PERANCANGAN DAN PEMBUATAN MULTIMETER DIGITAL AUTO RANGE

SKRIPSI

Oleh:

NAMA: LINO ERNESTO

NRP : 5103096045

No. INDUK	0452/02
TGL TERIMA	30 Jan 102
F. [F H	FTK
No EUKU	9-77
	Ern
	P-1
KCPE KE	1 (SATU)

JURUSAN TEKNIK ELEKTRO
FAKULTAS TEKNIK
UNIVERSITAS KATOLIK WIDYA MANDALA
SURABAYA
2001

LEMBAR PENGESAHAN

Ujian Skripsi bagi mahasiswa tersebut di bawah ini:

NAMA

LINO ERNESTO

NRP

5103096045

NIRM

: 96.7.003.31073,44923

Telah diselenggarakan pada:

Tanggal 7 AGL Karenanya yang ini dinyatakan telah memenuhi sebagi memperoleh gelar SARJANA TEKI 7 AGUSTUS 2001 Ir. Melani S Joewono. ST. embimbing II Pembimbing I

F.Lumban Tobing, MT.

Anggota

Albert Gunadhi, ST. MT

Anggota

JURUSAN TEKNIK ELEKTRO

Ketua

Albert Gunadhi, ST. MT NIK 511.94.0209

FAKULTAS TEKNI Dekan

> Ir. Nani Indraswati NIK 521.86.0121

ABSTRAK

Kemajuan teknologi *digital* telah menimbulkan dampak positif dalam aplikasinya terhadap produk elektronika saat ini. Salah satu teknologi digital yang berkembang pesat beberapa tahun terakhir ini adalah pemakaian alat ukur. Terutama alat ukur multimeter *digital*. Alat ukut ini memiliki banyak keunggulan dibandingkan alat ukur *analog*.

Pada skripsi ini akan diperkenalkan suatu alat ukur multimeter digital auto range yang cukup unggul dari alat ukur multimeter digital auto range biasa.

Dalam pembuatan ini Integrated Circuit yang digunakan adalah ICL 7139 dengan peraga Liquid Crystal Display. Keunggulan dari IC ini adalah kemampuan auto range dengan menggunakan prinsip ADC integrasi lereng ganda (dual slope), besaran listrik (analog) yang masuk dilakukan operasi intergasi secara matematik sehingga akan menghasilkan tegangan keluaran (digital) yang sebanding dengan integrasi masukan (analog). Apabila hasil dari keluaran tersebut sesuai dengan, misal: kisar (range) 1, maka akan ditampilkan pada perada LCD. Apabila hasil tidak memenuhi kisar tersebut (under range) maka akan diumpankan menuju kisar (range) 2, begitu seterusnya sampai sesuai dengan kisar yang ditentukan (under range). Dan apabila didalam pengukuran masih tidak ada kisar (range) yang sesuai maka pada peraga LCD akan ditampilkan huruf "OL", yang artinya over load atau diatas ambang batas. Fasilitas lainnya dari alat ukur ini adalah kemampuan untuk menahan tampilan pada peraga atau yang biasa disebut fasilitas memori " hold ". dengan cara menahan clock pada internal IC – ICL7139 maka keluaran pada peraga LCD akan tertahan / tetap dari hasil keluaran yang terakhir.

Keunggulan alat ini hanya memerlukan sedikit komponen – komponen external untuk mewujudkan rangkaian lengkap dari alat multimeter digital auto range . Hasil pengukuran alat ini yang langsung ditampilkan pada peraga LCD , sehingga menghilangkan kerugian kesalahan pembacaan yang biasa terjadi pada alat ukur analog .

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa yang telah melimpahkan segala rahmat dan karuniaNya, sehingga penyusun telah dapat menyelesaikan skripsi dengan judul:

PERANCANGAN DAN PEMBUATAN MULTIMETER DIGITAL AUTO RANGE

Sripsi ini merupakan salah satu syarat guna mencapai gelar Sarjana Teknik Jurusan Elektro pada Fakultas Teknik Universitas Katolik Widya Mandala Surabaya.

Selama menyelesaikan skripsi ini, penyusun telah banyak menerima bimbingan dan saran – saran yang sangat membantu dari berbagai pihak. Maka pada kesempatan ini penyusun mengucapkan terima kasih sebesar – besarnya kepada yang terhormat:

- Rektor Universitas Katolik Widya Mandala Surabaya yang memberikan kesempatan kepada penyusun untuk menempuh studi di Universitas Katolik Widya Mandala Surabaya.
- 2. Dekan Fakultas Teknik Universitas Katolik Widya Mandala Surabaya.
- 3. Ketua Jurusan Teknik Elektro Universitas Katolik Widya Mandala Surabaya.
- 4. Dosen Wali yang telah banyak memberikan pengarahan.

5. Dosen Pembimbing I yang telah banyak memberikan bimbingan kepada penyusun sehingga skripsi ini dapat terselesaikan dengan baik.

 Dosen Pembimbing II yang telah banyak membantu memberikan bimbingan kepada penyusun sehingga skripsi ini dapat terselesaikan dengan baik.

7. Para dosen yang telah banyak membantu, baik berupa saran maupun petunjuk kepada penyusun.

 Kepada orang tua dan saudara penyusun yang telah memberikan dorongan baik berupa material maupun spiritual.

9. Semua teman – teman yang telah membantu , Sudiarto , Afu , Yusman, Ferry , Jimmi , Sudijanto dan semua pihak yang tak dapat penyusun sebutkan satu persatu , yang telah memberikan bantuan dan dukungan hingga skripsi ini dapat terselesaikan dengan baik .

Akhir kata, dengan segala kerendahan hati, semoga skripsi ini dapat berguna bagi almamater tercinta dan siapa saja yang membacanya.

Surabaya, Juni 2001

Penyusun

DAFTAR ISI

	hal.
JUDUL	i
HALAMAN PENGESAHAN	ii
ABSTRAK	iii
KATA PENGANTAR	iv
DAFTAR ISI	vi
DAFTAR GAMBAR	ix
DAFTAR TABEL	xi
BAB I PENDAHULUAN	1
1.1 Latar belakang	1
1.2 Permasalahan	1
1.3 Maksud dan tujuan	1
1.4 Pembatasan masalah	2
1.5 Metodologi	2
1.6 Sistematika	3
BAB II TEORI PENUNJANG	4
2.1 Multimeter digital	4

2.2	Saklar pil	ihan	5
2.3	Penguku	ran tegangan DC	5
2.4	Penguku	ran arus DC	7
2.5	Penguku	ran tahanan	8
2.6	Blok diagram ICL 7139		9
	2.6.1	Control logic dan auto range logic	9
	2.6.2	Pengaturan auto range, rangel integrate	10
	2.6.3	Range 1 deintegrate	10
	2.6.4	Range 2	11
	2.6.5	Range 3	11
	2.6.6	Range 4	11
	2.6.7	Osilator	12
	2.6.8	Deferensiator RC	14
	2.6.9	Integrator	16
	2.6.10	Konverter analog ke digital	19
	2.6.11	Prinsip integrasi lereng ganda(dual slope)	20
	2.6.12	Pembanding	20
	2.6.13	Pencacah (counter)	21
	2 6.14	Penyearah	22

2.6.15 Liquid Crystal display2	:3
BAB III PERENCANAAN RANGKAIAN 2	25
3.1 Pendahuluan 2	:5
3.2 Blok diagram dan perencanaan rangkaian 2	6
3.3 Masukan (input) 2	:6
3.4 Rangkaian pasif	27
3.5 Cara kerja rangkaian pada analog section dan	
pelemahan sebagai batas range 2	8
3.5.1 Cara kerja pengukuran arus DC	; 1
3.5.2 Cara kerja pengukuran tahanan (ohm) 34	4
3.6 Peraga liquid crystal display	8
3.7 Perhitungan perancangan	19
BAB IV HASIL PENGUJIAN ALAT 4	4
BAB V KESIMPULAN 4	11
5.1 Kesimpulan 5	6
DAFTAR PUSTAKA	57
LAMPIRAN	

DAFTAR GAMBAR

GAMBAR		hal.
2.1	Blok diagram multimeter digital auto range	5
2.2	Diagram pengukuran tegangan DC pada ICL7139	6
2.3	Diagram pengukuran arus DC pada ICL7139	7
2.4	Diagram pengukuran resistor pada ICL7139	8
2.5	Blok diagram ICL 7139	9
2.6	Blok diagram prinsip kerja osilator	13
2.7	Rangkaian dalam osilator dari data sheet IC ICL7139	14
2.8	Rangkaian deferensiator RC	15
2.9	Pulsa masukan persegi menghasilkan keluaran yang kecil	15
2.10	Bentuk gelombang tegangan	16
2.11	Rangkaian dasar integrator	18
2.12	Masukan berbentuk pulsa persegi	18
2.13	Keluaran berbentuk slope	18
2.14	Rangkaian dasar ADC (dual slope)	20
2.15	Op amp sebagai pembanding	21
2.16	Pengukuran bentuk gelombang pada ICL 7139	21

2.17	Rangkaian dasar AC ke DC converter	23
2.18	Liquid crystal display	24
3.1	Blok diagram multimeter digital auto range	25
3.2	Diagram pengukuran tegangan DC pada ICL 7139	28
3.2.1	Pembagi tegangan untuk 0,4 – 4 – 40 – 400 volt	29
3.3	Blok rangkaian dasar cara kerja pengukuran arus DC	31
3.4	Diagram pengukuran arus DC pada ICL 7139	33
3.5	Blok rangkaian dasar cara kerja pengukuran resistor	35
3.6	Diagram pengukuran resistor pada ICL 7139	37
3.7	Data pinout IC ICL 7139	38
3.8	Data pinout liquid crystal display	39

•

DAFTAR TABEL

TABEL		hal.
4.1	Pengujian alat untuk pengukuran resistor	42
4.2	Pengujian pengukuran tegangan DC	46
4.3	Pengujian pengukuran tegangan AC	48
4.4	Pengujian pengukuran arus DC	50
4.5	Pengujian pengukuran arus AC	52
4.6	Pengujian pengukuran arus DC (battery test)	54