

Turnitin Originality Report

Hydrothermal synthesize of HF-free MIL-100(Fe) for isoniazid-drug by Meta Simon

From Cek turnitin 1 (Pengecekan jurnal)

Processed on 07-Feb-2020 15:24 WIB

ID: 1253083866 Word Count: 6086

	Similarity by Source
Similarity Index	1

21%

Internet Sources: Publications: Student Papers:

12% 19% N/A

sources:

3% match (publications) 1

X. Li, L. Lachmanski, S. Safi, S. Sene, C. Serre, J. M. Grenèche, J. Zhang, R. Gref. "New insights into the degradation mechanism of metal-organic frameworks drug carriers", Scientific Reports, 2017

2% match (publications) 2

Felipe Faix Barby, Luiz Antônio Carlos Bertollo, Ezequiel Aguiar de Oliveira, Cassia Fernanda Yano et al. "Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH)", Scientific Reports, 2019

- 1% match (Internet from 13-Aug-2019) 3 https://epub.uni-regensburg.de/40645/1/s41598-019-41144-x.pdf
- 1% match (publications) 4 Tresia Pangestu, Yosafat Kurniawan, Felycia Edi Soetaredjo, Shella Permatasari Santoso et al. 'The synthesis of biodiesel using copper based metal-organic framework as a catalyst", Journal of Environmental Chemical Engineering, 2019
- 1% match (publications) 5 Siyu Liu, Yongna Zhao, Ting Wang, Ning Liang, Xiaohong Hou. " Core-Shell Fe O @MIL-100(Fe) Magnetic Nanoparticle for Effective Removal of Meloxicam and Naproxen in Aqueous Solution ", Journal of Chemical & Engineering Data, 2019
- 1% match (publications) 6 Soetardji, Jennifer Pieter, Jeannete Cindy Claudia, Yi-Hsu Ju, Joseph A. Hriljac, Tzu-Yu Chen, Felycia Edi Soetaredjo, Shella Permatasari Santoso, Alfin Kurniawan, and Suryadi Ismadji. "Ammonia removal from water using sodium hydroxide modified zeolite mordenite", RSC Advances, 2015.
- 1% match (publications) 7 Ying Fang, Jia Wen, Guangming Zeng, Feiyue Jia, Siyu Zhang, Zhilong Peng, Haibo Zhang. "Effect of mineralizing agents on the adsorption performance of metal-organic framework MIL-100(Fe) towards chromium(VI)", Chemical Engineering Journal, 2018

- Shu-Hui Huo, Xiu-Ping Yan. "Metal-organic framework MIL-100(Fe) for the adsorption of 8 malachite green from aqueous solution", Journal of Materials Chemistry, 2012
- 1% match (publications) 9 Xu-Sheng Wang, Lan Li, Jun Liang, Yuan-Biao Huang, Rong Cao. "Boosting Oxidative Desulfurization of Model and Real Gasoline over Phosphotungstic Acid Encapsulated in Metal-Organic Frameworks: The Window Size Matters", ChemCatChem, 2017
- 1% match (publications) 10

< 1% match (publications)

< 1% match (publications)

Fumin Zhang, Jing Shi, Yan Jin, Yanghe Fu, Yijun Zhong, Weidong Zhu. "Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols", Chemical Engineering Journal, 2015

- 1% match (publications) 11 Ismadji, Suryadi, Dong Shen Tong, Felycia Edi Soetaredjo, Aning Ayucitra, Wei Hua Yu, and
- Chun Hui Zhou. "Bentonite hydrochar composite for removal of ammonium from Koi fish tank", Applied Clay Science, 2016.
- 12 Weronika Strzempek, Elżbieta Menaszek, Barbara Gil. "Fe-MIL-100 as drug delivery system for asthma and chronic obstructive pulmonary disease treatment and diagnosis", Microporous and Mesoporous Materials, 2019
- 13 Peng Wang, Huimin Zhao, Hong Sun, Hongtao Yu, Shuo chen, Xie Quan. "Porous metalorganic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NO with NH ", RSC Adv., 2014
- < 1% match (publications) 14 Juntao Tang, Jianlong Wang, "Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine", Environmental Science & Technology, 2018
- < 1% match (Internet from 24-Jan-2020) 15 https://www.mdpi.com/1996-1073/10/1/28/html

< 1% match (publications)

- 16 Jia, Yaoyao, Qing Jin, Yan Li, Yuxiu Sun, Jianzhong Huo, and Xiaojun Zhao. "Investigation of the adsorption behaviour of different types of dyes on MIL-100(Fe) and their removal from natural water", Analytical Methods, 2014.
- < 1% match (publications) 17 Wu, R.. "Magnetic powder MnO-Fe"20"3 composite-a novel material for the removal of azodye from water", Water Research, 200502
- < 1% match (Internet from 17-Feb-2017) 18

http://eprints.kfupm.edu.sa/140142/1/dissertation write%2Dup.pdf

19

< 1% match (Internet from 31-Jul-2019)

https://epdf.pub/materials-for-sustainable-energy-a-collection-of-peer-reviewed-researchpapers-a.html

< 1% match (publications) 20

Zahra Mohammadifard, Rahmatallah Saboori, Naghmeh Sadat Mirbagheri, Samad Sabbaghi. "Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation", Environmental Pollution, 2019

21

< 1% match (publications)

Fu, Yan-Yan, Cheng-Xiong Yang, and Xiu-Ping Yan. "Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography", Journal of Chromatography A, 2013.

< 1% match (publications) 22

Jindrayani Nyoo Putro, Suryadi Ismadji, Chintya Gunarto, Maria Yuliana et al. "The effect of surfactants modification on nanocrystalline cellulose for paclitaxel loading and release study", Journal of Molecular Liquids, 2019

< 1% match (publications) 23

Fumin Zhang, Yan Jin, Jing Shi, Yijun Zhong, Weidong Zhu, M. Samy El-Shall. "Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions", Chemical Engineering Journal, 2015

24

< 1% match (publications)

Juntao Tang, Jianlong Wang. "Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange", RSC Advances, 2017

< 1% match (publications) 25

Muder Al Haydar, Hussein Rasool Abid, Bruce Sunderland, Shaobin Wang, "Multimetal organic frameworks as drug carriers: aceclofenac as a drug candidate", Drug Design, Development and Therapy, 2018

< 1% match (publications) 26

Fei-Fei Chen, Ying-Jie Zhu, Zhi-Chao Xiong, Tuan-Wei Sun. "Hydroxyapatite Nanowires@Metal-Organic Framework Core/Shell Nanofibers: Templated Synthesis, Peroxidase-Like Activity, and Derived Flexible Recyclable Test Paper", Chemistry - A European Journal, 2017

27

< 1% match (publications)

WeiFeng Liu, HuiJun Xie, Jian Zhang, ChengLu Zhang, "Sorption removal of cephalexin by HNO3 and H2O2 oxidized activated carbons", Science China Chemistry, 2012

28

< 1% match (Internet from 09-Jan-2020)

https://link.springer.com/article/10.1007%2Fs11356-018-2617-7

29

< 1% match (publications)

Kim, Pil-Joong, Young-Woo You, Hosik Park, Jong-San Chang, Youn-Sang Bae, Chang-Ha Lee, and Jeong-Kwon Suh. "Separation of SF6 from SF6/N2 mixture using metal-organic framework MIL-100(Fe) granule", Chemical Engineering Journal, 2015.

30

< 1% match (publications)

Qin, Weiwei, Martin Eduardo Silvestre, Yongli Li, and Matthias Franzreb. "High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): Mechanism analysis and model-based prediction", Journal of Chromatography A, 2016.

31

< 1% match (publications)

Garima Chaturvedi, Amandeep Kaur, Ahmad Umar, M. Ajmal Khan, H. Algarni, Sushil Kumar Kansal. "Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron based MOFs, MIL-100(Fe)", Journal of Solid State Chemistry, 2020

paper text:

OPEN Hydrothermal Synthesize of HF- Free MIL-100(Fe) for Isoniazid-Drug Delivery Meta A. Simon1,4, Erlina Anggraeni1,4, Felycia Edi Soetaredjo1,2*, Shella Permasari Santoso1,2, Wenny Irawaty1, Truong Chi Thanh3, Sandy Budi Hartono1, Maria Yuliana1 & Suryadi Ismadji1,2* Sustainable development of drug delivery materials with good biocompatibility and controlled-release is a popular topic among researchers. In this research study, we demonstrated the potential of the

21metal-organic framework, that is MIL-100(Fe), as a drug delivery platform for

isoniazid (INH). The MIL-100(Fe) was prepared by using the hydrofluoric acid-free hydrothermal method. Several physical measurements

29were conducted to characterize the MIL-100(Fe),

including x-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen sorption, and thermalgravimetric (TG). The synthesized MIL-100(Fe) has octahedron-shaped particles with superior properties, that is large surface area (1456.10 m²/g) and pore volume (1.25 cm³/g). The drug loading rate and capacity were determined by means of adsorption kinetic and isotherm. The studied INH@MIL-100(Fe) adsorption system kinetics follow the

5pseudo-first-order model, while the isotherm system follows the

5Langmuir model with the maximum adsorption capacity of 128.5 mg/g at 30 °C.

MIL-100(Fe) shows adequate biocompatibility, also exhibits a reasonable and controlled drug release kinetics. The results obtained show that MIL-100 (Fe) can be a good choice of drug delivery platform among other available platforms. Isoniazid (or isonicotinylhydrazide, abbreviated as INH) is a heterocyclic drug that contains N, which is known for its anti-mycobacterial properties for the treatment of Tuberculosis (TB). INH has been listed by the World Health Organization as an efficacious TB drug and is the first-line barrier to TB. It is known that the mechanism of INH in the treatment TB involves many macromolecular and biosynthesis pathways, especially the synthesis of mycolic acid. The practice of using INH for medicinal purposes began 60 years ago1-3. Despite its efficacy, many experts point out that TB treatment by using INH requires guite long time (i.e., between 6-9 months and in some cases can reach several years). Long-period treatment accompanied by consumption can cause hepatotoxicity and peripheral neuritis, as well as the emergence of drug-resistant species4-6. The long duration of TB treatment is due to the poor solubility and bioavailability of the INH7,8; the controlled drug delivery is one of the strategies to overcome these drawbacks. A controlled and sustained drug delivery system can help to reduce the side effects and increase the efficiency of the treatments. Moreover, it can prevent the emergence of drug-resistance species due to fluctuations in drug content will cause bacteria to lack time to adapt9. Several sophisticated biomaterials have been developed to improve the efficiency of drug delivery systems; such as biopolymer, silica, and lipid-based materials. Despite the rapid development of biomaterials for drug delivery systems, the low drugs loading due to the materials small pore volume is still an unsatisfactory aspect 10. Recently, to overcome this drawback, a large pore volume mate- rial, namely metal-organic framework (MOF) have been utilized as drug delivery material11,12. MIL-100(Fe) is a MOF which composed of trimesic acid organic linker and Fe-O metal clusters. MIL-100(Fe) can be synthesized using organic solvent and strongly acidic solution such as HF13,14. However, HF is a chemically toxicant, and organic solvent such as DMF or DEF can cause environmental damage in large quantities 10,15-18. Jeremias and co-workers revealed that the less toxic HNO3 could be used to replace HF

7in the synthesis of MIL-100(Fe). The synthesized MIL-100(Fe)

has a porous structure with a large surface area (~2000 m2·g-1 BET) and pore volume 1Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia. 2Chemical Engineering Department,

15National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd, Da'an District, Taipei, 10607, Taiwan. 3Department of Chemical Engineering,

3-2 Street, Can Tho University, Can Tho City, Vietnam. 4These authors contributed equally: Meta A. Simon and Erlina Anggraeni. *email:

6felyciae@yahoo.com; suryadiismadji@yahoo.com

Figure 1. Schematic diagram of the overall study, including preparation of MIL-100(Fe), drug loading and release. (~0.9 cm3·g-1)11,12,15. Due to these advantageous

29properties of MIL-100(Fe), it has been proposed as a

potential drug delivery system12. Another advantage of loading drugs into highly porous materials is the prevention of drug agglomeration during dissolution19.

5In the present study, we investigated the potential application of MIL-100(Fe)

to promote the loading and release of INH. Several models for drug loading and release have been implemented and studied. Materials and Methods Materials. The chemicals used in this study are: trimesic acid (H3BTC; CAS 554-95-0), ferric chloride hex- ahydrate (Fe(Cl)3.6H2O; CAS 7708-05-0), nitric acid 65% (HNO3; CAS 7697-37-2), isoniazid (INH, C6H7N3O; CAS 54-85-3), and ethanol (C2H5OH; CAS 64-17-5). Trimesic acid, ferric chloride hexahydrate, and nitric acid were obtained from Merck, Germany. INH, as a drug model, was obtained from Sigma Aldrich, India. Ethanol was purchased as an analytical grade from PT. Indofa Utama Multi-Core, Surabaya, Indonesia. All chemicals were directly

9used as received without further purification. Preparation of MIL-100(Fe).

Figure 1 shows the

schematic diagram of the overall study, specifically the preparation of MIL-100(Fe), drug loading, and release study. MIL-100(Fe) was synthesized hydrothermally according to reported procedure, the molar ratio Fe:BTC:HNO3:H2O of 1: 0.67:0.6:166 was used for the syn- thesis. Briefly, all materials were combined in a 100 mL beaker glass. Then, the

13mixture was loaded into a Teflon autoclave and heated at 150 °C for 12 h. The resulting MIL-100(Fe) solid was

collected and washed for several times using distilled water. Subsequently, the MIL-100(Fe) solid was purified by soaking in

16water at 80 °C for 1 h, followed by ethanol at 60 °C for 3 h. The purified MIL-100(Fe) was

dried in a 60 °C oven and heat-activated using a vacuum oven for 2 h at 120 °C.

30Characterization of MIL-100(Fe). The as-synthesized MIL-100(Fe) was characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM),

Nitrogen (N2) Sorption, and Thermo-Gravimetric Analysis (TGA). The XRD analysis was carried out in a PW $3064/60 \times PERT$ -PRO with CuK α ($\lambda = 1.5406 \text{ Å}$) as the radiation source. The analysis was conducted at 30 mA and 40 kV. The scan range used was 3–20° (2θ) with the step size of 0.02°. SEM imaging was performed using FESEM-JEOL JSM-6500F to obtained crystal morphology. N2 sorption measurement was conducted in a Quantachorome at

4-195.6 °C. The surface area of the sample was calculated using the multiplepoint Brunauer-Emmett-Teller (BET) equation at p/p0 range of 0.05-0.3 and total pore volume was determined at the saturated point at p/p0 = 0.997.

Prior for N2 sorption measurement,

13MIL- 100(Fe) was outgassed at 200 °C for

6 hours. The

20thermal stability of MIL-100(Fe) was analyzed using

Perkin Elmer thermogravimetric analysis (TGA) 8000 in the N2 atmosphere (20 mL/min) with heating rate 10 °C/min from 29.5 °C to 800 °C. Adsorption isotherm and kinetics. The adsorption kinetics was used to determine the required time for INH loading onto MIL-100(Fe). Briefly, an aliquot of isoniazid (100 mg/L and 120 mg/L) was placed into a series of Erlenmeyer flasks. Subsequently, 0.05 g

26MIL-100(Fe) solid was introduced into the Erlenmeyer flasks. The

flasks were closed and put into a shaker water bath. The adsorption kinetic study was conducted at 30 °C.

6At a specific interval of time, one of the Erlenmeyer flasks was taken to measure the

amount of INH loaded. The adsorption isotherm

11was conducted according to the following procedure: A known amount of MIL- 100(Fe) was

11added into a series of Erlenmeyer flasks containing 25 mL of isoniazid solution. The Erlenmeyer flasks were transferred to a shaker water bath at

200 rpm. The adsorption was done until the equilibrium time was reached (in this case is 5 h, as determined from the

8kinetic study). The adsorption study was carried out at

30 °C. After the equilibrium condition was achieved, the

6solid adsorbent was removed from the solution using centrifugation. The concentration of the remaining INH in the solution was measured using spectrophotometric measurement at 262 nm wavelength.

Drug loading and release. A certain amount of INH is dissolved in water, where the concentration of INH used is higher than the maximum loading capacity of MIL-100(Fe) based on adsorption study. Then, 0.05 g

26MIL- 100(Fe) was introduced into the INH solution

in a closed-dark bottle. The loading was done by 200 rpm orbital shaker for 5 h under a constant temperature of 30 °C. The unloaded INH was separated by means of centrifuga- tion, and subsequently the concentration of unloaded INH was determined using spectrophotometer (OD262nm). In vitro release study was done to determine the release profile of INH from MIL-100(Fe). A phosphate buffer saline (PBS) pH 7.4 and 5.8 was used to mimic the blood plasma condition. 0.16 g of INH-loaded MOF, isonia- zid@MIL-100(Fe), is added into a 5 mL PBS solution in a dialysis membrane. The INH release was carried out in 80 mL PBS at 37 °C under a slow-constant stirring. At a 1 h time interval, 2 mL of solution was taken to measure the released-INH isoniazid by means of UV spectrophotometric; at the same time, 2

22mL of fresh PBS solution was added into the system. The

cumulative %release (R) of INH is calculated by using the following equation: R(%) = ConclNH-detected(mLg) × Volsystem(L) + \(\sum \) mass\(\ampling \) (mg) massmodified-MIL100(mg) × 100% (1) masssampling(mg) = ConclNH-detected \prod mLg \prod × Volsampling(L) (2) Result and Discussion Synthesis and characterization of MIL-100(Fe). The metal-organic framework (MOF) MIL-100 (Fe) is synthesized from the coordinated iron (Fe) trimers and trimesate ligands. The

10MIL-100(Fe) has a super tetra- hedron structure,

as depicted in Fig. 2. The coordination of diamond-like shapes MIL-100(Fe) particles produces small pore opening, in each cell unit20. Upon activation, the pore size can reach 29 Å and 24 Å for each large and small pore, respectively14,21.

14For comparison purposes, the synthesized MIL-100(Fe), from this study, was

charac- terized using XRD, SEM, N2 sorption, and TGA.

21The XRD crystallinity pattern of synthesized MIL-100(Fe) from this study and

from literature is shown in Fig. 3; it is observed that both XRD patterns are in a good agreement 18. The 20 peaks and the corresponding lattice of MIL-100(Fe), from this study, are observed at 3.4° (220), 4.0° (311), 4.8° (400), 5.3° (331), 5.9° (422), and 6.3° (333). Calculations by using Miller indexing and Bragg's law indicate that the synthesized

14MIL-100(Fe) has a cubic structure with

a lattice parameter of 73 Å; which is in accordance with a previous report21,22. The SEM micrographs were collected to confirm the morphology of

1MIL-100(Fe). As shown in Fig. 4, MIL-100(Fe)

has an octahedron shape which belongs to the cubic (isometric) crystal; this is in accordance with the structure suggested from XRD. Also, from the SEM images, some small irregular-shaped particles can be observed, which is probably the MIL-100(Fe) whose structure collapsed. Enormous surface and large pore volume are distinguishing properties of MOFs; these two properties are measured by using

7N2 adsorption-desorption isotherm for the synthesized MIL-100(Fe).

The N2-sorption iso- therm curve is shown in Fig. 5. As derived from the sorption data, the

23BET surface area and pore volume of MIL-100(Fe) are 1456.10 m2/g and 1. 25 cm3/g, respectively;

this result is quite similar to that of reported MIL-100(Fe) in Table 1. The N2-sorption curve of MIL-100(Fe) indicates a combination of

24type I and IV with a narrow hystere- sis loop in the relative pressure (P/Po) range of 0. 6 to 1.0.

The rapid intake of N2 gas at relatively low P/Po indicates that MIL-100(Fe) possesses both microporous and mesoporous cages23,24. The reported drug delivery materials (i.e., MSN8, MSN5, beta zeolites, and MCM-41) are shown in Table 1; it is well noted that the

7MIL-100(Fe) pos- sesses higher surface area and pore volume,

which is more favorable to facilitate drug loading. The

20thermal stability of MIL-100(Fe) was investigated by using thermogravimetric analysis; the

resulting TG curve is shown in Fig. 6. The MIL-100(Fe) exhibits 3 stages weight loss; that is at temperature range of 60-340 °C with 5% weight loss, at 340-400 °C with 34.20% weight loss, and at 400-680 °C with 38.90% weight loss. The first stage thermal degradation is corresponding to the removal of trapped water molecules followed by mild decom- position of O-containing functional groups. A minimal weight loss (almost plateau) at the first stage also indi- cates that the MIL-100(Fe) is stable up to this range of temperature. Substantial weight loss was observed above temperature of 340 °C; this is due to the structural collapse of the MIL-100(Fe) as the ligand was decomposed. The subsequent drastic mass reduction started at 400 °C. which is caused by the continuous decomposition of the framework accompanied by the reduction of the iron25,26. The third stage degradation ends up to 680 °C, which also indicates that MIL-100(Fe) is completely decomposed. Adsorption kinetic. The adsorption rate of INH, with MIL-100(Fe) as host adsorbate, was studied kineti- cally to find the equilibrium adsorption time. The adsorption

27kinetics was represented by the pseudo-first-order (Eq. 3) and the pseudosecond-order equations (Eq. 4),

which has the mathematical forms as following27: Figure 2. Illustrated

31crystal structure of MIL-100(Fe). 220 311 Cubic

or isometric crystal Intensity 333 400 422 331

31MIL-100(Fe), this work MIL-100(Fe),

Ref. [18] 4 6 8 10 12 14 16 18 20 2theta Figure 3. X-ray diffraction pattern

5of MIL-100(Fe). Figure 4. SEM image of the synthesized MIL-100(Fe).

1000 800 Volume (cm3/g) 600 400 200 0 0.0 0.2 0.4 0.6 0.8 1.0 P/Po Figure 5. Nitrogen adsorptiondesorption isotherm of

9MIL-100(Fe). Material MSN8 BET surface area (m2/g) 715 Pore volume (cm3/g) 1.

697 Ref. 37 MSN5 650 1.229 37 Beta zeolites 513 0.23 38 MCM-41 1506 Not available 39 MIL-100(Fe) 1190-1520 0.69-0.93 40 MIL-100(Fe) 1835 1.23 41 MIL-100(Fe) 1456.10 1.25 This study Table 1. Comparison of

10BET surface area and pore volume of MIL-100(Fe)

with other porous materials. MSN8 = mesoporous silica nanoparticles with pore size 8.2 nm; MSN5 = mesoporous silica nanoparticles with pore size 5.4 nm; Beta zeolites = Al2O3:2 SiO2:TEA2O:30 H2O; MCM-41 = mobil composition of matter no. 41, a mesoporous silica material, qt = qe(1 - e - k1t) qt = (1 - e - k1t) qt+qe2kq2etk2t) (3) (4)

17where, ge and gt (mg/g) are the amount of INH adsorbed on MIL-100(Fe) at equilibrium and at time t (hours), respectively. The k1 and k2

are the pseudo-first-order and pseudo-second-order adsorption constant, respectively. Often, k1 and k2 called as time constant. The adsorption kinetic curve built from the experimental data was presented in Fig. 7, while the calculated parameters are summarized in Table 2. The experimental data show that the adsorption equilibrium time was reached after 5 h. The pseudo-first-order and pseudo-second-order model equation were used for data fitting. The curve fitting shows that the pseudo-first-order model can correlate the calculated and experimen- tal data better than that of pseudo-second-order. Moreover, the qt value found from pseudo-first-order fit- ting was closer to that of experimental results. The sum square error (SSE) of the data was also calculated; it 110 100 d d d5% 90 %weight 34.2% 60 d d 38.9% d 80 70 50 40 30 0 100 200 300 400 500 600 700 800 Temperature, oC Figure 6. The thermogravimetric curve of MIL-100(Fe). 120 100 80 gt (mg/g) 60 40 INH 100 ppm 20 INH 120 ppm Pseudo 1st order Pseudo 2nd order 0 0 1 2 3 4 5 6 time (hours) Figure 7. Adsorption kinetics curves of INH@MIL-100(Fe) system. Model Parameters k1, g/mg h Initial concentration, mg/L 100 1.040 \pm 0.095 120 0.719 \pm 0.044 Pseudo 1st order qe, mg/g 92.681 \pm 2.678 110.271 ± 2.257 R2 0.994 0.998 k2, g/mg·h 0.010 ± 0.249 0.005 ± 0.091 Pseudo 2nd order qe, mg/g 110.631 ± 20.688 138.898 ± 8.864 R2 0.970 0.994 Table 2. Adsorption kinetics of INH@MIL-100(Fe). is obtained that the SSE of pseudo-first-order and pseudo-second-order successively is 4.089 and 6.188. The values of R2 for pseudo-first-order are 0.994 for 100 mg/L and 0.998 for 120 mg/L, which is higher than R2 from pseudo-second-order (0.970 for 100 mg/L and 0.994 for 120 mg/L). The error analysis also indicates that the pseudo-first-order model

6could represent the experimental data better than the pseudo- second -order

equation. onto MIL-100(Fe)28. The adsorption rate decreases as the INH concentration is increased, this may be due to the The value of k1 > k2 suggests that intra-particle diffusion (IPD) is the rate-limiting in the adsorption of INH higher probability of collision (at high concentration) so that the IPD is inhibited. Adsorption isotherm. Adsorption isotherm study was conducted to determine the loading capacity MIL- 100 (Fe) against INH. The adsorption isotherm is represented by the Langmuir and Freundlich models, with mathematical models as following29: qe = (1q+mKKLCLCee) (5) 140 120 100 qe (mg/g) 80 60 40 20 0 Ce vs ge Langmuir Freundlich 0 50 100 150 200 250 Ce (mg/g) Figure 8. Adsorption isotherm curve of INH@MIL-100(Fe) system. Model Parameter KL, L/mg Value 0.056 ± 0.006 Langmuir qm, mg/g 128.518 ± 0.687 R2 0.996 KF, $(mg/g)(L/mg)1/n 40.776 \pm 5.061 Freundlich n 0.207 \pm 0.027 R2 0.989 Table 3.$

8Adsorption isotherm of INH @MIL-100(Fe).

qe = KFCen 1 (6) where, KL and qm are the Langmuir constant and maximum adsorption capacity (mg/g), respectively.

28KF ((mg/g) (L/mg)1/n) and n are the Freundlich constants. The adsorption isotherm curve of

INH

8@MIL-100 (Fe) system is shown in Fig.

8. A steep increase from qe was observed to Ce ± 50 mg/g; almost a plateau was observed later

7which indicated that the maximum adsorption capacity

almost reached. The fitting parameters of the Freundlich and Langmuir models are given in Table 3, from R2 value it was evident that Langmuir could represent the experimental data better than the Freundlich. The superiority of Langmuir over Freundlich equation due to the system has saturation capacity at high Ce. Based on the isotherm measurement, approximately 128 mg of INH can be loaded onto MIL-100(Fe). Drug kinetic release. The in vitro drug release is conducted to study the INH release. A PBS solution was used as the release medium to simulate the biological condition. Two different release pH of 5.8 and 7.4 were considered to mimic the intestine pH and blood pH, respectively30.

12The total INH content was determined by gently stirring the INH @MIL-100(Fe) in PBS for 24 h, then the concentration of INH released into the

PBS solution

9was determined by using UV spectroscopy method. The release profile data of

INH@MIL-100(Fe) are shown in Fig. 9. There is no burst effect occurred during the INH release in PBS solution at both pHs; this

12indicates that MIL- 100(Fe) can be a potential biocompatible drug

release platform. The kinetic release was represented as the % cumulative release (R). Then, R was fitted to zero-order (Eq. 7)31, first-order (Eq. 8)23, and Higuchi (Eq. 9)31 model: R = q0 + k0t (7) R = Re(1 - e - kt)(8) R = kHt0.5 (9) where, k0, k, and kH are the kinetic constant of zero-order (mg/g·h), first-order (1/h), and Higuchi (%/h0.5) model, respectively. The parameter Re, q0, and t represent the % release of INH at equilibrium time, initial amount of INH in PBS (mg/g), and release time (h), respectively. Later on, a good fitting to the zero-order model indicates that the release system is a transdermal and osmotic system. A good fitting to the first-order model describes the release system of water-soluble drugs in a non-swelling porous matrix32. While a good fitting to Higuchi model indicates drug release from a planar heterogeneous matrix system by passing through the pore matrix33. 100 80 60 R (%) 40 t vs pH 5.8 t vs pH 7.4 20 Zero order First order Higuchi 0 0 5 10 15 20 25 time (hours) Figure 9. The drug release profile of INH

25@MIL-100(Fe) system, at pH 5 .8 and pH 7.4.

Figure 10. Cell viability assay of MIL-100(Fe) at different concentrations and certain incubation period. Model

22Parameters pH 5.8 pH 7.4 Higuchi kH,

%/h0.5 10.748 \pm 0.829 14.356 \pm 1.339 R2 0.978 0.970 k0, mg/g·h 1.834 \pm 0.188 2.472 \pm 0.271 Zero Order Re, mg/g 12.020 ± 2.415 15.969 ± 3.442 R2 0.8732 0.865 Re, % 53.037 ± 0.734 72.289 ± 1.345 First Order k, 1/h 0.120 ± 0.004 0.122 ± 0.005 R2 0.997 0.995 Table 4. Release kinetic of INH@MIL-100(Fe). The model fitting into the release profile data of INH

7@MIL-100(Fe) is shown in Fig. 9, and the

fitted param- eters are summarized in Table 4. The error analysis of SSE and R2 show

18that the release profile of INH @MIL- 100(Fe) is

better represented by the first-order model, which typical for a drug release system from porous matrices. This suggests that the release mechanism is a continuous-controlled release system with different release rates9. Moreover, from experimental data, the R-value for release system at pH 5.8 and pH 7.4 (after 24 h) is found to be 50.38% and 72.22%, respectively. Meanwhile, the Re (and k) value calculated from the firstorder model is found to be 53.037% (0.120/h) and 72.289% (0.122/h), for pH 5.8 and 7.4, respectively. Both experimental and calculated result shows a good agreement. The release of INH is better in alkaline pH because in this condition there are more negatively charged molecules (from water) that can bind to the metal cluster of MIL-100(Fe), this will cause interference for interactions between the INH molecules and MIL-100(Fe) active surface. Some release profile of MIL-100(Fe) and modified MIL-100(Fe) against several drugs are presented in Table 5. Based on the collected data, there is still no release data reported for INH@MIL-100(Fe) system. In comparison with other drug release study.

18it can be seen that the MIL-100(Fe) prepared in

this study can match almost all reported release data. Material MIL-100(Fe) Drug model TP Release medium Gamble's solution Cumulative release ~58% (48 h) Ref. 36 Fe3O4@MIL-100(Fe) DOX PBS pH 7.4 53.5 mg/g (25 days) 42 MIL-100(Fe) AAS IBU Deionized water 99% (AAS, 3 days) 84% (IBU, 3 days) 43 Polypyrrole@MIL-100(Fe) DOX PBS buffers 42.7% (pH 7.4, 24 h) 82.7% (pH 5.0, 24 h) 44 MIL-100(Fe) ACF Phosphate buffer pH 6.8 91% (30 h) 45

25Zn II-MIL-100(Fe) ACF Phosphate buffer pH 6.8

75% (72 h) 45 MIL-100(Fe) TC DOXc Simulated gastric fluid 96% (TC, 48 h) 81% (DOXc, 48 h) 46 MIL-100(Fe) INH PBS 50.38% (pH 5.8, 24 h) 72.22% (pH 7.4, 24 h) This study Table 5. Release profile comparison of MIL-100(Fe) and its modified form against different drug. TP = Theophylline, DOX = Doxorubicin hydrochloride, AAS = Aspirin, IBU = Ibuprofen, ACF = Aceclofenac, TC = Tetracycline, DOXc = Doxycycline, INH = Isoniazid. Biocompatibility assay. Safe drug delivery materials must have little or no toxic effect on normal cells. In this study, an MTT assay on mouse osteoblast cells 7F2 was used to test the biocompatibility of the drug delivery material, that is MIL-100(Fe). MIL-100(Fe) at particular concentration (25, 50, or 100 µg/mL) was introduced to the cell culture and incubated for periods of 12, 24, and 48 h (Fig. 10). The detail of the procedure can be seen elsewhere34. Relatively high cell viability (up to 83%, after 24 h incubation; and ~79%, after 36 h incubation) was maintained by using 25 µg/ mL of MIL-100(Fe) which shows biocompatibility of this material, at this concentration 35. It was observed that cell viability was decreased significantly at higher MIL-100(Fe) concentrations, also the prolonged incubation times lead-ing to cell toxicity. This indicates that MIL-100(Fe) should not be administered at concentrations of more than 25 µg/ mL due to its cytotoxic effect (Fig. 10). Cytotoxicity of MIL-100(Fe) may be caused by the presence of Fe metal which triggers the generation of reactive oxygen species that can cause cell damage36. In addition, the presence of metals (in metal-organic materials) increases the ability to penetrate into the cells thus induce more severe tissue damage. Conclusion The

10metal-organic framework, namely MIL-100(Fe), has been successfully synthesized

using the hydrothermal method. The as-synthesized

14MIL-100(Fe) has a cubic crystal structure with a large surface area and

pore volume which can facilitate drug loading. The characteristics

8of the synthesized MIL-100(Fe) is in good agreements with the reported characteristics. The adsorption study of INH onto MIL-100(Fe)

indicates that intra-particle diffusion was the rate-limiting in the system. The maximum uptake of INH@IL-100(Fe) is found to be 128.5 mg/g based on Langmuir model; which represents the approximate drug loading capacity

5of MIL-100(Fe). Based on the release profile, MIL-100(Fe) show a

good controlled-release of INH and there is no burst observed during the release. Furthermore, the MIL-100(Fe) itself show a good biocompatibility. All of these findings imply that MIL-100(Fe) is a promising drug delivery platform for INH. Received: 17 August 2019; Accepted: 24 September 2019; Published: xx xx xxxx References 1. Hu, Y. Q. et al. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 133, 255–267 (2017). 2. Mukherjee, J. S. et al. Programmes and principles in treatment of multidrug-resistant tuberculosis. Lancet 363, 474–481 (2004). 3. Unissa, A. N., Subbian, A., Hanna, L. E. & Selvakumar, N. Overview on mechanisms of izoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol. 45, 474–492 (2016). 4. Azuma, J. et al. AT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: A randomized controlled trial for pharmacogenetics-based therapy. Eur. J. Clin. Pharmacol. 69, 1091-1101 (2013). 5. Mafukidze, A. T., Calnan, M. & Furin, J. Peripheral neuropathy in persons with tuberculosis. J. Clin. Tuberc. Other Mycobact. Dis. 2, 5–11 (2016). 6. Wang, P., Pradhan, K. & Ma, X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B. 6, 384–392 (2016). 7. Gegia, M., Winters, N., Benedetti, A., Soolingen, Dv & Menzies, D. Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis. Lancet Infect. Dis. 17, 223-234 (2017). 8. Vilchèze, C. & Jacobs, W. R. The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. J. Mol. Biol. 431, 3450-3461 (2019). 9. Natarajan, J. V., Nugraha, C., Ng, X. W. & Venkatraman, S. ustained-release from nanocarriers: a review. J. Control. Release. 193, 122-138 (2014). 10. Horcajada, P. et al. Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery. J. Am. Chem. Soc. 130, 6774-6780 (2008). 11. Liang, R., Chen, R., Jing, F., Qin, N. & Wu, L. Multifunctional polyoxometalates encapsulated in MIL-100(Fe): Highly efficient photocatalysts for selective transformation under visible light. Dalton Trans. 44, 18227–18236 (2015). 12. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to Metal-Organic Frameworks. Chem. Rev. 112, 673–674 (2012). 13. Huo, S. H. & Yan, X. P. Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22, 7449–7455 (2012). 14. Zhong, G., Liu, D. & Zhang, J. Applications of Porous Metal–Organic Framework MIL-100(M) (M = Cr, Fe, Sc, Al, V). Cryst. Growth Des. 18, 7730–7744 (2018). 15. Jeremias, F., Henninger, S. K. & Janiak, C. Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway.

Dalton Trans. 45, 8637–8644 (2016). 16. Mei, L. et al. A novel DOBDC-functionalized MIL-100(Fe) and its enhanced CO 2 capacity and selectivity. Chem. Eng. J. 321, 600-607 (2017), 17. Seo, Y. K. et al. Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology, Micropor, Mesopor, Mater. 157, 137-145 (2012). 18. Zhang, F. et al. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem. Eng. J. 259, 183-190 (2015). 19. Rezaei, M., Abbasi, A., Varshochian, R., Dinarvand, R. & Jeddi-Tehrani, M. NanoMIL-100(Fe) containing docetaxel for breast cancer therapy, Artif. Cells, Nanomedicine. Biotechnol. 46, 1390–1401 (2018). 20. Llewellyn, P. L. et al. High Uptakes of CO2 and CH4 in Mesoporous Metal-Organic Frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008). 21. Nehra, M. et al. Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management. Environ. Res. 169, 229–236 (2018), 22. Rohilla, S., Kumar, S., Aghamkar, P., Sunder, S. & Agarwal, A. Investigations on structural and magnetic properties of cobalt ferrite/ silica nanocomposites prepared by the coprecipitation method. J. Magn. Magn. Mater. 323, 897-902 (2011). 23. Lin, C. X., Qiao, S. Z., Yu, C. Z., Ismadji, S. & Lu, G. Q. Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Micropor. Mesopor. Mater. 117, 213–219 (2009). 24. Liu, X. et al. Enhanced carbon dioxide uptake by metalloporphyrin-based microporous covalent triazine framework. Polym. Chem. 4, 2445 (2013). 25. Chen, D. et al. Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol. RSC Adv. 7, 49024–49030 (2017). 26. Wang, L. et al. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing, Sci. Rep. 5, 14341 (2015), 27. Simonin, J. P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254-263 (2016). 28. Ho, Y. S. & McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 34, 451-465 (1999). 29. É.C. Lima, M.A. Adebayo, and F.M. Machado, Kinetic and Equilibrium Models of Adsorption, In: Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Chapter 3, 33-69 (2015), 30. Kellum, J. A. Determinants of blood pH in health and disease. Crit. Care. 4, 6 (2000). 31. Chakraborty, M. et al. Methotrexate intercalated ZnAllayered double hydroxide. J. Solid State Chem. 184, 2439-2445 (2011). 32. Mulye, N. V. & Turco, S. J. A Simple Model Based on First Order Kinetics to Explain Release of Highly Water Soluble Drugs from Porous Dicalcium Phosphate Dihydrate Matrices. Drug Dev. Ind. Pharm. 21, 943-953 (1995). 33. Costa, P. & Lobo, J. M. S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13, 123–133 (2001). 34. Putro, J. N. et al. The effect of surfactants modification on nanocrystalline cellulose for paclitaxel loading and release study. J. Mol. Lig. 282, 407-414 (2019). 35. Bae, S. H. et al. In Vitro Biocompatibility of Various Polymer-Based Microelectrode Arrays for Retinal Prosthesis. Invest. Ophthalmol. 53, 2653-2657 (2012). 36. Strzempek, W., Menaszek, E. & Gil, B. Fe-MIL-100 as drug delivery system for asthma and chronic obstructive pulmonary disease treatment and diagnosis. Micropor. Mesopor. Mater. 280, 264–270 (2019). 37. Li, J. et al. Effects of pore size on in vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Adv. 8, 24633-24640 (2018). 38. Gonzales, G., Sagarzazu, A. & Zoltan, T. Influence of microstructure in drug release behavior of silica nanocapsules. J. Drig Delivery 2013, 803585 (2013). 39. Emen, F. M., Demirdogen, R. E., Avsar, G. & Kilic, D. 2-chlorobenzoylthiourea-modified MCM-41 for drug delivery, J Turk Chem Soc 6, 29-34 (2019), 40, Ahmed, I., Jeon, J., Khan, N. A. & Jhung, S. H. Synthesis of a Metal-Organic Framework, Iron-Benezenetricarboxylate, from Dry Gels in the Absence of Acid and Salt. Cryst. Growth Des. 12, 5878–5881 (2012). 41. Han, L. et al. A facile and green synthesis of MIL-100(Fe) with high-yield and its catalytic performance. New J. Chem. 41, 13504-13509 (2017). 42. Bhattacharjee, A., Gumma, S. & Purkait, M. K. Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Micropor. Mesopor. Mater. 259, 203-210 (2018). 43. Rojas, S. et al. Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration. ACS Omega 3, 2994–3003 (2018). 44. Zhu, Y. D. et al. PPy@MIL-100

Nanoparticles as a pH- and Near-IR-Irradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells. ACS Appl. Mater. Interfaces 8, 34209–34217 (2016). 45. Haydar, M. A., Abid, H. R., Sunderland, B. & Wang, S. Multimetal organic frameworks as drug carriers: aceclofenac as a drug candidate. Drug. Des. Devel. Ther. 13, 23-35 (2019), 46. Taherzade, S. D., Soleimannejad, J. & Tarlani, A. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline. Nanomaterials 7, 215 (2017). Acknowledgements

4Financial support from the Ministry of Research and Technology and Higher Education through World-Class Research with the contract no 200 J /WM01.5/N/2019 is highly appreciated. Author contributions M.A.

S., E.A. and F.E.S. collect the experimental data. S.P.S., W.I. and T.C.T. work on data analysis and material characterization. S.B.H. and M.Y. prepare the manuscript. S.I. provides the research funding and correcting the manuscript.

19Competing interests The authors declare no competing interests. Additional information Correspondence and requests for materials should be addressed to F.

E.S. or S.I. Reprints and permissions information is available at

1www.nature.com/ reprints. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre- ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not per- mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s)

3www.nature.com/scientificreports www.nature.com/scientificreports/

3www.nature.com/scientificreports

www.nature.com/scientificreports/ www.nature.com/scientificreports

3www.nature.com/scientificreports/ www.nature.com/scientificreports

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 **1**

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 **2**

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 **3**

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 **4**

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 **5**

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 6

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 **7**

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-38

Scientific Reports | (2019) 9:16907 | https://doi.org/10.1038/s41598-019-53436-3 9

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 10

2Scientific Reports | (2019) 9: 16907 | https://doi.org/10.1038/s41598-019-53436-3 **11**