RESEARCH PROJECT

METAL-ORGANIC FRAMEWORK AS A DRUG CARRIER OF FUROSEMIDE

Submitted by Yanita Devi NRP. 5203016003 Ignatius Ang NRP. 5203017038

DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING WIDYA MANDALA CATHOLIC UNIVERSITY SURABAYA SURABAYA

2019

LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:

Name : Yanita Devi

NRP : 5203016003

has been conducted on 27 May 2019, therefor the student has fulfilled one of several requirements to obtain **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

Surabaya, June 12, 2019 Principal Supervisor 6-Supervisor 14 Felvcia Edi Soetaredio, Ph.D. Ir. Survadi Ismadii, M.T., Ph.D. NIK 521.93.0198 NIK 521 99 0391 Committees Chairman Secreta and Shella P. Santoso, S.T., Ph.D. Ir. Sile Ph D NIK. 521.17.0971 NIK. 521.93.0198 Member Member MAN Wenny Irawaty, M.T., Ph.D. Setivadi, M.T. Ir. NIK. 521,97,0284 NIK. 521.88.0137

IPM

LETTER OF APPROVAL

Seminar of RESEARCH PROJECT for student with identity below:

Name : Ignatius Ang

NRP : 5203017038

has been conducted on 27 May 2019, therefor the student has fulfilled one of several requirements to obtain **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

Surabaya, June 12, 2019 Principa Supervisor 0-5 pervisor 11.1/2 Felycia Edi Soetaredjo, Ph.D. Ir. Suradi Ismalit Ph.D. NIK, 521,93,0198 NIK. 521/90391 Committees Chairman cretary 20 Shella P. Santoso, S.T., Ph.D. smadii, Ph.D. vadi NIK. 521.17.0971 JIK. 521.93.0198 Member Member MI Wenny Irawaty, M.T., Ph.D. Ir. Setiyadi, M.T. NIK. 521.97.0284 NIK. 521.88.0137 Authorized by OLIK WIDIA M UNIVE handcal epartment * FAMILIAS Ph.D. D., IPM 98 TRAIN JURNSAN

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:

Name : Yanita Devi

NRP : 5203016003

agree to transfer the copyright of my research project: Title

METAL-ORGANIC FRAMEWORK AS A DRUG CARRIER OF FUROSEMIDE

To be publish in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

> Surabaya, June 12, 2019 Author METERAI DB7E8AFF7 0308 PM B0000 ENAM RIBURUPIAH

<u>Yanita Devi</u> NRP. 5203016003

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Catholic University Surabaya:

Name : Ignatius Ang

NRP : 5203017038

agree to transfer the copyright of my research project: Title:

METAL-ORGANIC FRAMEWORK AS A DRUG CARRIER OF FUROSEMIDE

To be publish in internet or other media (Digital Library of Widya Mandala Catholic University Surabaya) for academic purposes according to copyright law in Indonesia.

Surabaya, June 12, 2019

Author

Ignatius Ang NRP. 5203017038

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain **Bachelor of Engineering** degree.

Surabaya, June 12, 2019

Yanita Devi NRP. 5203016003

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs to the others, unless it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to obtain **Bachelor of Engineering** degree.

Surabaya, June 12, 2019

Ignatius Ang NRP, 5203017038

PREFACE

Authors give thanks to the Almighty God for all His blessings and mercy, so the Thesis entitled " Metal-Organic Framework as a Drug Carrier of Furosemide" can be completed on time. This thesis is one of the requirements for obtained a Bachelor of Engineering degree in the Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya.

With the completion of this thesis, the author would like to thank:

- 1. Ir. Suryadi Ismadji, M.T., Ph.D., as the Principal Supervisor, who has given lots of guidance and direction;
- 2. Felycia Edi Soetaredjo, Ph.D., as Co-Supervisor, who has given lots of guidance and direction;
- 3. Shella P. Santoso, S.T., Ph.D., Wenny Irawaty, M.T., Ph.D., and Ir. Setiyadi, M.T. as the committees;
- 4. All lecturers and staff of the Chemical Engineering Department, Faculty of Engineering, Widya Mandala Catholic University Surabaya, all of which cannot be mentioned, directly or not, has helped in writing this thesis;
- 5. All colleagues inside and outside the Widya Mandala Catholic University Surabaya, who helped complete this thesis;
- 6. Parents and family of authors who have provided support material and non-material, so author can complete this thesis.

Finally, the authors hope that this thesis can be useful for development in science and technology in the future.

Surabaya, June 12, 2019

Author

ABSTRACT

Recently, pharmaceutical industries have developed more than 40% NCE (New Chemical Entities) to satisfy the needs of rapid treatment toward various diseases. Nevertheless, majority of those developments have several problems for instance low solubility and/or low permeability thus a suitable delivery system is required. Furosemide is a loop diuretic drug with those several problems. To the best of our knowledge, utilizing nanoparticle with tunable porosity such as Metal-Organic Framework (MOF) as drug delivery of Furosemide has yet to be found.

Synthesis of Metal-Organic Framework (MOF) known as MIL-100(Fe) was conducted via non-solvothermal method at room temperature under stirring condition using FeSO₄.7H₂O, H₃BTC, and NaOH as the raw materials. Several experiments were conducted to observe the synthesis, loading, and release behaviors of Furosemide using MIL-100(Fe) as drug carrier. From the results obtained, the optimum molar ratio of NaOH added in the synthesis of MIL-100(Fe) was found to be X=3. The effect of adsorbent dose exhibits a decrease number in the value of q_e and q_t as the mass of adsorbent increases, vice versa. The adsorption kinetic could be represented by the pseudo-first-order model, while the adsorption isotherm fitted well with Langmuir isotherm model. The release of Furosemide from MIL-100(Fe) in PBS at pH 5.8 and 7.4 fitted well with the first-order kinetic and Korsmeyer-Peppas model, respectively, which demonstrated a sustainable release of the drug.

TABLE OF CONTENTS

LETTER OF APPROVAL	ii
LETTER OF APPROVAL	iii
COPY RIGHT AGREEMENT	ivv
COPY RIGHT AGREEMENT	v
LETTER OF DECLARATION	iv
LETTER OF DECLARATION	iv
PREFACE	viii
ABSTRACT	ix
TABLE OF CONTENTS	X
LIST OF FIGURES	xii
LIST OF TABLES	xiii
CH. I INTRODUCTION	1
I.1. Background	1
I.2. Objectives	3
I.3. Scopes of Research	3
CH. II LITERATURE REVIEW	5
II.1. Drug Delivery	5
II.2. Furosemide	6
II.3. Metal-Organic Framework (MOF)	8
II.4. Non-Solvothermal Method	9
II.5. Adsorption Isotherm and Kinetic	10
II.6. Release Kinetic	12
CH. III EXPERIMENTAL METHOD	15
III.1. Research Layout	15
III.2. Research Variable	16
III.3. Materials	17

III.4. Apparatuses	17
III.5. Research Procedures	18
III.6. Analysis	23
CH. IV RESULTS AND DISCUSSION	25
IV.1. Characterization of MIL-100(Fe)	25
IV.2. Effect of NaOH	30
IV.3. Effect of Adsorbent Dose and Adsorption Kinetic	33
IV.4. Adsorption Isotherm	35
IV.5. Loading and release of Furosemide	37
CH. V CONCLUSIONS AND RECOMMENDATIONS	41
REFERENCES	43
APPENDIX	50

LIST OF FIGURES

Figure 1. X-ray diffraction (XRD) of MIL-100(Fe)25
Figure 2. Scanning electron microscope (SEM) image of synthesized
MIL-100(Fe), X=3
Figure 3. N2 adsorption-desorption isotherm of synthesized MIL-
100(Fe), X=3
Figure 4. Thermal gravimetric analysis (TGA) of synthesized MIL-
100(Fe), X=3
Figure 5. Schematic illustration indicating the effect of NaOH in the
synthesis of MIL-100(Fe)
Figure 6. Effect of NaOH molar ratio on the formation of
MIL-100(Fe)
Figure 7. Adsorption kinetic of Furosemide using MIL-100(Fe),
X=3, plotted to (a) Pseudo-First (b) Pseudo-Second-Order
Figure 8. Adsorption isotherm of Furosemide using MIL-100(Fe),
X=3, plotted to Langmuir and Freundlich equations
Figure 9. Release kinetic models of Furosemide from MIL-100(Fe),
X=3, at (a) pH 5.8 (b) pH 7.4

LIST OF TABLES

Table 1. Adsorption kinetic of Furosemide on MIL-100(Fe)	34
Table 2. Adsorption isotherm of Furosemide on MIL-100(Fe)	36
Table 3. Release kinetic models of Furosemide from	
MIL-100(Fe)	40