RESEARCH PROJECT

DECOLOURIZATION OF HAZARDOUS DYES USING BENTONITE-TiO₂ COMPOSITE

Submitted by:

Meri Winda Masnona Kartika SariNRP. 5203014041Livy LaysandraNRP. 5203014056

DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING WIDYA MANDALA CATHOLIC UNIVERSITY SURABAYA 2017

LETTER OF APPROVAL

The research entitled :

Decolourization of Hazardous Dyes using Bentonite - TiO₂ Composite Which was conducted and submitted by :

Name Stident ID

: Meri Winda Masnona Kartika Sari : 5203014041

has been approved and accepted as one of requirement for **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering Widya Mandala Surabaya Catholic University by following supervisors and has been examined by the committees on May 31th 2017.

Surabaya, June 2nd 2017

Eq-Supervisor

Felycia Edy Soetaredjo, Ph.D NIK. 521.99.0391

Sel

Suryadi Ismadji, Ph. D NIK. 521.93.0918

Supervisor

Chairmain M.S. Dr.Ir.Suratno L

NIK. 521.87.0127

Member

Sandy Budi H., Ph.D. NIK, 521,99.0401

Dean of Engineering Faculty Survair Ismediji, Ph.D NIK-521.93.0198

Member

The Committees

Member

Wenny I., Ph.D. NIK, 521.97.0284

Felycia Edy S., Ph.D. NIK. 521.99.0391

Survadi Ismadii, Ph. D

NIK. 521.93.0918

Authorized by

Head of Chemical 1 WI Engineering Department indy Budi Hartono, Ph.D. 521.99.0401 VIK UIRUSAN

LETTER OF APPROVAL

The research entitled :

Decolourization of Hazardous Dyes using Bentonite - TiO2 Composite Which was conducted and submited by :

Name	: Livy Laysandra
Stident ID	: 5203014056

has been approved and accepted as one of requirement for **Bachelor of Engineering** degree in Chemical Engineering Department, Faculty of Engineering Widya Mandala Surabaya Catholic University by following supervisors and has been examined by the committees on May 31th 2017.

Surabaya, June 2nd 2017

Supervisor

Shif vadi Ismadii, Ph. D

NIK. 521.93.0918

Chairmain

Dr.Ir.Suratno L., M.S. NIK. 521.87.0127

Member

Sandy Budi H., Ph.D. NIK. 521.99.0401

Dean of Engineering Faculty 93.0198

LIK WIDP

Co-Supervisor

Julya. My w.

Felycia Edy Soetaredjo, Ph.D NIK. 521.99.0391

The Committees

Sekre Survadi Isr

NIK. 521.93.0918

Member IN

Wenny I., Ph.D.

NIK. 521.97.0284

Member

Felycia Edy S., Ph.D. NIK, 521,99,0391

Authorized by Head of Chemical Engineering Department * * * * * * * * * * * *

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Surabaya Catholic University :

Name: Meri Winda Masnona Kartika SariStident ID: 5203014041

Agree to transfer the copyright of my thesis/paper :

Title :

Decolourization of Hazardous Dyes using Bentonite - TiO2 Composite

To be published in internet or other media (Digital Library of Widya Mandala Surabaya Catholic University) for academic purposes according to copyright law in Indonesia.

NRP. 5203014041

COPY RIGHT AGREEMENT

In order to support the development of science and technology, I am as the student of Widya Mandala Surabaya Catholic University :

Name	: Livy Laysandra
Stident ID	: 5203014056

Agree to transfer the copyright of my thesis/paper :

Title :

Decolourization of Hazardous Dyes using Bentonite - TiO2 Composite

To be published in internet or other media (Digital Library of Widya Mandala Surabaya Catholic University) for academic purposes according to copyright law in Indonesia.

NRP. 5203014056

LETTER OF DECLARATION

I declare that this research was my own work and does not contain any material that belongs on the other, unles it was stated in the references. Should it is known that this research belongs to others. I aware and accept the consequences that this research cannot be used as a requirement to achieve a **Bachelor** of Engineering degree.

Surabaya, June 2nd 2017

Student,

HETERAL A AEF873873957

Meri Winda Masnona K.S NRP.5203014041 Livy Laysandra NRP.5203014056

LIST OF CONTENT

RESEARCH PROJECT	i
LETTER OF APPROVAL	ii
ABSTRACT	xxii
LIST OF CONTENT	X
LIST OF FIGURE	xiii
LIST OF TABLE	xvi
CHAPTER I INTRODUCTION	1
I.1. Background	1
I.2. Objectives	
I.3. Problems Limitation	
CHAPTER II LITERATURE REVIEW	4
II.1. Dyes	4
II.1.1. Methylene Blue	4
II.1.2. Rhodamine B	6
II.2. Bentonite	7
II.2.1. Na Bentonite – Swelling bentonite	7
II.2.2. Ca Bentonite – Non Swelling bentonite	9
II.3. Titanium Dioxide	9
II.3.1. Photocatalyst	11
II.3.2. TiO ₂ as photocatalyst	
II.4. Adsorption	
II.4.1. Adsorption Isotherm	
II.4.1.1. Langmuir Isotherm Model	16
II.4.1.2. Freundlich Isotherm Model	
II.4.2. Adsorption Kinetics	

CHAPTER III RESEARCH METHODOLOGY	19
III.1. Experimental Design	19
Figure III. 3 The schematic diagram of the photodegradation process	21
Figure III. 4 The Schematic Diagram of Determining optimum pH	21
III.2. Process Variables	22
III.2.1. Dependent Variables	22
III.2.2. Independent Variables	22
III.3. Materials	23
III.4. Equipment	23
III.5. Research Procedure	24
III.5.1. Activation of Bentonite	24
III.5.2. Preparation of bentonite-TiO ₂ composite	24
III.5.3. Adsorption process of determining the optimum pH	24
III.5.4. Isotherm Adsorption Process	25
III.6. Data Processing	25
CHAPTER IV RESULTS AND DISCUSSION	27
IV.1. Characterization of Adsorbents	27
IV.2. Adsorption Isotherm	29
IV.3. Adsorption Kinetic	53
IV.4. Effect of pH and Temperature	71
CHAPTER V CONCLUSION AND RECOMENDATION	26
IV.1. Conclusion	26
IV.2. Recomendation	26
REFERENCES	74
APPENDIX A	85
APPENDIX B	88
APPENDIX C	90
APPENDIX D	101

APPENDIX E	116
APPENDIX F	138

LIST OF FIGURE

Figure II. 1 Chemical Structure of Methylene Blue5
Figure II. 2. Chemical Structure of Rhodamine B6
Figure II. 3. Structure of (a) anatase (b) rutile (c) brookite10
Figure II. 4. Photoexitation scheme followed by deexitation on the
surface semiconductors12
Figure III. 1. Activation Bentonite20
Figure III. 2. The Schematic Diagram of Composite Bentonite-TiO2
Preparation by impregnation method20
Figure IV. 1. FTIR result of (a) TiO ₂ , (b) Ca-bentonite, (c)
B+5%TiO ₂ , (d) B+10%TiO ₂ , and (e) B+20%TiO ₂ 28
Figure IV. 2. Adsorption of Methylene Blue using B+5%TiO ₂ with
UV irradiation where: (a) Langmuir-model, (b) Langmuir-modif fit,
(c) Freundlich model
Figure IV. 3. Adsorption of Methylene Blue using B+10%TiO ₂ with
UV irradiation where: (a) Langmuir-model, (b) Langmuir-modif fit,
(c) Freundlich model
Figure IV. 4. Adsorption of Methylene Blue using B+20%TiO ₂ with
UV irradiation where: (a) Langmuir-model, (b) Langmuir-modif fit,
(c) Freundlich model
Figure IV. 5. Adsorption of Methylene Blue using Ca-bentonite
without UV irradiation where: (a) Langmuir-model, (b) Freundlich
model
Figure IV. 6. Adsorption of Methylene Blue using B+5%TiO ₂
without UV irradiation where: (a) Langmuir-model, (b) Freundlich
model
Figure IV. 7. Adsorption of Methylene Blue using B+10%TiO ₂
without UV irradiation where: (a) Langmuir-model, (b) Freundlich
model

Figure IV. 8. Adsorption of Methylene Blue using B+20%TiO₂ without UV irradiation where: (a) Langmuir-model, (b) Freundlich Figure IV. 9. Adsorption of Rhodamine B using B+5%TiO₂ with UV irradiation where: (a) Langmuir-model, (b) Langmuir-modif fit, (c) Figure IV. 10. Adsorption of Rhodamine B using B+10%TiO₂ with UV irradiation where: (a) Langmuir-model, (b) Langmuir-modif fit, Figure IV. 11. Adsorption of Rhodamine B using B+20%TiO₂ with UV irradiation where: (a) Langmuir-model, (b) Langmuir-modif fit, Figure IV. 12. Adsorption of Rhodamine B using Ca-bentonite without UV irradiation where: (a) Langmuir-model, (b) Freundlich Figure IV. 13. Adsorption of Rhodamine B using B+5%TiO₂ without UV irradiation where: (a) Langmuir-model, (b) Freundlich model .44 Figure IV. 14. Adsorption of Rhodamine B B+10%TiO₂ without UV irradiation where: (a) Langmuir-model, (b) Freundlich model45 Figure IV. 15. Adsorption of Rhodamine B using B+20%TiO₂ without UV irradiation where: (a) Langmuir-model, (b) Freundlich model......46 Figure IV. 16. Kinetics plot and the model fit of Pseudo-first and second order for the adsorption of MB at 30°C with UV irradiation : (a) B+5%TiO₂, (b) B+10%TiO₂, (c) B+20%TiO₂......57 Figure IV. 17. Kinetics plot and the model fit of Pseudo-first and second order for the adsorption of MB at 30°C without UV irradiation : (a) Ca-bentonite, (b) B+5%TiO₂, (c) B+10%TiO₂, (d) B+20%TiO₂.....61 Figure IV. 18. Kinetics plot and the model fit of Pseudo-first and second order for the adsorption of RhB at 30°C with UV irradiation : (a) B+5%TiO₂, (b) B+10%TiO₂, (c) B+20%TiO₂.....64 Figure IV. 19. Kinetics plot and the model fit of Pseudo-first and second order for the adsorption of RhB at 30°C with UV irradiation : (a) B+5%TiO₂, (b) B+10%TiO₂, (c) B+20%TiO₂.....68

Figure C. 1. Determining the pH of the point of zero charge (pHPZC) of: (a) Ca-bentonite. (b) B+5%TiO₂, (c) B+10%TiO₂, (d) B+20%TiO₂ by pH shift method93 Figure C. 2. Effect of pH on the adsorption of MB onto: (a) Ca-bentonite, (b) B+5%TiO₂, (c) B+10%TiO₂, (d) B+20%TiO₂.......98 Figure C. 3. Effect of pH on the adsorption of RhB onto: (a) Ca-bentonite, (b) B+5%TiO₂, (c) B+10%TiO₂, (d) B+20%TiO₂.......100

LIST OF TABLE

Tabel II. 1. Recent Composite Studies 14
Tabel IV. 1. FTIR assignments of bentonite and BTC29
Tabel IV. 2. The Langmuir parameter for adsorption of MB onto
bentonite titanium dioxide composite with UV irradiations at various
temperature
Tabel IV. 3. The Langmuir-modif parameter for adsorption of MB
onto bentonite titanium dioxide composite with UV irradiations at
various temperature
Tabel IV. 4. The Freundlich parameter for adsorption of MB onto
bentonite titanium dioxide composite with UV irradiations at various
temperature
Tabel IV. 5. The Langmuir parameter for adsorption of MB onto Ca-
bentonite and bentonite titanium dioxide composite without UV
irradiations at various temperature48
Tabel IV. 6. The Freundlich parameter for adsorption of MB onto
Ca-bentonite and bentonite titanium dioxide composite without UV
irradiations at various temperature49
Tabel IV. 7. The Langmuir parameter for adsorption of RhB onto
bentonite titanium dioxide composite with UV irradiations at various
temperature
Tabel IV. 8. The Langmuir-modif parameter for adsorption of RhB
onto bentonite titanium dioxide composite with UV irradiations at
various temperature
Tabel IV. 9. The Freundlich parameter for adsorption of RhB onto
bentonite titanium dioxide composite with UV irradiations at various
temperature

Tabel IV. 10. The Langmuir parameter for adsorption of RhB onto
Ca-bentonite and bentonite titanium dioxide without UV irradiations
at various temperature51
Tabel IV. 11. The Freundlich parameter for adsorption of RhB onto
Ca-bentonite and bentonite titanium dioxide without UV irradiations
at various temperature51
Tabel IV. 12. Parameter constant of Pseudo-first and second order
for MB uptake onto BTC with UV irradiation69
Tabel IV. 13. Parameter constant of Pseudo-first and second order
for MB uptake onto Ca-bentonite and BTC without UV irradiation
Tabel IV. 14. Parameter constant of Pseudo-first and second order
for RhB uptake onto BTC with UV irradiation70
Tabel IV. 15. Parameter constant of Pseudo-first and second order
for RhB uptake onto Ca-bentonite and BTC without UV irradiation.
Tabel C. 1. Data pH PZC of Ca-bentonite90
Tabel C. 2. Data pH PZC of B+5%TiO290
Tabel C. 3. Data pH PZC of B+10%TiO291
Tabel C. 4 Data pH PZC of B+20%TiO291
Tabel C. 5. The data of pH Optimum to adsorp MB using Ca-
bentonite94
Tabel C. 6. The data of pH Optimum to adsorp MB using B+5%TiO
Tabel C. 7. The data of pH Optimum to adsorp MB using
B+10%TiO ₂ 95
Tabel C. 8. The data of pH Optimum to adsorp MB using
B+20%TiO ₂ 95
Tabel C. 9. The data of pH Optimum to adsorp RhB using Ca-
bentonite95

Tabel C. 10. The data of pH Optimum to adsorp RhB using
B+5%TiO ₂ 96
Tabel C. 11. The data of pH Optimum to adsorp RhB using
B+10%TiO ₂ 96
Tabel C. 12. The data of pH Optimum to adsorp RhB using
B+20%TiO ₂ 96
Tabel D. 1. Data Isotherm Advartion process of MB for B+5%TiOa
composite with LIV irradiation at various temperature
Tabal D 2 Data Isotherm Advartion process of MB for
$R \pm 10\%$ TiO, composite with LW irradiation at various temperature
10701102 composite with 0 v infatiation at various temperature
Tabel D 3 Data Isotherm Advantion process of MB for
Rentonite=20% TiO, composite with LW irradiation at various
Temperature 102 composite with 0 v inadiation at various
Temperature
Partonite et various temperature
Tabal D. 5. Data lastharma Adaamtian nurseasa af MD far
Tabel D. 5. Data Isotherm Adsorption process of MB for
Bentonite+5% 10_2 composite without UV irradiation at 30°C 105
Tabel D. 6. Data Isotherm Adsorption process of MB for
Bentonite+10%11O ₂ composite without UV Radiation at various
temperature
Tabel D. 7. Data Isotherm Adsorption process of MB for
Bentonite+20%TiO ₂ composite without UV irradiation at various
temperature
Tabel D. 8. Data Isotherm Adsorption Process of RhB for Ca-
Bentonite at 30°C without UV irradiation
Tabel D. 9. Data Isotherm Adsorption Process of RhB for B+5%TiO ₂
at 30°C with UV irradiation109
Tabel D. 10. Data Isotherm Adsorption Process of RhB for
B+10%TiO ₂ at 30°C with UV irradiation110

Tabel D. 11. Data Isotherm Adsorption Process of RhB for
B+20%TiO ₂ at 30°C with UV irradiation111
Tabel D. 12. Data Isotherm Adsorption Process of RhB for
B+5%TiO ₂ at 30°C without UV irradiation112
Tabel D. 13. Data Isotherm Adsorption Process of RhB for
B+10%TiO ₂ at 30°C without UV irradiation113
Tabel D. 14. Data Isotherm Adsorption Process of RhB for
B+20%TiO ₂ at 30°C without UV irradiation114
Tabel E. 1. Data Kinetics Adsorption of MB using
Bentonite+5% TiO_2 composite with UV irradiation at 200 ppm116
Tabel E. 2. Data Kinetics Adsorption of MB using
Bentonite+5% TiO_2 composite with UV irradiation at 150 ppm117
Tabel E. 3. Data Kinetics Adsorption of MB using
Bentonite+5% TiO_2 composite with UV irradiation at 100 ppm117
Tabel E. 4. Data Kinetics Adsorption of MB using
Bentonite+10%TiO ₂ composite with UV irradiation at 200ppm118
Tabel E. 5. Data Kinetics Adsorption of MB using
Bentonite+10%TiO ₂ composite with UV irradiation at 150ppm118
Tabel E. 6. Data Kinetics Adsorption of MB using
Bentonite+10%TiO ₂ composite with UV irradiation at 100ppm119
Tabel E. 7. Data Kinetics Adsorption of MB using
Bentonite+20%TiO ₂ composite with UV irradiation at 200ppm119
Tabel E. 8. Data Kinetics Adsorption of MB using
Bentonite+20% TiO_2 composite with UV irradiation at 150 ppm120
Tabel E. 9. Data Kinetics Adsorption of MB using
Bentonite+20% TiO_2 composite with UV irradiation at 100 ppm120
Tabel E. 10. Data Kinetics Adsorption of MB using Ca-Bentonite
composite without UV irradiation at 200ppm121
Tabel E. 11. Data Kinetics Adsorption of MB using Ca-Bentonite
composite without UV irradiation at 150ppm121

Tabel E. 12. Data Kinetics Adsorption of MB using Ca-Bentonite composite without UV irradiation at 100ppm122 Tabel E. 13. Data Kinetics Adsorption of MB using B+5%TiO₂ Tabel E. 14. Data Kinetics Adsorption of MB using B+5%TiO₂ Tabel E. 15. Data Kinetics Adsorption of MB using B+5%TiO₂ Tabel E. 16. Data Kinetics Adsorption of MB using B+10%TiO₂ composite without UV Irradiation at at 200ppm124 Tabel E. 17. Data Kinetics Adsorption of MB using B+10%TiO₂ Tabel E. 18. Data Kinetics Adsorption of MB using B+10%TiO₂ composite without UV Irradiation at 100ppm......125 Tabel E. 19. Data Kinetics Adsorption of MB using B+20%TiO₂ composite without UV Irradiation at 200ppm......125 Tabel E. 20. Data Kinetics Adsorption of MB using B+20%TiO₂ Tabel E. 21. Data Kinetics Adsorption of MB using B+20%TiO₂ composite without UV Irradiation at 100ppm......126 Tabel E. 22. Data Kinetics Adsorption of RhB using Bentonite+5%TiO₂ composite with UV irradiation at 200ppm.....127 Tabel E. 23. Data Kinetics Adsorption of RhB using Bentonite+5%TiO₂ composite with UV irradiation at 150ppm.....127 Tabel E. 24. Data Kinetics Adsorption of RhB using Bentonite+5%TiO₂ composite with UV irradiation at 100ppm.....128 Tabel E. 25. Data Kinetics Adsorption of RhB using Bentonite+10%TiO₂ composite with UV irradiation at 200ppm....128 Tabel E. 26. Data Kinetics Adsorption of RhB using Bentonite+10%TiO₂ composite with UV irradiation at 150ppm....129 Tabel E. 27. Data Kinetics Adsorption of RhB using Bentonite+10%TiO₂ composite with UV irradiation at 100ppm....129

Tabel E. 28. Data Kinetics Adsorption of RhB using
Bentonite+20%TiO ₂ composite with UV irradiation at 200ppm130
Tabel E. 29. Data Kinetics Adsorption of RhB using
Bentonite+20%TiO ₂ composite with UV irradiation at 150ppm130
Tabel E. 30. Data Kinetics Adsorption of RhB using
Bentonite+20%TiO ₂ composite with UV irradiation at 100ppm131
Tabel E. 31. Data Kinetics Adsorption of RhB using Ca-Bentonite
without UV irradiation at 200ppm131
Tabel E. 32. Data Kinetics Adsorption of RhB using Ca-Bentonite
without UV irradiation at 150ppm132
Tabel E. 33. Data Kinetics Adsorption of RhB using Ca-Bentonite
without UV irradiation at 100ppm132
Tabel E. 34. Data Kinetics Adsorption of RhB using B+5%TiO ₂
composite without UV irradiation at 200ppm133
Tabel E. 35. Data Kinetics Adsorption of RhB using B+5%TiO ₂
composite without UV irradiation at 150ppm133
Tabel E. 36. Data Kinetics Adsorption of RhB using B+5%TiO ₂
composite without UV irradiation at 100ppm134
Tabel E. 37. Data Kinetics Adsorption of RhB using B+10%TiO ₂
composite without UV irradiation at 200ppm134
Tabel E. 38. Data Kinetics Adsorption of RhB using B+10%TiO ₂
composite without UV irradiation at 150ppm135
Tabel E. 39. Data Kinetics Adsorption of RhB using B+10%TiO ₂
composite without UV irradiation at 100ppm135
Tabel E. 40. Data Kinetics Adsorption of RhB using B+20%TiO ₂
composite without UV irradiation at 200ppm136
Tabel E. 41. Data Kinetics Adsorption of RhB using B+20%TiO ₂
composite without UV irradiation at 150ppm136
Tabel E. 42. Data Kinetics Adsorption of RhB using B+20%TiO ₂

ABSTRACT

The organic dyes from textile has become a common problem in environment. Wastewater containing dyes usually toxic and difficult to be degraded by water, microbes, light and chemical. To solve this problem waste water treatment needs to be done in proper away. One technique dyes wastewater treatment that is easy and low cost to do is adsorption process. The adsorption process usually uses bentonite as adsorbent because bentonite has the ability for ion exchange and swelling. However bentonite as adsorbent is not effective in term of adsorption capacity and not reusable. Organic dyes are difficult for direct adsorption using bentonite, so it should be modified with photocatalysts compounds which can increase the adsorption capacity and accelerate the rate of adsorption.

TiO₂ is the most preferred photocatalyst, because it has been regarded as an efficient photocatalyst for degradation of organic pollutants from water due to its high stability, low cost and environmental friendliness. In this study, bentonite was combined with TiO₂ to produce a composite, which called bentonite titanium dioxide composite (BTC). In this research BTC was applied to adsorb dyes as adsorbent. BTC used as adsorbent because has high adsorbtion capacity. This research is aimed to study the mass of ratio TiO₂ and bentonite in the preparation of adsorbent composite for cationic dyes adsorption in various temperature, pH, with/without UV irradiation on the adsorption capacity) using BTC 10%. This composite can adsorb dyes as much as 0.3571 mmol/g at under UV radiation using 200ppm as initial concentration in 120 minutes at 70°C. The composites were characterized using FTIR to analyse the functional group.