PENAKAR BENDA CURAH (BERAS) DENGAN BERAT 1 Kg - 10 Kg BERBASIS MCS - 51

SKRIPSI

JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS KATOLIK WIDYA MANDALA SURABAYA

2005

LEMBAR PENGESAHAN

Ujian skripsi bagi mahasiswa tersebut di bawah ini:

Nama

: Adi Widikdo

NRP

: 5103098031

Telah diselenggarakan pada:

Tanggal

: 8 Juni 2005

Karenanya dengan skripsi ini dinyatakan memenuhi sebagian persyaratan kurikulum guna memperoleh gelar SARJANA TEKNIK di bidang TEKNIK ELEKTRO.

> Surabaya, 8 Juni 2005 Pembimbing

Andrew Joewono, S.T. NIK. 511.97.0291

DEWAN PENGUJI

Ketua

Ir. R. Sumarno, B.Sc NIK. 511.69.0014

Anggota

Ferry A.V. Toar, S.T., M.T. NIK. 511.97.0272

Lanny Agustine, S.T., M.T. NIK. 511.02.0538

FAKULTAS TEKNIK

DEKAN

Ir. Rasional Sitepu, M.Eng

NIK. 511.89.0154

JURUSAN TEKNIK ELEKTRO

Ir.A. F. L. Tobing, M.T.

NIK. 511.87.0130

ABSTRAK

Pada perkembangan dunia saat ini yang juga diikuti oleh perkembangan teknologi mengakibatkan terjadinya pola hidup manusia, perubahan tersebut terjadi di dalam semua bidang. Saat ini manusia dituntut untuk melakukan dan menyelesaikan suatu aktifitas atau pekerjaan dengan cepat. Tanpa terkecuali pekerjaan atau aktifitas yang dilakukan di dalam rumah tangga termasuk didalamnya adalah menakar beras yang akan digunakan untuk memasak. Guna mengatasi hal tersebut dibutuhkanlah suatu alat yang dapat menakar secara otomatis tanpa banyak mengeluarkan tenaga dengan biaya yang terjangkau.

Pada skripsi ini dibuat sebuah alat yang berfungsi memberikan takaran beras secara otomatis dengan berat yang dapat diatur sesuai kebutuhan dengan skala antara 1 Kg sampai 10 Kg dengan perubahan berat setiap 0,5Kg. Sebagai pengendali utama dari perangkat ini adalah mikrokontroler AT89C51.

Perencanaan hardware terdiri dari potensiometer linier sebagai sensor/umpan balik, rangkaian ADC, mikrokontroler dan papan tombol yang merupakan perangkat untuk memberikan inputan pada alat ini. Sedangkan sebagai tampilan digunakan LCD dengan 24X2 karakter. Software yang dibuat dalam bahasa assembly meliputi proses pengiriman data dari sensor posisi melalui ADC, pengolahan data input dan output untuk menjalankan motor melalui rangkaian driver motor serta tampilan outputyang ditampilkan melalui LCD.

KATA PENGANTAR

Puji Syukur Kepada Tuhan yang telah memberkati penulis sehingga dapat menyelesaikan perancangan, pembuatan, dan penulisan skipsi dengan judul "PENAKAR BENDA CURAH (BERAS) DENGAN BERAT 1 kg – 10 kg BERBASIS MCS-51".

Tujuan dari perancangan, pembuatan dan penulisan skipsi ini adalah sebagai salah satu syarat untuk memperoleh kelulusan dengan gelar Sarjana Teknik (ST) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Katolik Widya Mandala Surabaya.

Penulis menyadari penyelesaian skipsi ini tidak dapat selesai tanpa bimbingan, bantuan dan kerja sama dari orang-orang di sekitar penulis. Oleh sebab itu pada kesempatan ini penulis ingin mengucapkan terima kasih kepada:

- 1. Ir. R. Sitepu, M.Eng, Selaku Dekan Fakultas Teknik Universitas Katolik Widya Mandala Surabaya.
- 2. Ir. A. F. L. Tobing, MT, selaku Ketua Jurusan Teknik Elektro, yang membantu dan memberikan ijin pada penulis untuk menyelesaikan skipsi.
- 3. Andrew Joewono, MT, selaku Dosen Wali sekaligus Pembimbing skipsi yang telah memberikan bimbingan, saran dan dorongan dalam menyelesaikan skipsi ini.
- 4. Para dosen Jurusan Teknik Elektro Fakultas Teknik Universitas Katolik Widya Mandala Surabaya yang memberikan bekal ilmupengetahuan guna menyelesaikan skripsi ini.
- 5. Bapak, Ibu, dan keluarga yang telah memberikan semangat agar cepat terselesainya skripsi.
- 6. Suryo, Yanuar, Napi, Ateng, dan teman-teman angkatan 98 yang selalu mendorong dalam menyelesaikan skipsi.
- 7. Teman teman Mudika St. Yusup Karangpilang yang selalu mendorong dalam menyelesaikan skipsi.

8. Teman – teman dan semua pihak yang tidak dapat penulis sebutkan satu persatu, yang telah membantu dalam perencanaan sampai terselesainya skripsi ini.

Semoga Tuhan membalas budi baik semua yang telah membantu penulis dalam menyelesaikan sripsi baik secara langsung maupun secara tidak langsung, dan semoga skripsi ini dapat berguna bagi siapa saja yang membaca terutama bagi perkembangan ilmu pengetahuan pada Universitas Katolik Widya Mandala Tercinta.

Surabaya, Juni 2005

Penulis

DAFTAR ISI

HALAMAN JUDUL	
LEMBAR PENGESAHAN	ii
ABSTRAK	iii
KATA PENGANTAR	iv
DAFTAR ISI	vi
DAFTAR GAMBAR	viii
DAFTAR TABEL	x
BAB I. PENDAHULUAN	
1.1. Latar Belakang	1
1.2. Tujuan	2
1.3. Rumusan Masalah	2
1.4. Batasan Masalah	2
1.5. Sistematika Penulisan	3
BAB II. TEORI PENUNJANG	
2.1 Sensor	5
2.2 Mikrokontroler AT89C51	6
2.2.1. Konstruksi Dasar AT89C51	7
2.2.2. Memori Program	8
2.2.3. Memori Data	10
2.2.4. Memori Level Bit	12
2.2.5. Register Dasar MSC51	14
2.2.6. Reset	15
2.3. Analog To Digital Converter (ADC)	18
2.4. Liquid Crystal Display (LCD)	21
2.5. Driver Motor Stepper ULN2803	23
2.6. Motor <i>Stepper</i>	24

BAB III. PERENCANAAN DAN PEMBUATAN ALAT	
3.1. Diagram Blok Alat	27
3.2. Sistem Mekanik Penakar Benda Curah	28
3.3. Mikrokontroler AT89C51	30
3.4. Analog To Digital Converter(ADC)	31
3.5. Peraga Liquid Crystal Display (LCD)	32
3.6. Papan Tombol/ Keypad	34
3.7. Driver Motor Stepper	35
3.8. Perangkat Lunak	36
BAB IV. PENGUKURAN DAN PENGUJIAN	
4.1. Pengukuran Sensor	37
4.2. Cara Pengoperasian Alat	44
4.3. Pengujian Alat	45
BAB V. KESIMPULAN	48
Daftar Pustaka	50
Lampiran 1 : Gambar Rangkaian Lengkap	51
Lampiran 2 : Diagram Alir Program	52
Lampiran 3 : Listing Program	54
Lampiran 4 : Proses Perubahan Konstruksi Mekanik	62
Lampiran 5 : Biodata	65

DAFTAR GAMBAR

2.1.	Perbedaan Output Potensiometer Linier dan Logaritmik	6
2.2.	Konfigurasi Pin AT89C51	7
2.3.	Konstruksi Dasar At89C51	7
2.4.	Peta Memori Program	9
2.5.	Peta Memori Data	12
2.6.	Denah Memori Data	13
2.7.	RC Power On Reset	17
2.8.	Push Button Reset	17
2.9.	Voltage Threshold Reset	17
2.10.	Rangkaian RC Power On Reset dan Vc, Vr terhadap V & t	17
2.11.	Waktu Minimal	18
2.12.	Konfigurasi Pin ADC0804	20
2.13.	Bentuk Tampilan LCD	21
2.14.	Konfigurasi Pin LCD 24X2	22
2.15.	Sekuensial Data data dan ke LCD 24X2	22
2.16.	Konfigurasi Pin ULN2803	24
2.17.	Skematik Motor Stepper	26
3.1.	Diagram Blok Alat Penakar Benda Curah Digital	27
3.2.	Konstruksi Mekanik Penakar Benda Curah Digital	29
3.3.	Rangkaian Mikrokontroler AT89C51	31
3.4.	Rangkaian ADC 0804	32
3.5.	Rangkaian LCD dengan AT89C51	33
3.6.	Rangkaian Papan Tombol / Keypad	34
3.7.	Rangkaian Penggerak Motor Stepper	35
4.1	Perubahan Berat Terhadap Sudut Putaran Sensor	39
4.2.	Perubahan Berat Terhadap Resistansi Sensor	39
4.3.	Perubahan Sudut Putaran Terhadap Resistansi	40
4.4.	Pengukuran Perubahan Output Sensor (potensiometer)	40
4.5.	Perubahan Berat Terhadap Out Sensor	41
4.6.	Pengukuran Perubahan Output ADC	42

4.7.	Hubungan Antara Perubahan Berat Dengan Vout Sensor	43	
4.8.	Hubungan Antara Perubahan Berat Dengan Output ADC	43	
4.9.	Hubungan Antara Perubahan Output Sensor dengan Perubahan		
	Output ADC	44	
4.10.	Hubungan Antara % Kesalahan Dengan Berat Input	47	

DAFTAR TABEL

3.1.	Tabel Kebenaran Gerbang NOR	33
3.2.	Fungsi Tombol	35
4.1.	Perubahan Resistansi dan Sudut Putaran Sensor (potensiometer)	38
4.2.	Perubahan Nilai Sensor	41
4.3.	Perubahan Nilai Output ADC	42
4.4.	Hasil Pengujian Alat	46