turnitin Originality Report

MIcMac by Suryadi Ismadji From Hippo (Hippo-03)

Processed on 21-Aug-2018 14:40 WIB ID: 991774433 Word Count: 7005

Similarity by Source Similarity Index Internet Sources: Publications: Student Papers: 16%

sources:
1% match (publications) Sadanand Pandey. "A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment", Journal of Molecular Liquids, 2017
1% match (student papers from 19-Apr-2017) Submitted to Tikrit University on 2017-04-19
1% match (publications) Felycia E. Soetaredjo, Suryadi Ismadji, Kuncoro Foe, Ju Yi-Hsu. "Recent advances in the application of polymer-based nanocomposites for removal of hazardous substances from water and wastewater", Elsevier BV, 2018
1% match (publications) Asma Nakhli, Marie Goletti Nguemtchouin Mbouga, Manel Bergaoui, Mohamed Khalfaoui, Marc Cretin, Patrice Huguet. "Modeling of essential oils adsorption onto clays towards a better understanding of their interactions", Journal of Molecular Liquids, 2018
1% match (publications) Hartono, Chynthia Devi, Kevin Jonathan Marlie, Jindrayani Nyoo Putro, Felycia Edi Soetardjo, Yi Hsu Ju, Dwi Agustin Nuryani Sirodj, and Suryadi Ismadji. "Levulinic acid from corncob by subcritical water process", International Journal of Industrial Chemistry, 2016.
1% match (publications) Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Yap Wing Fen, Jaafar Abdullah, Silvan Saleviter, Nur Alia Sheh Omar. "Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique", Optik, 2018
7 1% match (publications) M. Arshadi, M.K. Abdolmaleki, F. Mousavinia, S. Foroughifard, A. Karimzadeh. "Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study", Journal of Colloid and Interface Science, 2017.
1% match (publications) Lotfi Sellaoui, Felycia Edi Soetaredjo, Suryadi Ismadji, Éder Cláudio Lima et al. "New insights into single-compound and binary adsorption of copper and lead ions on a treated sea mango shell: experimental and theoretical studies", Physical Chemistry Chemical Physics, 2017
9 1% match (Internet from 05-Sep-2013) http://rsce2012.its.ac.id/search.php
41% match (publications) Radheshyam R. Pawar, Lalhmunsiama, Munui Kim, Jae-Gyu Kim, Seong-Min Hong, Sandesh Y. Sawant, Seung Mok Lee. "Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads", Applied Clay Science, 2018
< 1% match (publications) Kurniawan, A "Utilization of rarasaponin natural surfactant for organo-bentonite preparation: Application for methylene blue removal from aqueous effluent", Microporous and Mesoporous Materials, 201106
< 1% match (publications) Yonghwan Kim, Yun Kon Kim, Sungjun Kim, David Harbottle, Jae W. Lee. "Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption", Chemical Engineering Journal, 2017
13 < 1% match (Internet from 23-Nov-2017)

Turnitin Originality Report http://opus.bibliothek.uniaugsburg.de/opus4/frontdoor/deliver/index/docId/3698/file/Dissertation_Denysenko.pdf < 1% match (publications) 14 Jerosha Ifthikar, Xiang Jiao, Audrey Ngambia, Ting Wang, Aimal Khan, Ali Jawad, Qiang Xue, Lei Liu, Zhuqi Chen. "Facile One-Pot Synthesis of Sustainable Carboxymethyl Chitosan -Sewage Sludge Biochar for Effective Heavy Metal Chelation and Regeneration", Bioresource Technology, 2018 < 1% match (publications) 15 Soetaredjo, Felycia Edi, Alfin Kurniawan, Ong Lu Ki, and Suryadi Ismadji. "Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metalsbiomass system", Chemical Engineering Journal, 2013. < 1% match (Internet from 10-Aug-2018) 16 http://centaur.reading.ac.uk/71849/8/1-s2.0-S0022407317301073-main.pdf < 1% match (Internet from 17-Mar-2016) 17 http://pac.iupac.org/publications/pac/pdf/1971/pdf/2502x0345.pdf < 1% match (publications) 18 Yu, M., "Desorption activation energy of dibenzothiophene on the activated carbons modified by different metal salt solutions", Chemical Engineering Journal, 20070801 < 1% match (publications) 19 Chandra, I. K., Y.-H. Ju, A. Ayucitra, and S. Ismadji. "Evans blue removal from wastewater by rarasaponin-bentonite", International Journal of Environmental Science and Technology, 2013. < 1% match (publications) 20 N. Muthulakshmi Andal. "A Comparative Study on the Sorption Characteristics of Pb(II) and Hg(II) onto Activated Carbon", E-Journal of Chemistry, 2010 < 1% match (publications) 21 Kurniawan, A.. "Evaluation of cassava peel waste as lowcost biosorbent for Ni-sorption: Equilibrium, kinetics, thermodynamics and mechanism", Chemical Engineering Journal, 20110801 < 1% match (publications) 22 Cabuk, A.. "Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis", Chemical Engineering Journal, 20070701 < 1% match (Internet from 18-Jul-2018) 23 http://rrljorhat.res.in/home/MicroMesoMat August2017.pdf < 1% match (publications) 24 Alfin Kurniawan, Suryadi Ismadji. "Potential utilization of Jatropha curcas L. press-cake residue as new precursor for activated carbon preparation: Application in methylene blue al from aqueous solution", Journal of the Taiwan Institute of Chemical Engineers, 2011 < 1% match (publications) 25 Mohie Eldin Elmashad. "Effect of chemical additives on consistency, infiltration rate and swelling characteristics of bentonite", Water Science, 2017 < 1% match (Internet from 09-Jun-2018) 26 https://www.library.caltech.edu/eds?query=%22lsmadji%2C+Suryadi%22 < 1% match (student papers from 13-Mar-2012) 27 Submitted to Higher Education Commission Pakistan on 2012-03-13 < 1% match (Internet from 21-Dec-2017) 28 http://repository.its.ac.id/44003/1/A%20new%20approach%20in%20maximizing%20and%20direct%20utilization%20of%20whole%20jatropha

https://link.springer.com/content/pdf/10.1007/s10854-008-9594-4.pdf

< 1% match (Internet from 21-Nov-2017)

29

30 < 1% match (Internet from 01-Dec-2016)

https://unbscholar.lib.unb.ca/islandora/object/unbscholar%3A8031/datastream/PDF/download/citation.pdf

< 1% match (Internet from 25-Dec-2016) http://cdn.intechopen.com/pdfs-wm/39265.pdf

32 < 1% match (publications)</p>

Elena Maria lannicelli-Zubiani, Paola Gallo Stampino, Cinzia Cristiani, Giovanni Dotelli.

"Enhanced lanthanum adsorption by amine modified activated carbon", Chemical Engineering
al. 2018

<u>Journal, 2018</u>

33 < 1% match (publications)</p>

Chor Wayakron Phetphaisit, Siriwan Yuanyang, Wipharat Chuachuad Chaiyasith.

"Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater", Journal of Hazardous Materials, 2016

34

< 1% match (student papers from 23-Apr-2013)

Submitted to Higher Education Commission Pakistan on 2013-04-23

paper text:

13Microporous and Mesoporous Materials 246 (2017) 166e177 Contents lists available at ScienceDirect Microporous and Mesoporous Materials journal homepage: www.elsevier.com/locate/micromeso Investigation of heavy metal adsorption in

26binary system by nanocrystalline cellulose e Bentonite nanocomposite:
Improvement on extended Langmuir isotherm model Jindrayani Nyoo Putro a,
Shella Permatasari Santoso a, Suryadi Ismadji

a, b, *,

9Yi-Hsu Ju a, ** a Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan b Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia

16article info Article history: Received 23 February 2017 Received in revised form 17 March 2017 Accepted 18 March 2017 Available online 21 March 2017 Keywords:

Bentonite Nanocellulose Composite Isotherms Adsorption abstract The preparation of NCC e bentonite nanocomposite using waste paper as the source of NCC was con- ducted in this study. The adsorption performance of the composite was tested

10for the removal of Pb(II) and Hg(II) from aqueous solution in single and binary systems. Langmuir and

Freundlich

3adsorption isotherms were employed to correlate pure component adsorption

isotherm.

1Langmuir equation can represent the experimental data better than Freundlich, the qm for lead is higher than mercury in both systems (single system qm ¼ 0.44 mmol/g (Pb) and 0.23 mmol/g (Hg) for composite). All systems exhibit endothermic process, except for bentonite which shows the exothermic process.

The modification of extended Langmuir model for a binary system with the inclusion of fractional loading and heat of adsorption was proposed in this study. The modified extended

24Langmuir model could represent the experimental data better

than original extended Langmuir equation. © 2017 Elsevier Inc. All rights reserved. 1. Introduction The rapid grow of industrialization in the 21st century makes the human life much easier. On the other hand, these rapid de- velopments ruin the environment with many kinds of industrial hazardous wastes. One of the biggest problems that the human encountered today is clean water shortage and severe water pollution. Contamination of water resources with various kind of industrial hazardous substances becomes one of the biggest prob- lems for underdeveloped and some of developing countries. Heavy metals are some of the most harmful contaminants which usually were found in the polluted water environments. Heavy metals in contaminated water such as lead and mercury can highly damage human health and other living organisms. Pro- longed exposure to these metals can cause blood and brain * Corresponding author.

5Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia. ** Corresponding author. Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan.

28E-mail addresses: suryadiismadji @yahoo.com (S. Ismadji), yhju@mail.ntust.edu. tw (Y.-H. Ju).

23http://dx.doi.org/10.1016/j.micromeso.2017. 03.032 1387-1811/© 2017 Elsevier Inc. All rights reserved.

disorders. Reducing or eliminating the heavy metals content of wastewater before discharging to the water environment is a way to handle this major environment problem. Adsorption is one of the various techniques which is widely used for removing contami- nants in water. This process is a very efficient and economical method which results in high-quality water decontamination [1]. Recently, natural polymer adsorbents have been given tremen- dous attention

6as biosorbents due to their ubiquitous, biodegrad-ability, and non-toxic nature

One of the natural polymers that has potential application as biosorbent

6 is cellulose. Cellulose is considered as the most abundant natural material in the world,

which

6is composed of linear polysaccharides consisted of two anhydroglucose rings linked by repeated b -1,4 glycoside bonds [2]. Cellulose is an important raw material for many kinds of industries,

especially for pulp and paper industries. In 2014, the total graphic papers (newsprint, uncoated mechanical, uncoated woodfree, and coated papers) consumption was 56 Mt for Europe and Northern America region; then it can be assumed that the waste paper has the same amount of the total consumption number [3].

Waste pa- pers usually are used as feedstocks for making recycled paper. However, after several times of recycling, cellulose fibers become short and has lower economic value than long cellulose fibers. To increase the added value of waste paper, the possibility of utilizing

1waste paper as raw material for nanocrystalline cellulose (NCC)

production was explored in this study. Cellulose has hydroxyl functional groups that can be modified to enhance its adsorption ability as an adsorbent. Currently, several methods are available for the modification of cellulose such as esterification, etherification, cationization, oxidation, amidation, and grafting. Among these methods, esterification through acid hydrolysis has been shown to improve cellulose properties excellently. Acid hydrolysis is a simple method to modify cellulose. Basically the acid will attack the amorphous part in cellulose fiber and extract the nanocrystalline cellulose (NCC). Sulfuric acid pre- pared NCC is well known for excellent thermal stability property due to the attachment of sulfate esters on the NCC surface. The presence of sulfate ester in the NCC surface increases the adsorp- tion capacity two times of that of the original NCC, which means that modification of functional groups indeed has a major impact on adsorption capacity [4]. Bentonite is one kind of clay material which has

342:1 layer structure in which the octahedral sheet is sandwiched between two tetrahedral silica

sheets, with water and metal cations existing between the spaces of the layers [5]. The layers are negatively charged and held together by charge-balancing counterions like Ca2b and Nab. Natural bentonite has been known to have moderate adsorption capacity towards heavy metals and certain organic substances due to high cation exchange capacity (CEC), which is around 40e130 meq/100 g and high surface charge in their lattice structure [6]. However, due to its hydrophilic nature, natural bentonite is not a good adsorbent for many organic compounds. Therefore, modification of natural bentonite

18is necessary to in- crease its adsorption capacity. The combination of

clay and other materials such as metal oxides and polymers has gained much attention from researchers in recent years. These clay based com-posite materials have excellent capability for removing various organic and inorganic contaminants [5,7]. The aim of this study was to use

1waste paper as raw material for the synthesis of NCC, and combining this NCC with bentonite to produce a nanocomposite material for removing Pb2b and Hg2b in single and binary systems.

Improvement of extended Langmuir model to represent the adsorption isotherms of the binary system was also given in this study. The adsorption performance of the adsorbents was also tested. The mechanism of the adsorption was investigated from isotherm and thermodynamic viewpoints. 2. Materials and methods 2.1. Materials Waste printing paper used in this study was obtained from our laboratory. The ink type for printing in this waste paper was toner from HP LaserJet Q7553A. Bentonite was obtained from

11Pacitan, East Java, Indonesia. The cation exchange capacity of this natural bentonite was

44.7 meq/100 g. The

19chemical composition of natural bentonite was analyzed using

PANalytical

15MiniPal QC energy dispersive X-ray fluorescence, and the results are as follows:

Al2O3 ¼ 19.21%, SiO2 ¼ 61.98%, Na2O ¼ 2.22%, CaO ¼ 3.59%, K2O ¼ 1.78%, MgO ¼ 1.98%, Fe2O3 ¼ 2.97%, MnO ¼ 0.22%, and TiO2 ¼ 0.09%. Analytical grade NaOH, HCI, KNO3, Pb(NO3)2, HgCl2, chloroform, dimethyl sulfoxide, sulfuric acid, hydrogen peroxide, were used without further purification. 2.2. Pretreatment of waste paper and bentonite Waste paper (5 g) was soaked in tap water overnight and shredded using a blender. The shredded paper was then deinked with 100 ml organic solvent that was 30%

chloroform (99% purity) Fig. 1. ATR-FTIR result of waste paper, paper after treatment, bentonite, NCC, and composite. and 70% dimethyl sulfoxide (99.7% purity). Deinking was conducted under continuous stirring for 2 h at room temperature. Subse- quently, the solution was sonicated for 15 min, and the waste paper was filtered. The collected waste paper was dried in an oven overnight and kept in a desiccator for further use. Before use,

11bentonite was purified in 30% hydrogen peroxide solution 18at room temperature for 24 h under continuous stirring to remove organic impurities. The

weight ratio of bentonite and hydrogen peroxide solution was 1:5. Then the mixture was heated in boiling water for 2 h

11to remove excess hydrogen peroxide. The purified bentonite was

separated from the solution by centrifuga- tion and washed with distilled water, then dried at 110 C for 24 h. 2.3. Preparation of NCC/Bentonite composite The deinked waste paper (1 g) was dissolved in 1 M NaOH (9 g) to remove impurities and swell the cellulose fiber. The solution was stirred for 3 h at room temperature and dried in an oven at 50 C for 6 h. Then 1 g of waste paper was treated with 20 ml of 64 wt.% H2SO4 at 45 C for 60 min under continuous stirring. After hydro- lysis, the solid and liquid were separated by centrifugation (9503 g, 10 min). The turbid supernatant was collected and placed in a dialysis tube for 3 days. The suspension was sonicated for 30 min in an ice-water bath to avoid overheating and kept in a ?20 C refrigerator for 24 h. Subsequently, the suspension was freeze-dried to obtain the NCC powder. Preparation of NCC - bentonite nanocomposite was conducted according to the previous method [8] with modifications. Bentonite (0.6 g) was dispersed in DI water (30 ml), stirred for 1 h and sub-sequently sonicated for 1 h. The bentonite was added to 0.1% of NCC dispersion (30 g) and stirred for 24 h. Then the solution was soni- cated for 1 h. The nanocomposite formed was poured into a poly- styrene Petri dish and oven dried at 50 C for 1 day.

292.4. Characterization Field emission scanning electron microscope (FESEM, JEOL JSM- 6500F) was employed for obtaining the surface morphology of

Fig. 2. Morphological image of (A) waste paper, (B) paper after treatment, (C) bentonite, (D) NCC, (E) composite, and (F) TEM of NCC. samples. Prior to FESEM imaging, the

21sample was coated with a thin layer of platinum

by a fine auto coater (JFC-1600, JEOL, Ltd., Japan) for 90 s in an argon atmosphere. The FESEM analysis was conducted at 10 kV and 15 kV with 10.4 mm working distance. Transmission electron microscope (TEM, Tecnai F20 G2 FEI-TEM) was conducted at 80 kV to know the NCC morphology. The sample was prepared on a 300 mesh Cu grids with 2% uranyl acetate for staining. The attenuated total reflectance (ATR) FTIR (Bio-Rad Model FTS-3500) analysis was operated in the frequency range of 4000e650 cm?1 with 4 cm?1 scanning resolution, and the signal was accumulated from 100 scans. X-ray diffraction (XRD,

8Philips X'pert X-ray Diffractometer) patterns were acquired at 40 kV and 30 mA using a monochromatic high-intensity

Cu Ka1 radiation (I 1/4 0.15405 nm). The surface charge of NCC, bentonite, and composite were determined using

8a zeta meter (Zeta Potential Analyzer, Brookhaven 90Plus). The thermal stability of

NCC, bentonite, and composite was determined by thermal gravimetry analysis (TGA)

31using a Perkin Elmer Diamond TG/DTA thermal analyzer with a heating and cooling rate of 10 C min?

1 up to 600 5C under continuous nitrogen gas flow of 150 ml min? 1. Sample mass in each experiment was

about 5 mg. 2.5. Adsorption experiment Adsorption of lead and mercury was conducted in batch mode. For single system, a stock solution of Pb(II) or Hg(II) was prepared by dissolving 159.85 mg of Pb(NO3)2 or 135.36 mg of HgCl2 into a liter of distilled water. The adsorption experiments were conducted by introducing various masses (0.1e2.0 g) of NCC, bentonite, nanocomposite

24into a series of conical flasks containing 50 ml of

Fig. 3. X-ray diffraction of adsorbents. Fig. 4. TGA curve for the characterization of bentonite, NCC and composite. Fig. 5. Surface charge of adsorbents. lead or mercury at a certain pH value. The pH was previously fixed at a range of 2e7 by adding 0.1 M HCl or NaOH solution into the heavy metal solution. The effect of temperature on adsorption isotherm was studied by carrying out the adsorption at 30, 40, and 50 C. After equilibrium

19condition was reached, the solution was separated from the adsorbent by centrifugation

(6082 g, 10 min). The final concentration

7of Pb(II) and Hg(II) was

measured using ICP- OES. Adsorbed Pb(II) and Hg(II) at equilibrium condition per unit mass of adsorbent (qe)

22was calculated using the following equation: qe 1/4 Co ? Ce V m (1) where qe is the amount of Pb(II)

or Hg

20(II) adsorbed on the adsorbent (mmol/g) at equilibrium condition, Co and

12Ce are the initial and equilibrium concentrations (mmol/L), respectively. V is the volume of solution (L), and m is the mass of adsorbent (g).

For a binary system, a known amount of Pb (159.85 mg, 319.70 mg, 479.55 mg) was added into 1 L Hg solution (135.36 mg). The binary adsorption was conducted at 30 C and pH 2, 6 and 5 for NCC, bentonite and composite, respectively. The

7amount of Pb(II) and Hg(II)

27adsorbed at equilibrium condition per unit mass of adsorbent (qe) was calculated using the following equation: qe; i=j 1/4 Co;

i=j? Ce;i=j m V (2) where qe;i and qe;j are the amount of Pb(II) and Hg(II) adsorbed on the adsorbent (mmol/g) at equilibrium condition, respectively, Co,i/j and Ce,i/j are the initial and equilibrium concentrations (mmol/L), respectively. 3. Results and discussion 3.1. ATR FTIR analysis ATR-FTIR is the most widely used technique for characterization of materials based on the vibrations of atoms within the molecules. Fig. 1 represents the spectra of waste paper, deinked waste paper, purified bentonite, NCC, and composite. Both waste paper and deinked waste paper spectra show the cellulose characteristic peaks as indicated by CeO/CeC stretching (1045 cm?1), CeH bonding (1357 cm?1), and CH2 symmetrical stretching (2841 cm?1) [9,10]. From these spectra, there are two prominent different peaks. The peak at 1730 cm?1 for waste paper corresponds to carbonyl band that is usually found in toner such as styrene acrylate copolymer [11,12]. The

appearance of eOH group (3291 cm?1) in deinked waste paper can be explained by the removal of toner that previously covered up the eOH groups on the cellulose fiber [9]. All the characteristics of cellulose from deinked waste paper are retained in NCC. New peak appears for NCC in 1407 cm?1 which indicates the presence of sulfate esters due to sulfuric acid hydro- lysis. FTIR spectrum of bentonite shows the characteristics of montmorillonite clays as demonstrated by Al(Mg)eOH stretching (3612 cm?1), HeOeH stretching (3441 cm?1), eOH bending for adsorbed water (1641 cm?1) and SieOeSi stretching of the tetrahedral sheet (1041 cm?1) [5,13,14]. The characteristic peaks of NCC and bentonite seem to be retained as indicated in the nano- composite spectrum. The wavenumber 1083 cm?1 indicates the SieO in bentonite, the shifting of the peak of silica from 1041 cm?1 to 1083 cm?1 was possibly due to the exfoliated off the tetrahedral sheet by NCC. The wavenumber of AleOHeMg appears at 3640 cm?1 which was slightly altered from 3612 cm?1. The wave- numbers of 2775 cm?1 and 3207 cm?1 corresponded to the CeH bond and bonded OH from NCC, respectively.

7Fig. 6. Effect of pH on the adsorption of (a) Pb single, (b) Hg

single, (c) Pb binary and (d) Hg binary. 3.2. Surface morphology analysis The surface morphologies of waste paper, deinked waste paper, bentonite, NCC, and nanocomposite are shown in Fig. 2. It can be seen from the image of waste paper that there were toner particles on the surface of cellulose fiber (Fig. 2a). After pretreatment, toner particles were removed and the fiber seems to be swollen due to NaOH pretreatment (Fig. 2b). The swelling of cellulose fibers helped to create homogeneous NCC particles. The SEM image of bentonite (Fig. 2c) reveals that the surface topography of bentonite consists of stacked sheets with heterogeneous surfaces. It can be seen from the surface topography of NCC (Fig. 2d) that NCC has a crystal structure. The TEM result of NCC (Fig. 2f) indicates that NCC possesses a rod crystal morphology with length around 157 nm. The morphology of composite (Fig. 2e) is similar to the bentonite morphology but with a smoother surface. 3.3. X-ray diffraction The crystalline phase of materials was observed by XRD. The characteristic peaks of montmorillonite in bentonite (Fig. 3) are at 19.7 and 22. The other diffraction peaks belong to quartz (26.5, 42.1, and 51) and FeCaCO3 (35.8) [15]. Crystal plane of 200 at 22.3 represents the crystalline part of cellulose in NCC diffraction graph, the broad peak around 14 e16.5 indicates the crystal plane of 110 [16]. Continuous and broad peak was observed in XRD pattern of composite between 21.7 and 23 denoting the combi- nation of the crystalline part between bentonite and NCC which have been exfoliated within each other. 3.4. Thermal gravimetry analysis (TGA) The thermal characteristic of NCC, bentonite, and composite was characterized using thermogravimetry analysis, and the results are given in Fig. 4. TGA result of NCC shows that three different stages of weight loss occurred during the heating process. The first stage of weight loss was due to the evaporation of moisture content (30e200 C) and it was found that the moisture content of NCC was around 6.5%. The second stage of the weight loss occurred at 245e315 C. In this stage, the weight loss of the sample (~58.3%) was mostly due to thermal degradation (dehydration and depoly- merization of cellulose). In the last stage, the weight loss was mostly due to the carbonization of intermediate chars [17]. For bentonite, it was observed that there are two stages in TGA curve. The first stage corresponds to the evaporation of moisture content and the second stage was due to the dehydroxylation of alumino- silicate in bentonite [18]. The thermogravimetric curve of the composite shows a similar trend to that of the thermal degradation of the composite of NCC and bentonite, with the degradation of cellulose starting at between 215 and 315 C and dehydroxylation phase at 315e590 C. Fig. 7. Adsorption mechanism between each adsorbents (A: bentonite, B: NCC, C: composite) and metal (Mp: Pb or Hg). 3.5. Zeta potential Zeta potential of each adsorbent was measured to obtain the isoelectric point. From Fig. 5, it can be seen that the surface charge of bentonite and composite is pH dependent. The iso- electric point is where the adsorbent has no charge at specific pH value. Isoelectric points for bentonite and composite are at pH 5.4 and 3.6, respectively. The surface charge of NCC is pH indepen- dent as seen in Fig. 5. The surface charge of NCC is almost con- stant (~?20 mV) at all pH which indicates excellent stability of NCC at various pH. 3.6. Effect of pH pH has been known to have a strong influence

33on the adsorption of heavy metals onto various adsorbents. Fig. 6 depicts the effect of pH on the adsorption of

7Pb(II) and Hg(II) onto bentonite, NCC, and nanocomposite. The

pH optimum for

8adsorption of Pb(II) and Hg (II) onto bentonite both in the single or binary

system was achieved at pH 6. For NCC in single system, the pH optimum for adsorption of Hg(II) was pH 2 while for Pb(II) was pH 3. For the adsorption of Hg(II) and Pb(II) onto nanocomposite, the pH optimum in single system for adsorption Hg(II) was pH 4, while for Pb(II) was pH 5. In binary adsorption process, the optimum pH for NCC was 2 and 5 for composite. Slight change in the optimum pH of binary adsorption

process for NCC and composite denotes that surface charge of NCC has a quite significant role in the binary adsorption, as discussed previously that NCC has good stability at the various condition of pH. The isoelectric point of bentonite is at pH 5.4 as indicated in Fig. 5. Below this isoelectric point, the bentonite is positively charged while above this point the bentonite is negatively Fig. 8. Adsorption isotherms of single system in 30, 40, and 50 C (solid line: Langmuir fitting, dashed line: Freundlich fitting). charged. At pH 6, lead ions are present in the forms of Pb(II) and PbOHb. Since the surface of the bentonite is negatively charged, therefore, electrostatic interaction between lead cations and the surface of bentonite occurred,

21resulting in the increased amount of lead cations adsorbed onto the surface

of bentonite. A similar phenomenon also took place in the adsorption of Hg(II) onto bentonite. At pH 6, the mercury ions exist in the forms of HgOHb and HgOHCI [19,20] and the interaction between the surface of bentonite and HgOHb is electrostatic, while with HgOHCl it is through van der Waals force. Table 1 Langmuir and Freundlich parameters for single adsorption system at various temperatures. Adsorbent Adsorbate T (C) Langmuir parameters Freundlich parameters qm

32(mmol/g) KL (L/mmol) R2 KF ((mmol/g)(mmol/L)1/n) n R2

Bentonite NCC Composite Pb 30 40 50 Hg 30 40 50 Pb 30 40 50 Hg 30 40 50 Pb 30 40 50 Hg 30 40 50 $0.25\ 11.52\ 0.22\ 10.50\ 0.20\ 9.37\ 0.13\ 6.59\ 0.10\ 4.65\ 0.09\ 2.54\ 0.30\ 15.51\ 0.33\ 16.14\ 0.35\ 18.19\ 0.16\ 9.68$ 0.18 11.96 0.22 13.31 0.40 17.25 0.43 17.46 0.44 19.33 0.19 13.50 0.21 15.13 0.23 15.87 0.99 0.47 0.99 $0.41\ 0.99\ 0.32\ 0.99\ 0.18\ 0.95\ 0.13\ 0.95\ 0.09\ 0.99\ 0.42\ 0.99\ 0.49\ 0.99\ 0.57\ 0.98\ 0.20\ 0.99\ 0.25\ 0.99\ 0.31$ $0.99\ 0.80\ 0.99\ 0.88\ 0.99\ 0.92\ 0.99\ 0.24\ 0.99\ 0.26\ 0.99\ 0.29\ 1.72\ 1.67\ 1.79\ 1.85\ 1.77\ 1.51\ 2.83\ 2.58\ 2.42$ 2.43 2.50 2.54 2.00 1.99 2.01 3.05 3.26 3.23 0.99 0.98 0.99 0.98 0.97 0.99 0.99 0.99 0.96 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 In the case of the adsorption of heavy metals onto NCC, since the surface of the NCC is negatively charged at all pH, the adsorption mechanism is obviously electrostatic interaction between negatively charged NCC and metal cations. The presence of hydroxyl and sulfonate functional groups on the surface of NCC also enhanced the

14adsorption capacity of NCC towards Pb(II) and Hg(II). The combination of bentonite and

NCC as nanocomposite greatly enhanced the adsorption removal of Pb(II) and Hg(II) as can be seen in Fig. 6. The mechanism of the adsorption

14of Pb(II) and Hg(II) onto nanocomposite is the electrostatic interaction between metal ions and

negatively charged surface of the nanocomposite. In general, for all adsorbents the adsorption of Pb(II) is more prefer- able to Hg(II) (including in the binary system). Based on the elec- tronegativity values (2.00 for Hg and 1.87 for Pb), the adsorption behavior should be opposite, i.e. Hg(II) should be adsorbed easier onto the surface of the adsorbents than Pb(II) [21]. Since this adsorption phenomenon cannot be explained by the electronega- tivity of the metals, we will explain it further with the effect of van der Walls radius (150 pm for Pb and 200 pm for Hg) which is defined as the half of the internuclear distance of two atoms [22]. With a larger van der Walls radius, the forces in mercury are weaker than in lead. Thus the chance of mercury to create higher affinity is better than lead. However the results (Fig. 6c and d) indicate that the adsorbents have better interaction with Pb(II) than Hg(II). Since the van der Walls radii concept also cannot explain this adsorption phenomenon, we will try another approach. Pearson's

17principle states that hard acids prefer to bind to hard bases and soft acids to soft bases. Hg2b is a

soft acid while Pb2b is a borderline acid [23]. For bentonite, interaction with Pb(II) is pref- erable because in its structure there are exchangeable cations (hard acid) and water (hard base) in the midst of bentonite layers, hence Pb(II) can form attractive forces with hard acid and a hard base. Since NCC has hydroxyl and sulfite anion which are hard base and borderline base, respectively and the pH is acid (2e3) which makes low Hg(II) affinity towards adsorbents hence adsorption is not as strong as in the case of Pb(II). The schematic diagram of this adsorption mechanism can be seen in Fig. 7. 3.7. Adsorption isotherms in single system Various

4models have been developed to represent liquid phase adsorption equilibria data. The most common used adsorption isotherms models are Langmuir and

Freundlich. Both isotherm equations consist of two parameters. Langmuir adsorption isotherm

4is based on assuming homogeneous surface and energy on the adsorbent surface.

while Freundlich is an empirical model for heterogeneous systems.

4Both models have been extensively used to represent huge numbers of adsorption experimental data

since these equations are simple and can fit the data in a specific concentration range. Langmuir (Eq. (3)) and Freundlich (Eq. (4)) models are mathematically expressed as follows: qe ¼ qm1 þKLKCLeCe (3) qe ¼ KF Ce1=n (4) where qm is the Langmuir constant which indicates the maximum adsorption capacity of the adsorbent with monolayer surface coverage ommol=gb, and KL is the adsorption affinity constant (L/ mmol). KF is the Freundlich constant which expresses the adsorp- tion capacity [(mmol/g)(mmol/L)1/n] and n is the dimensionless unit representing the surface heterogeneity. A higher n reflects that the adsorption system is more heterogeneous. The adsorption experimental data were fitted to the adsorption equations using nonlinear regression fitting, and the results are shown in Fig. 8. It can be seen that the fitting results (Table 1) indicate that Langmuir model fits the experimental data better than Freundlich model. Correlation coefficient factors (R2) for Langmuir models are around 0.95e0.99.

3From Table 1 it can be seen that all of the parameters of Langmuir and Freundlich models are temperature dependent.

For heavy metals e bentonite system, qmax and KL decreased with increasing temperature, while for other systems, these parameters increase with the in- crease of temperature. The increase of uptake amount with temperature is a strong indication that chemisorption is the control mechanism of the adsorption process. Physical adsorption is the main control mechanism

20of the adsorption of Pb(II) and Hg(II) onto

bentonite. In chemisorption mechanism, the adsorbate molecules are strongly attached to the surface of the adsorbent. This phenom- enon is indicated by KL in Langmuir equation. The stronger the interaction between adsorbate and adsorbent, the higher the value of KL. The values of KL for NCC and nanocomposite systems Fig. 9. Plotting of experimental data against (a) original extended Langmuir and (b) modified extended Langmuir. are higher than those in heavy metals - bentonite system as indicated in Table 1. Both NCC and nanocomposite possess hy- droxyl and sulfonate functional groups on their surface, and usually, the binding of these functional groups and heavy metal ions are mostly through electrostatic interaction which is much stronger interaction than van der Walls force. The basic structure of bentonite

25is a layer consisting of two inward-pointing tetra-hedral sheets with a central alumina octahedral sheet (2:1).

In this 2:1 layer structure, water, and other cations exist and these layers also have intermolecular forces which can be much stronger than the interaction of heavy metal molecules, and the surface layer of bentonite, hence heavy metals ions are not able to penetrate into Stern-Gouy layer between those layers [24]. Therefore, lower adsorption affinity was observed for heavy metals e bentonite system. 3.8. Adsorption isotherms of binary system: improvement of extended Langmuir model Among of the available models for multicomponent adsorption, the extended Langmuir possibly is

3the most widely used one to describe binary adsorption data,

because it is simple and can represent the experimental data comparatively better than other models. The extended Langmuir is expressed as follows: qe;i ¼ qm;i1 þ SKjnL¼;i1CKe;Li;iCe;i (5) For binary system, Eq. (5) becomes qe;1 1/4 qm;11 b KL;1KCLe;1;1Cbe;1KL;2Ce;2 (6) qe;2 1/4 qm;21 b KL;1KCLe;2;1Cbe;2KL;2Ce;2 (7) where qm,i and KL,i in Eqs. (6) and (7) are Langmuir constants which are obtained from the fitting of adsorption experimental data of single system or pure component. This model has been developed for competitive multicomponent adsorption with respect to the energy of adsorption in system [25]. In real multicomponent adsorption system, competition between adsorbates molecules for

active sites always occur, and this phenomenon usually acts as the controlling mechanism. However, the shortcoming of the original extended Langmuir model is that it does not consider the compe- tition

3of adsorbate molecules on the active adsorption sites of adsorbent. The absence of the

competition between the adsorbates molecules in this model often results in overestimate of the theo- retical values of the isotherm [26]. Thus an improvement for this model is proposed in this work to predict the binary components adsorption equilibria. Regarding the competition of adsorption of molecules onto one of the available active surface sites, the Lang- muir constants qm and KL are modified in terms of fractional loading as follows: qm;1ðbinÞ ¼ qm;1q1 (8) qm;2ðbinÞ ¼ qm;2q2 (9) KL;1ðbinÞ ¼ KL;1ðsingleÞ Q1q1Q1pq1Q2q2 (10) KL;2ðbinÞ ¼ KL;2ðsingleÞ Q1q1Q2pq2Q2q2 (11) where q1 and q2 are the fractional loading of component 1 and 2 in the surface of adsorbent, respectively, while Q1 and Q2 are the heat of adsorption of component 1 and 2, respectively.

3As mentioned in the previous section,

the Langmuir affinity constant

3measures how strong the adsorbate molecules are attached or attracted onto the surface of

the adsorbent. Basically, the frac- tional loading q and heat of adsorption Q will influence the Langmuir affinity constant as indicated in Eqs. (10) and (11). In Eqs. (10) and (11), the competition between adsorbate molecules is expressed as the ratio of the multiplication between the heat of adsorption and fractional loading of certain adsorbate to the summation of those values for both components. Taking into account that the competition occurred in the adsorption system, adsorption affinity in the binary

15system should be lower than in single system.

The introduction of fractional loading in Eqs. (10) and (11) indicates that the contribution of surface coverage of a Fig. 10. Modified extended Langmuir isotherm for lead and mercury in binary system for bentonite, NCC and composite. Table 2 Adsorption parameters for extended Langmuir model. Adsorbent Initial concentration q1 q2 qm,1 (mmol/g) qm,2 (mmol/g) KL,1 (L/mmol) KL,2 (L/mmol) Q1 (kJ/mol) Q2 (kJ/mol) Co,Pb (mmol/L) Co,Hg (mmol/L) Bentonite NCC Composite 0.48 0.50 0.97 0.50 1.45 0.50 0.48 0.50 0.97 0.50 1.45 0.50 0.66 0.34 0.67 0.33 0.67 0.33 0.68 0.32 0.68 0.32 0.69 0.31 0.70 0.30 0.70 0.30 0.70 0.30 0.16 0.05 0.17 0.05 0.21 0.05 0.21 0.05 0.21 0.05 0.28 0.06 0.28 0.06 0.28 0.06 0.28 0.06 5.21 3.61 5.23 3.60 5.26 3.59 8.18 4.57 8.22 4.55 8.27 4.52 10.87 4.99 10.91 4.96 10.97 4.92 8.31 ?6.62 ?4.74 20.00 ?12.61 ?6.46 particular component towards the heat of adsorption. The orig- inal Langmuir equation assumes that

30there is no interaction be- tween adsorbed molecules implying that the heat of adsorption is independent of coverage

[27], and for real multicomponent sys- tem this assumption is not truly correct. By substituting Eqs. (8)e(11), the extended Langmuir model becomes qe;1 ¼ qm;1q11 þ KL;1ðsingleÞ QK1qL1;þ1QðQs1i2qnð11g? leqÞ1Þ CQe;11q1þþQQK12qLð1;12?ðsqi1nÞgleCÞe;1 Q1qQ12þðQ1?2ðq11?Þq1Þ Ce;2 (12) qe;2 ¼ qm;2ð1 ? q1Þ KL;2ðsingleÞ Q1qQ12þðQ1?2ðq11?Þq1Þ Ce;2 (13) 1 þ KL;1ðsingleÞ Q1q1 Q1q1þQ2ð1? q1Þ Ce;1 þ KL;2ðsingleÞ Q1qQ1þ2ðQ1?2ðq11?Þq1Þ Ce;2 This fractional loading ðqÞ was originally developed by Langmuir experimental data for the single system. The value of optimum pH which represents the fraction of the surface [28]. Now by assuming for binary systems is not much different with the single system, monolayer coverage of surface active sites, then in the binary sys- which confirms that the adsorption mechanism in both of single tem, the total of fractional loading must be equal to unity and binary systems was similar. The adsorption capacity for lead is ðq1 þ q2 ¼ 1Þ since the surface active sites will be occupied by either higher than mercury in both systems; this phenomenon indicated

7 of Pb(II) or Hg(II) to form the monolayer surface

coverage. The value

10that functional group plays a major role in the adsorption

mecha- of Q can be obtained by the following equations: nisms. The modified model could represent the binary experi- KL;1ðsingleÞðTÞ 1/4 KLo;1 exp RT Q mental data very well. 1 (14) References KL;2ðsingleÞðTÞ ¼ KLo;2 exp RT Q 2 (15) [1] G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci. 30 (2005) 38e70. [2] S.J. Einchorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, where R is the ideal gas constant (0.008314 kJ K?1 mol?1), T is the S.J. Rowan, S. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nakagaito, A. Mangalam, temperature (K), KL is the Langmuir affinity constant that can be J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund, T. Peijs, Review: current determined from a single system (L/mmol). The value of KLo and Q international research into cellulose nanofibers and nanocomposites, J. Mater. Sci. 45 (2010) 1e33. are simply acquired through linear regression plotting of KLösingleÞ [3] UNECE/FAO, Forest Products Annual Market Review 2014e2015, United versus 1=T in which KLo and Q are obtained as intercept and slope, Nation Publications, 2015. respectively [29]. [4] R. Batmaz, N. Mohammed, M. Zaman, G. Minhas, R.M. Berry, K.C. Tam, Cel- Iulose nanocrystals as promising adsorbents for the removal of cationic dyes, To get a clear idea whether this proposed model is applicable, Cellulose 21 (2014) 1655e1665. the experimental data (0.48 mmol/L Pb(II) þ 0.50 mmol/L Hg(II)) [5] S. Ismadji, D.S. Tong, F.E. Soetaredjo, A. Ayucitra, W.H. Yu, C.H. Zhou, Bentonite were plotted against the original extended Langmuir and modified hydrochar composite for removal of ammonium from Koi fish tank, Appl. Clay extended Langmuir and the results are presented in Fig. 9. It can be Sci. 119 (2016) 146e154. [6] H.H. Murray, Applied Clay Mineralogy: Occurrences, Processing and Applica- seen that the original extended Langmuir (Fig. 9a) can not fit the tion of Kaolins, Bentonites, PalygorskiteeSepiolite, and Common Clays, first experimental data well. On the other hand, the modified extended ed., Elsevier, Amsterdam, 2007. Langmuir can fit the experimental data very well, confirming that [7] R. Srinivasan, Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking the competition between adsorbates molecules occurred during water, Adv. Mater. Sci. Eng., http://dx.doi.org/10.1155/2011/872531 (Article the adsorption process. The binary adsorption of Pb(II) and Hg(II) ID 872531). onto bentonite, NCC and nanocomposite were fitted using Eqs. (12) [8] C.N. Wu, T. Saito, S. Fujisawa, H. Fukuzumi, A. Isogai, Ultrastrong and high gas barrier nanocellulose/clay-layered composites, Biomacromolecules 12 (2013) and (13) and the results are presented in Fig. 10 and Table 2. It can 1927e1932. be seen that at the same concentration of lead and mercury in the [9] H.G. Higgins, C.M. Stewart, K.J. Harrington, Infrared spectra of cellulose and mixtures, the fractional loading of Hg(II) (q2) is smaller than Pb(II), related polysaccharides, J. Polym. Sci. 51 (1961) 59e84. [10] P. Garside, P. Wyeth, Identification of cellulosic fibres by FTIR spectroscopy: indicating that Hg(II) is less preferentially adsorbed on all adsor- thread and sigle fibre analysis by attenuated total reflectance, Stud. Conserv. bents. These results have the same trend as the single component 48 (2003) 269e275. adsorption. Even the value of q1 which refers to the fractional sur- [11] J. Lee, S.H. Kim, Y.J. Cho, Y.S. Nam, K.B. Lee, Y. Lee, Characterization and sequence determination of pen inks, read sealing inks, and laser toners by face coverage of Pb(II) increases as the concentration of Pb(II) in the TOF-SIMS and ATR FTIR, Surf. Interface Anal. 46 (2014) 317e321. mixture increases for bentonite and NCC, but it remains unchanged [12] R.A. Merrill, E.G. Bartick, J.H. Taylor III, Forensic discrimination of photocopy for nanocomposite. This shows that composite attained maximum and printer toners. I. The development of an infrared spectral library, Anal. surface coverage for Pb(II) although the concentration of Pb(II) was Bioanal. Chem. 376 (2003) 1272e1278. [13] F.E. Soetaredjo, A. Ayucitra, S. Ismadji, A.L. Maukar, KOH/bentonite catalysts three times higher than the initial concentration. The adsorption of for transesterification of palm oil to biodiesel, Appl. Clay Sci. 53 (2011) Pb(II) and Hg(II) onto bentonite is exothermic, while both NCC and 341e346. composite show endothermic adsorption. This correlates well with [14] A. Kurniawan, H. Sutiono, N. Indraswati, S. Ismadji, Removal of basic dyes in binary system by adsorption using rarasaponinbentonite: revisited of the adsorption in single system in which the adsorption capacity of extended langmuir model, Chem. Eng. J. 189e190 (2012) 264e274. NCC and composite increased with increasing temperature. [15] Y. Li, J. Zhan, L. Huang, H. Xu, H. Li, R. Zhang, S. Wu, Synthesis and photo- catalytic activity of a bentonite/g-C3N4 composite, RSC Adv. 4 (2014) 11831e11839. 4. Conclusion [16] L. Heath, W. Thielemans, Cellulose nanowhisker aerogels, Green Chem. 12 (2010) 1448e1453. [17] Y. Peng, D.J. Gardner, Y. Han, A. Kiziltas, Z. Cai, M.A. Tshabalala, Influence of The feasibility of using NCC e bentonite nanocomposite as drying method on the material properties of nanocellulose I: thermostability adsorbent for the removal of Pb(II) and Hg(II) was presented in this and crystallinity, Cellulose 20 (2013) 2379e2392. paper. The adsorption studies were conducted in single and binary [18] Y. Sarikaya, M. Onal, B. Baran, T. Alemdaroglu, The effect of thermal treatment on some of the physicochemical properties of a bentonite, Clays Clays Miner. systems. Langmuir isotherm gives better fit through all of the 48 (2000) 557e562. [19] H.C.H. Hahne, W. Kroontje, Significance of pH and chloride concentration on behavior of heavy metal pollutants: mercury(II), Cadmium(II), Zinc(II), and Lead(II), J. Environ. Qual. 2 (1973) 444e450. [20] W.R. Knocke, L.H. Hemphill, Mercury(II) sorption by waste rubber, Water Res. 15 (1981) 275e282. [21] L. Pauling, The Nature of the Chemical Bond, third ed., Cornell University, Ithaca, NY, 1960. [22] A. Bondi, van der Waals volumes and radii, J. Phys. Chem. 68 (1964) 441e451. [23] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963) 3533e3539. [24] H.V. Olphen, Interlayer Forces in Bentonite, Publication No. 40, Exploration and Production Research Division, Shell Development Co., Houston, Texas, 1954. [25] S.J. Allen, G. McKay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Inter-face Sci. 280 (2004) 322e333. [26] A. Kurniawan, H. Sutiono, N. Indraswati, S. Ismadji, Removal of basic dyes in binary system by adsorption using rarasaponinbentonite: revisited of extended Langmuir model, Chem. Eng. J. 189e190 (2012) 264e274. [27] D.M.

Ruthven, Principles of Adsorption & Adsorption Processes, Wiley-Inter-science, United States of America, 1984. [28] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361e1403. [29] D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998. J.N. Putro

2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 167 168 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 169 170 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 171 172 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 173 174 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 175 176 J.N. Putro 2et al. / Microporous and Mesoporous Materials 246 (2017)

166e177 J.N. Putro et al. / Microporous and Mesoporous Materials 246 (2017) 166e177 177