- 4. Kertas
- 5. Papan
- 6. Statip

IV. Pelaksanaan percobaan dan pengamatan

Gambar 10.2 Rangkaian alat praktikum gerak parabola

- 2. Tentukan sudut elevasi α, lalu pasang kertas karbon pada layar.
- 3. Masukkan bola ke dalam penembak projektil (gigi kedua), lalu tembakan projektil tersebut dan catat kedudukan x dan y dengan menggunakan mistar.
- 4. Ulangi langkah 3 sebanyak 5 kali dengan mengubah kedudukan layar.
- 5. Ulangi langkah 2, 3, dan 4 dengan dengan penembak projektil pada gigi ketiga.
- 6. Catat nst alat ukur yang digunakan pada percobaan

V. Perhitungan untuk mencapai tujuan

1. Pada percobaan 1, tentukan kecepatan projektil pada saat ditembakkan (gigi kedua dan gigi ketiga) dengan menggunakan

- persamaan (3) dan masing-masing disertai kesalahan mutlak, kesalahan relatif, keseksamaan dan harga sebenarnya
- 2. Bahaslah sumber-sumber kesalahan yang mungkin terjadi pada percobaan ini.
- 3. Berilah kesimpulan dari hasil pengamatandan perhitungan yang telah saudara peroleh.

Lembar Kerja Siswa

$$\alpha = 30^0$$

No	Gigi kedua		Gigi ketiga		
	x(m)	y(m)	x(m)	y(m)	
1					
2					
3					
4					
5					

Data Hasil Praktikum Gerak Parabola

Data Pengamat

$$\alpha = 30^{\circ}$$

No	Gigi kedua		Gigi ketiga	
	$x(m) 10^{-2}$	y(m)	x(m)	y(m)
1	34,5	17,4	129,5	35,4
2	38,5	18,5	115,2	36,6
3	42,6	19,5	94,3	36,1
4	47	20,1	84,2	35,3
5	49,5	20,5	72,4	32,8

Nst alat ukur : Mistar = 10^{-3} m

Busur = 1^0

Analisis Data dan Pengamat

$$\alpha = 30$$

 $\tan \alpha = 0.57735$

$$g = 10 \text{ m/s}^2$$

Gigi 2

Contoh perhitungan percobaan I

$$V_0 = \sqrt{\frac{-x^2 g}{2\cos^2 \propto (y - x \tan \propto)}}$$

$$V_0 = \sqrt{\frac{-(0.345)^2 \cdot 9.8}{2\cos^2 30^0 \ (0.174 - 0.345 \tan 30^0)}}$$

$$V_0 = 5.556589 \ m/s$$

No	X (m)	Y (m)	Vo	Vo - Vo rat	$(Vo - Vo rat)^2$
1	0.345	0.174	5.55659	0.665025432	0.442258826
2	0.385	0.185	5.09672	0.205159729	0.042090515
3	0.426	0.195	4.82392	-0.067647363	0.004576166
4	0.47	0.201	4.52917	-0.362390093	0.131326579
5	0.495	0.205	4.45142	-0.440147706	0.193730003
		$\overline{v_0}$	4.89156	Σ	0.813982088

Kesalahan Mutlak

$$S_{V_0} = \sqrt{\frac{\sum (V_0 - \overline{V_0})^2}{n(n-1)}}$$
$$= \sqrt{\frac{0.813982088}{5(5-1)}}$$
$$= 0.20174$$

Kesalahan Relatif

$$KR = \frac{s_{V_0}}{\overline{V_o}} \times 100\%$$

$$= \frac{0,20174}{4.89156} \times 100\%$$

$$= 4,124248 \%$$

Keseksamaan

Angka Berarti

AB = 1 -
$$\log \frac{s_{V_0}}{\overline{V_0}}$$

= I - $\log \frac{0.20174}{4.89156}$
= 2,384655 \approx 2

Harga sebenarnya

$$(\overline{V_0} \pm S_{V_0})$$

$$(4.9 \pm 0.2) \text{ m/s}$$

Gigi 3

Contoh perhitunan percobaan 1

$$V_0 = \sqrt{\frac{-x^2 g}{2\cos^2 \propto (y - x \tan \alpha)}}$$

$$-(1.295)^2 \cdot 9.8$$

$$V_0 = \sqrt{\frac{-(1.295)^2.9.8}{2\cos^2 30^0 \ (0.354 - 1.295 \tan 30^0)}}$$

$$V_0 = 5.27576 \, m/s$$

No	x(m)	y(m)	Vo	Vo - Vo rat	(Vo - Vo rat)^2
1	1.295	0.354	5.27576	-0.3952843	0.156249664
2	1.152	0.366	5.38418	-0.2868652	0.082291644
3	0.943	0.361	5.62786	-0.0431767	0.001864232
4	0.842	0.353	5.8987	0.22766063	0.05182936
5	0.724	0.328	6.16871	0.49766561	0.247671056
		$\overline{v_0}$	5.67104	Σ	0.539905955

Kesalahan Mutlak

$$S_{V_0} = \sqrt{\frac{\sum (V_0 - \overline{V_0})^2}{n(n-1)}}$$
$$= \sqrt{\frac{0.539905955}{5(5-1)}}$$
$$= 0.164302$$

Kesalahan Relatif

$$KR = \frac{s_{V_0}}{V_o} \times 100\%$$

$$= \frac{0,164302}{5.67104} \times 100\%$$

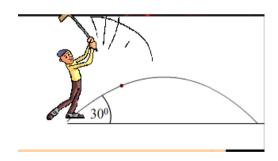
$$= 2,8932 \%$$

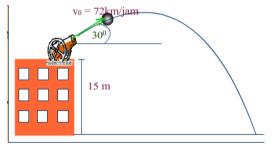
Keseksamaan

Angka Berarti

$$AB = 1 - log \frac{s_{V_0}}{\overline{V_0}}$$

$$= I - log \frac{0.164302}{5.67104}$$

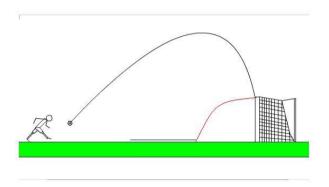

$$= 2.538019 \approx 2$$

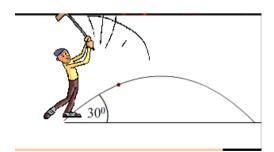

Harga sebenarnya

$$(\overline{V_0} \pm S_{V_0})$$

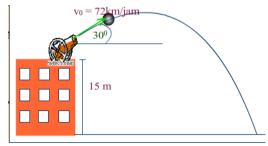
(5,7 ± 0,2) m/s

BUKU SISWA




UNTUK SISWA KELAS XI

Gerakan bola saat ditendang oleh para pemain bola atau penjaga gawang. Bagaimana lintasan bola ketika ditendang para pemain untuk di oper kepada temannya atau untuk ditendang ke gawang? Tam pak bola tidak bergerak lurus, namun melengkung seperti tampak pada gambar 1.



Gambar 1

Mengapa lintasan bola berbentuk melengkung? Ternyata lintasan gerak yang melengkung terjadi akibat adanya pengaruh gerak lurus berubah beraturan pada sumbu vertikal dan gerak lurus beraturan pada sumbu horisontal. Gerakan tersebut disebut Gerak Parabola. Dengan demikian gerak parabola adalah gerak yang lintasannya berbentuk parabola atau melengkung. Contoh gerak parabola selain lintasan bola yang ditendang dalam permainan sepak bola, juga gerak peluru yang ditembakkan ke atas dengan sudut tertentu terhadap arah mendatar, shoot yang dilakukan oleh pemain basket dalam permaianan basket, pada saat bermain voli dan masih banyak lagi.

Gambar 2. Orang bermain Golf

Gambar 3. Peluru yang ditembakkan meriam

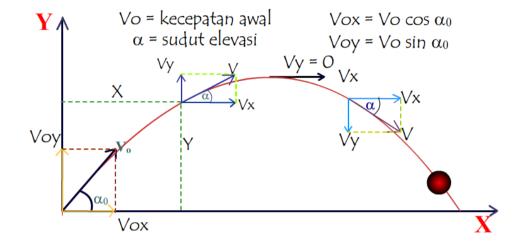
Gerak parabola pada dasarnya merupakan perpaduan antara gerak horizontal (pada sumbu x) dan gerak vertikal (pada sumbu y). Pada horizontal bersifat GLB (Gerak Lurus Berubah Beraturan) kerena gesekan udara diabaikan sedangkan pada vertikal bersifat GLBB (Gerak Lurus Berubah Beraturan) karena pengaruh percepatan gravitasi bumi (g).

Persamaan Posisi dan Kecepatan pada Gerak Parabola

Gerak parabola dapat dialisis dengan meninjau gerak lurus beraturan pada sumbu X dan gerak lurus berubah beraturan pada sumbu Y

Pada sumbu X berlaku persamaan gerak lurus beraturan

$$v = v_0$$
 tetap dan $x = v_0$ t


Jika pada sumbu X, kecepatan awal adalah v_{0x} , kecepatan pada saat t adalah v_x , dan posisi adalah x, maka persamaannya menjadi :

$$v_x = v_{0x}$$

$$x=v_{0x}\;t$$

Pada sumbu Y berlaku persamaan umum gerak lurus berubah beraturan, yaitu :

$$v = v_0 + at \ dan \ x = v_0 \ t + \frac{1}{2} \ at^2$$

Gambar 4. Lintasan Gerak Parabola

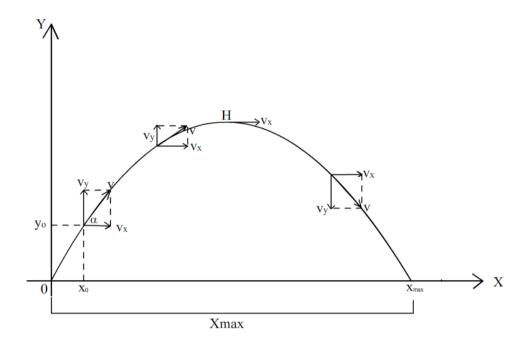
Jika pada sumbu Y kecepatan awal adalah v_{0y} , kecepatan pada saat t adalah v_y , percepatan a=-g (berarah ke bawah), dan posisi adalah y, maka persamaannya menjadi :

$$v_y = v_{0y} - gt$$

$$y = v_{oy} t - \frac{1}{2} gt^2$$

Kita juga dapat menyatakan kecepatan awal v_{0x} dan v_{oy} dengan besarnya v_0 (kelajuan awal) dan sudut α_0 terhadap sumbu X positif. Dalam besaran-besaran ini, komponen kecepatan awal v_{0x} dan v_{oy} dapat diperoleh dari perbandingan trigonometri $\cos \alpha_0$ dan $\sin \alpha_0$.

$$\cos \alpha_0 = \frac{v_{0x}}{v_0} atau v_{0x} = v_0 \cos \alpha_0$$


$$\sin \alpha_0 = \frac{v_{0y}}{v_0} atau v_{0y} = v_0 \sin \alpha_0$$

Komponen kecepatan v pada sumbu X adalah vx dan pada sumbu Y adalah vy, sehingga berlaku :

Besar kecepatan
$$v = \sqrt{v_x^2 + v_y^2}$$

Arah kecepatan
$$\tan \alpha = \frac{v_y}{v_x}$$

Tinggi Maksimum dan Jarak Terjauh

Gambar 4. Tinggi maksimum dan Jarak terjauh

 $Syarat\ suatu\ benda\ mencapai\ titik\ tertinggi\ adalah\ v_y=0,\ maka\ kecepatan$ pada titik tertinggi :

$$v_H = v_x$$

Untuk mencari tinggi maksimum, maka:

$$v_y = 0$$

$$v_{0y} - gt_{0H} = 0$$

$$t_{0H} = \frac{v_{0y}}{g} = \frac{v_0 \sin \alpha_0}{g}$$

Dengan t_{0H} adalah waktu untuk mencapai ketinggian maksismum.

Untuk mencari koordinat titik tertinggi pada sumbu x adalah :

$$x = v.t$$

$$x_H = v.t_{0H}$$

$$x_H = (v_0 \cos \alpha_0) \left(\frac{v_0 \sin \alpha_0}{g}\right)$$

Sehingga:

$$x_H = \frac{v_0^2}{2g} \sin 2\alpha_0$$

Untuk mencari koordinat titik tertinggi pada sumbu x adalah :

$$y = v_{0y} t - \frac{1}{2} gt^{2}$$

$$y_{H} = v_{0y}t_{0H} - \frac{1}{2} gt_{0H}^{2}$$

$$y_{H} = (v_{0} \sin \alpha_{0}) \left(\frac{v_{0} \sin \alpha_{0}}{g}\right) - \frac{1}{2} g \left(\frac{v_{0} \sin \alpha_{0}}{g}\right)^{2}$$

$$y_{H} = \frac{2 v_{0}^{2} \sin^{2} \alpha_{0}}{2g} - \frac{v_{0}^{2} \sin^{2} \alpha_{0}}{2g}$$

Sehingga

$$y_H = \frac{v_0^2}{2g} \sin^2 \alpha_0$$

Waktu untuk mencapai jarak terjauh:

$$t_{max} = \frac{2 v_0 \sin \alpha_0}{g}$$

Jarak terjauh:

$$X_{max} = \frac{v_0^2}{g} \sin 2\alpha_0$$

KETERANGAN

 v_o = kecepatan awal (m/s)

 v_{0y} = kecepatan pada sumbu y (m/s)

 v_{0x} = kecepatan pada sumbu x (m/s)

α = sudut elevasi

t = waktu(s)

 t_{max} = waktu untuk mencapai titik terjauh (s)

x = posisi pada arah horisontal (m)

y = posisi pada arah vertikal (m)

 y_H = titik tertinggi pada sumbu y (m)

 x_H = titik tertinggi pada sumbu x (m)

 x_{max} = jarak terjauh pada sumbu x (m)

CONTOH SOAL

1. Sebuah benda dilemparkan dengan arah mendatar dari puncak sebuah menara yang tingginya 45 m, dengan kecepatan 10 m/s. Jarak tempuh benda tersebut dalam arah mendatar dihitung dari kaki menara adalah.....dengan $g=10 \text{ m/s}^2$.

Diketahui:

$$y = 45 \text{ m}$$

$$v_0 = 10 \text{ m/s}$$

$$g = 10 \text{ m/s}^2$$

Ditanya: x.....?

Jawab:

Karena benda dilempar mendatar maka $\alpha = 0^{0}$, sehingga $v_{0y} = 0$

$$y = v_{oy} t - \frac{1}{2} gt^2$$

$$-45 = 0 - \frac{1}{2} \cdot 10 t^2$$
 (y bernilai (-) karena berada dibawah titik acuan)

$$t^2 = 9$$

$$t = 3 s$$

Untuk mencari x:

$$x = v.t$$

$$x = 10 . 3 = 30 m$$

Jadi jarak tempuh benda tersebut dalam arah mendatar adalah 30 m dihitung dari kaki menara.

2. Sebuah peluru ditembakkan dengan kecepatan 60 m/s dan dengan sudut elevasi 30⁰. Ketinggian maksimum yang dicapai adalah.....

Diketahui:

$$v_0 = 60 \text{ m/s}$$

$$\alpha = 30^{\circ}$$

Ditanya: y_H?

Jawab:

Untuk mencari ketinggian maksimum (y_H), kita dapat menggunakan rumus: $y_H=\frac{v_0^2}{2g} \sin^2 \alpha_0$

Sehingga:

$$y_{H} = \frac{v_{0}^{2}}{2g} \sin^{2} \alpha_{0}$$

$$y_{H} = \frac{60^{2}}{2.10} \sin^{2} 30^{0}$$

$$y_{H} = \frac{3600}{20} \frac{1}{4}$$

$$y_{H} = 45 m$$

Jadi ketinggian maksimum yang ditempuh peluru adalah 45 m.

Latihan Soal

- 1. Peluru ditembakkan condong ke atas dengan kecepatan awal $v=1,4 \times 10^3$ m/s dan mengenai sasaran yang jarak mendatarnya sejauh 2 x 10^5 m. Bila percepatan gravitasi 9,8 m/s 2 , maka elevasinya adalah n derajat, dengan n derajat adalah......
- 2. Sebuah bola dilemparkan dengan sudut elevasi 45°. Bola itu bersarang di talang rumah sejauh 5 m. Kalau tinggi talang itu 4 m, berapa besar kecepatan awal bola?
- 3. Peluru A dan B ditembakkan dari senapan yang sama dengan sudut elevasi yang berbeda, peluru A dengan sudut 30° dan peluru B dengan sudut 60°. Perbandingan antara tinggi maksimum yang dicapai peluru A dengan peluru B adalah.....