Similarity Index

16%

Similarity by Source

10%

13%

4%

Internet Sources:

Student Papers:

Publications:

FPE by Suryadi Ismadji

From paper 2 (Hippo-hippo 02)

Processed on 16-Feb-2018 06:31 WIB ID: 916684178 Word Count: 5070

sources:

1

3

4

2% match (Internet from 18-Aug-2016) http://benthamopen.com/FULLTEXT/TOCENGJ-10-18

2 1% match (Internet from 05-Sep-2013) http://widyamandala.academia.edu/Suryadilsmadji

1% match (publications)

<u>Sparks, D.L..</u> "Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model", Chemical Engineering Science, 20080901</u>

1% match (publications)

Schmitt, W.J.. "The use of entrainers in modifying the solubility of phenanthrene and benzoic acid in supercritical carbon dioxide and ethane", Fluid Phase Equilibria, 19861002

1% match (publications)

de la Fuente, J.C.. "Solubility of boldo leaf antioxidant components (Boldine) in high-pressure carbon dioxide", Fluid Phase Equilibria, 20050831

6

9

1% match (publications)

Pitchaiah, K.C., C.V.S. Brahmmananda Rao, N. Sivaraman, M. Joseph, Giridhar Madras, and Ilia Brondz. "Solubility of dialkylalkyl phosphonates in supercritical carbon dioxide: Experimental and modeling approach", Fluid Phase Equilibria, 2017.

7 1% match (Internet from 05-Sep-2013) http://rsce2012.its.ac.id/search.php

8 1% match (publications)
<u>Mendez-Santiago, J.. "The solubility of solids in supercritical fluids", Fluid Phase Equilibria, 199906</u>

1% match (Internet from 17-Jun-2017)

https://umexpert.um.edu.my/file/publication/00009938_140487.pdf

10	1% match (Internet from 15-Sep-2009) http://www.sump4.com/publications/paper044.pdf
11	1% match (Internet from 22-Apr-2016) http://www.tdx.cat/bitstream/handle/10803/134723/TesisESS.pdf.txt?sequence=2
12	1% match (publications) Price, D.M "Sublimation properties of x,y-dihydroxybenzoic acid isomers as model matrix assisted laser desorption ionisation (MALDI) matrices", Thermochimica Acta, 19990308
13	< 1% match (student papers from 10-Nov-2017) Submitted to CSU, San Jose State University on 2017-11-10
14	< 1% match (student papers from 18-Nov-2012) Submitted to University of Nottingham on 2012-11-18
15	< 1% match (Internet from 28-Oct-2017) http://www.rug.nl/research/portal/files/14415441/2013FluidPhaseEquilRamachandran.pdf
16	< 1% match (publications) <u>Zhao, Suwei, and Dongke Zhang. "An experimental investigation into the solubility of Moringa</u> <u>oleifera oil in supercritical carbon dioxide", Journal of Food Engineering, 2014.</u>
17 Resea	< 1% match (publications) Bian, Xiao-Qiang, Jing Li, Jing Chen, Ming-Jun Li, and Zhi-Min Du. "A combined model for the solubility of different compounds in supercritical carbon dioxide", Chemical Engineering irch and Design, 2015.
	< 1% match (publications) <u>Shojaee, Safar Ali, Hamid Rajaei, Ali Zeinolabedini Hezave, Mostafa Lashkarbolooki, and</u> <u>Feridun Esmaeilzadeh. "Experimental measurement and correlation for solubility of piroxicam</u> <u>-steroidal anti-inflammatory drugs (NSAIDs)) in supercritical carbon dioxide", The Journal of</u> <u>critical Fluids, 2013.</u>
19	< 1% match (publications) <u>Alejandro Serrablo. "Predeposit self-transfusion (PDS) in a hepatobiliopancreatic surgery</u> (HBPS) unit: preliminary data", Journal of Hepato-Biliary-Pancreatic Surgery, 04/01/2003
20	< 1% match (Internet from 15-Jan-2016) http://eprints-phd.biblio.unitn.it/1467/1/DUBA_PhD_Thesis_March_2015.pdf
21	< 1% match (Internet from 09-Jun-2009) http://jcem.endojournals.org/cgi/content/full/89/4/1779

< 1% match (publications)

Chany-Yih Day, Chiehming J. Chang, Chiu-Yang Chen. " Phase Equilibrium of Ethanol + CO and Acetone + CO at Elevated Pressures ", Journal of Chemical & Engineering Data, 1996

< 1% match (publications)

23 Sakthivel, A.. "The influence of aluminium sources on the acidic behaviour as well as on the catalytic activity of mesoporous H-AIMCM-41 molecular sieves", Microporous and Mesoporous Materials, 20031104

24

22

< 1% match (Internet from 22-May-2011) http://asia.edu.tw/~ysho/Truth/PDF/App%20Cla%20Sci48,%2081.pdf

paper text:

11Fluid Phase Equilibria 358 (2013) 220–225 Contents lists available at ScienceDirect Fluid Phase Equilibria journal homepage: www.elsevier.com/locate/fluid

22Catechin sublimation pressure and solubility in supercritical carbon dioxide Felycia Edi Soetaredjoa, Suryadi Ismadjib, **, Maria Yuliana Liauwa, Artik Elisa

Angkawijayaa,

7Yi-Hsu Jua,* a Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Road, Taipei, Taiwan b Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia

13article info Article history: Received 7 February 2013 Received in revised form 6 August 2013 Accepted 8 August 2013 Available online 29 August 2013 Keywords:

(+)-Catechin Solubility Sublimation pressure Density based correlation abstract Solubility of (+)-catechin in SC-CO2

2was measured at several temperatures (313.15, 323.15, 333.15 and 343.15 K) and pressure in the range of 12–26 MPa using ethanol as the

co-solvent (5 mol.%). The experimental data were used for the correlation of density dependent solute solubility parameters. The equations

3of Chrastil, del Valle and Aguilera, Adachi and Lu, González, and **Méndez-Santiago and**

Tejawere fitted very well for the solubility of (+)-catechin. The rate of mass loss of (+)-catechin showed that its sub- limation pressure is very low, an indication of the stability of the compound. Thermogravimetric analysis was used to determine the sublimation pressure. © 2013 Elsevier B.V. All rights reserved. 1. Introduction Supercritical fluid extraction is superior to conventional extrac- tion techniques because the absence of organic solvents and operates at lower temperature which reduces the incidence of degradation of the product and does not require subsequent purifi- cation steps. Supercritical fluids are attractive solvents because they have diffusivities between those of gases and liquids, densi- ties much greater than those of typical gases and slightly less than those of organic liquids, and viscosities comparable to gasses [1]. Supercritical carbon dioxide (SC-CO2) is commonly used for most of the applications because it has a relatively low critical pressure (7.374 MPa) and critical temperature (304.12 K). The other reasons are

17it is non-toxic, non-flammable, and non-explosive; and

it is spontaneously separated from the extracted compounds by reduc- ing the pressure and/or the temperature. The knowledge of solubility of a compound in SC-CO2 is cru- cial for evaluating the feasibility of supercritical separation of the compound and for establishing optimum operation condition. The solubility of a solid in SC-CO2 depends on its polarity. SC-CO2 is not a good solvent for polar organic compounds due to its low of polar- ity and its lack of specific solvent-solute interactions. The addition * Corresponding author. Tel.: +886 2 2737 6611; fax: +886 2 2737 6644. ** Corresponding author.

24Tel.: +62 31 3891264; fax: +62 31 3891267. E-mail addresses: suryadiismadji@yahoo.com (S. Ismadji),

yhju@mail.ntust.edu.tw (Y.-H. Ju).

150378-3812/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.fluid.2013.08.

012 of a small amount of proper co-solvent to SC-CO2 can increase its solvent power dramatically. The concentration of added co-solvent should be less than 15 mol.% [2,3]. Co-solvent

4is usually one of the common liquid solvents

such as

4benzene, methylene chloride, carbon tetrachloride, hexane, acetone, methanol, ethanol, toluene and water

[1,3-8]. The role of co-solvent has been limited in the area of food and pharmaceutical

4because of the toxic nature of most organic solvents and the associated problem of removing co- solvent residue completely from the processed material.

Among organic solvents, ethanol is appropriate because it is polar and per- mitted in food industries.

21Catechin ((2R,3S)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro- 1(2H)-benzopyran-3,5,7-triol)

is a phytochemicals in the group of flavonoids. It is abundantly in various plants such as tea [9–11], grape [12–15] and cocoa [16]. Catechin is also found in the sago (Metroxylon sago) pith. During sago starch extraction, catechin is oxidized by latent polyphenol oxidase and the color of the wastewater become dark brown with strong odor [17]. Since catechin has many benefits on health especially as an antioxidant, the separation of catechin will not only reduce water pollution but also obtain valuable compound. Catechin solubility in SC-CO2 was studied by Berna et al. using ethanol (5–30 mol.%) as the co-solvent operated at 313 K and 8–12 MPa [4]. TheSC-CO2 extraction of catechin without using co- solvent was not feasible since only trace amount was extracted. However, the presence of a high amount of ethanol in SC-CO2 (≥15 mol.%) will change the supercritical condition to subcrit- ical since ethanol has a high critical temperature of 513.9 K F.E. Soetaredjo et al. / Fluid Phase Equilibria 358 (2013) 220–225 221

6Table 1 Specification of chemicals used in this study. Chemical name Source Initial mass fraction purity Purification method Final fraction purity

Caffeine (+)-Catechin hydrate Sigma–Aldrich Sigma–Aldrich \geq 98 wt.% \geq 99.9 wt.% Ethanol Liquid CO2 Aneka Gas Pty. Ltd., Indonesia Food grade \geq 99.99 wt.% Merck, Germany \geq 99.9 wt.% None Recrystallized twice and tempered at 110 °C to obtain the ?-anhydrous phase (form II) as described by Pinto and Diogo[26]. None None \geq 98 wt.% ?-Anhydrous caffeine \geq 99.9 wt.% \geq 99.9 wt.% \geq 99.99 wt.% [2,3,18,19]. In this work, catechin solubility in SC-CO2 was investi- gated in a wider range of pressure and temperature (12–26 MPa and 313.15–343.15 K, respectively) than the published data.

11In order to maintain the supercritical condition of carbon dioxide, the co-

solvent ethanol concentration was kept at 5 mol.% [20]. The solubility profile of a compound in SC-CO2 is influenced by its density as well as pressure and temperature. Density based correlation was developed based on the observation that the loga- rithm of the solubility is linearly dependent on the density [21,22]. Chrastil [23] was the first in developing a semi-empirical solu- bility correlation based on this approach, taking into account the dependence of solubility upon temperature. Although the Chrastil model is limited to low solubility and temperature, it has the advantage of avoiding the difficulty of determination of equation of states parameters, especially for high molecular mass solutes [24]. Another density based correlation was proposed by Méndez- Santiago and Teja (MST) [25] for ternary co-solvent systems by taking account of sublimation pressure of the solute. The objec- tive of this study was to measure the sublimation pressure and

5the solubility of catechin in SC-CO2 with ethanol as

the co-solvent and then correlated the data using density based model. 2. Experimental 2.1. Materials (+)-Catechin and caffeine were obtained from Sigma Aldrich (Singapore). (+)-catechin was used without any further treat- ment. Analytical grade ethanol was supplied by Merck (Darmstadt, Germany) and used as a co-solvent in SC-CO2 and a solvent to collect extract for further analysis. Food grade carbon dioxide was supplied as liquid CO2 by Aneka Gas Pty. Ltd., Indonesia. Table 1 shows the specification of chemicals used in this study. 2.2. Sublimation pressure Thermogravimetric analysis (TGA) is usually used to study the thermal stability of a material. In addition, it can be used to study its phase transitions such as sublimation and the related prop- erties such as vaporpressure [27–29]. TGA provides a fast and reliable method to study a number of compounds that are ther- mally stable up to their melting point at ambient pressure [27,29]. Using this method, the evaporation rate of a compound determined under isothermal conditions is directly related to its vapor pressure [27–31]. In this study, the rate of sublimation was measured using a highly sensitive microbalance in TGA (Perkin Elmer Diamond

23TG/DTA). The measurements were carried out

in dynamic

23nitrogen atmosphere with a flow rate of 40 ml/min.

The amount of the sam- ple was kept low (approximately 3 mg) and it should fully covered the bottom of the platinum pan (\emptyset 5 mm) in order to minimize ther- mal gradients. The experiments were conducted at a temperature range from 423 to 443 K (±0.01 K) under isothermal conditions. The heating temperature was rising linearly at 40 K/min from ambient to the targeted temperature and then maintained at that temperature. Mass loss rates (dm/dt) were determined from a region where the temperature was constant.

10Analysis of the gravimetric data is based on the

mass loss rate of a substance that is related to its vapor pressure and can be expressed by the Langmuir equation $\sqrt{P} = 2$?R dm $_{\cdot} \times$ dt \times T M (1) $\sqrt{where P}$ is the vapor pressure, R is the universal gas constant, $_{\cdot}$ is the vaporizations coefficient (usually assumed to be 1 in vacuum condition),

10dm/dt is the rate of mass loss

with respect to time, T is the absolute temperature and M is the molecular weight of the substance in the vapor phase.

10In the case of a material volatiliz- ing into a flowing gas stream at 1 atm,

cannot be assumed as unity. The value of

12is sample independent and can be evaluated by calibration with

substances of known vapor pressures. In this study the

calibration was conducted using ?-anhydrous caffeine. The vaporization rate of caffeine was determined between 423 and 433 K (the same temperature range used for catechin) [29]. The lin- ear logarithmic relationship between vapor pressure and mass loss rate [29] is determined as: $\ln P = a \times \ln dt + b dm$ (2) a and b are constants specific for the instrument and for the exper- () imental procedures as described above. Estimating from the plot with R2 = 0.99, the value of a and b are 1.135 and 0.255, respectively. These values are independent of material and temperature range but depend on the equipment and the sample crucible [29,30]. 2.3. Solubility of catechin in SC-CO2 The solubility of catechin in SC-CO2 was performed in a static system. The system includes a 50 ml equilibration column (Swagelok, USA), a

1high pressure pump (Eldex AA-100-S-2-CE, USA) and pressure transducer (Druck PTX 611, USA) with a digital process indicator (Druck DPI 280, USA) which gives pressure

mea- surement uncertainties of ± 0.01 MPa. A heating chamber (Oven Memmert, Germany) was used to control temperature to within ± 1 K. The maximum working pressure and temperature of the sys- tem are 40 MPa and 373.15 K, respectively. All fitting

1and tubing used in the system were made of stainless steel 316 (Swagelok, USA).

A known mass of (+)-catechin (100 mg) and ethanol (5 mol.%) were added in a sample holder in the equilibration column. The heating chamber was heated to a desired temperature (313.15, 323.15, 333.15, or 343.15 K).

1Liquid CO2 was subsequently pumped into the system using a high pressure pump

until a targeted pres- sure was achieved (12-26 MPa). After equilibrium condition was achieved in 4 h, the sampling tube (1 ml) was disconnected from the system. The sample in the sampling tube was released, and the CO2 containing catechin flowed into a collector containing a known amount of ethanol while the CO2 was released into the air. At least 222 F.E. Soetaredio et al. / Fluid Phase Equilibria 358 (2013) 220-225 Table 2 100 Mass loss rate and vapor pressure of (+)-catechin from TGA measurements. 0 Temperature (K) dm ?g dt min P (Pa) 80 423 0.3 () 0.3 -2 428 0.8 0.9 433 1.4 1.8 438 2.5 3.6 3.8 5.8 Weight % (%) 60 -4 443 40 -6 three replications of trails were carried out for every set of temper- 20 -8 ature and pressure. The equilibrium composition was represented Decomposi?on temperature by average of the three replications. The determination of catechin Derivative weight % (%/min) was based on the method of Zuo et al. [32] by using a HPLC (JASCO 0 -10 300 400 500 600 700 800 900 1000 1100 HPLC PU-2089 plus) with a UV-vis detector (UV-2077 plus). T (K) 3. Results and discussion Fig. 2. Thermogravimetric curves of (+)-catechin. Weight loss (-). Derivative of weight loss (-). 3.1. Sublimation pressure of catechin 2.5 The mass loss rates and vapor pressure of (+)-catechin at dif-2.0 ferent temperatures are shown in Table 2. The vapor pressure of (+)-catechin was calculated using Eq. (2). The sublimation kinetics 1.5 of (+)-catechin was calculated using the Arrhenius equation [29]: 1.0 In dt = In A - RT dm E a (3) In P (Pa) 0.5 where dm/dt is the mass loss rate of catechin, A is the pre- 0.0

14exponential factor, Ea is the activation energy, R is the universal gas constant and T is the absolute temperature. From the plot of 1 /T

-0.5 versus ln(dm/dt) as shown in Fig. 1 (R2 = 0.98), the activation energy -1.0 and the pre-exponential factor was determined as 194.43 kJ/mol and 54.238, respectively. -1.5 Clausius–Clapeyron equation describes the temperature depen- 0.00224 0.00226 0.00228 0.00230 0.00232 0.00234 0.00236 0.00238 dence of the vapor pressure: $1/T (1/K) \ln P = - ?H 1 T + ?S Fig. 3$. The plot of 1/T versus ln P for determining the Clausius–Clapeyron parame- R R (4) ters.

12where **?H** is the standard enthalpy change of sublimation and **?**S () is the standard entropy of

sublimation. (+)-Catechin sublimes with- 3.2.

5Solubility of catechin in SC-CO2 out decomposition in the

Turnitin Originality Report

temperature range used in this study since (+)-catechin decomposes above 1108 K (Fig. 2). The enthalpy Pressure and temperature of SC-CO2 determine its effectiveness of sublimation and entropy were determined from the plot of In P as a solvent through affecting its density. The density of SC-CO2 at versus 1/T (R2 = 0.98) in Fig. 3 and their values are 220.74 kJ/mol various pressures and temperatures were calculated using the Stry- and 514.05 J/mol K, respectively. jek

1and Vera modification of the Peng–Robinson equation of state [33]. In the

measuring of solubility of catechin in SC-CO2, insignif- icant increase of catechin concentration in CO2 was observed after 2.0 3 h as shown in Fig. 4. The calculated density of SC-CO2 and the 1.5 $\ln(dm/dt)$ (µg/min) 1.0 0.5 0.0 -0.5 -1.0 -1.5 0.00224 0.00226 0.00228 0.00230 0.00232 0.00234 0.00236 0.00238 1/T (1/K) Fig. 1. The plot of 1/T versus ln(dm/dt) for determining the Arrhenius parameters. Fig. 4. Solubility of (+)-catechin in SC-CO2versus time at various pressures. According to Adachi and Lu, if Chrastil equation fitting is not as density and

16shows the dependence of the solubility on the density. (referred to as in the

Chrastil equation) is the exponent of the Adachi and Lu [35,36] proposed that the association number ture is (H(T) = R(a' + 2d/T)). equation the variation of enthalpy of vaporization with tempera- sented in the parameter of a (a = (H/R)). In del Valle and Aguilera the

20sum of heat of solvation and heat of vaporization

of solute pre- with temperature. In Chrastil equation, the total reaction heat was to compensate for the variation of heat of vaporization of solute $y1 = k' \exp b' + a'$ Chrastil equation in the form of Valle and Aguilera [34] proposed an empirical modification on the There are a number of modified Chrastil equations available. Del characteristic constant for a given pair of gas and solute. expresses an average equilibrium association number, which is a complex was not stoichiometric, so that the association constant k a and b are parameters. It was found that in most cases the solvato

1is the density of gas, k is an association number, T is temperature,

where y1 is the concentration of the solute in gas (mole fraction), y1 = k exp T + b Chrastil equation has the form tion can be calculated from the law mass action. The semi-empirical solvato complex, A + kB \leftrightarrow ABk, so that the equilibrium concentra- solute associate with the molecules of the gas in equilibrium with in developing such a correlation by assuming that molecules of the in correlating existing solubility data [22]. Chrastil [23] was the first knowledge of solute properties and was found to be very successful is linearly dependent on the density. This approach does not require oped based on the observation that the logarithm of the solubility are still needed. Semi-empirical solubility correlation was devel- or more adjustable fitting parameters, therefore, experimental data have fundamental basis. However, these correlations still need one atures. Some of these correlations are empirical, while the others and extrapolate solubility data to various pressures and temper- Several correlations have already been developed to correlate even though the density of SC-CO2 decreases. which cause

5the solubility of (+)-catechin in SC-CO2

to increase constant pressure, the viscosity and diffusivity of SC-CO2 increase

5solubility of (+)-catechin in SC-CO2. As the

temperature increases at increases with increasing pressure which result in an increase in the ically in Fig. 5. At constant temperature,

17the density of SC- CO2 Table 3 and the solubility of (+)-catechin in SC-

CO2 is shown graph- measured

5solubility of (+)-catechin in SC -CO2 are presented in

Fig. 5. Solubility of (+)-catechin versus density of SC-CO2 at various temperature. y1.106 300 0 2 4 6 8 10 12 ((a 400 T) + T 2 d 500) ρ (g.L-1) 600 700 800

9T= 313.15 K T= 323.15 K T= 333.15 K T= 343.15 K

900 (6) (5) Table 3 Solubility of (+)-catechin in SC-CO2 with 5 mol.% of co-solvent and the SC-CO2 density. F.E. Soetaredjo et al. / Fluid Phase Equilibria 358 (2013) 220–225 Pa (MPa) Ta =

9313.15 K T = 323.15 K T = 333.15 K T = 343.15 K

19(g I-3) 104 c1 (g I-3) 107 yb (g I-

3) 104 c1 (g I-3) 107 ya

19(g I-3) 104 c1 (g I-3) 107 yb (g I-

3) 104 c1 (g I-3) 107 yb 12 669 1.30 ± 0.026 0.67 ± 0.013 537 1.55 ± 0.031 0.80 ± 0.016 417 1.59 ± 0.032 13 701 1.74 ± 0.035 0.89 ± 0.018 588 3.09 ± 0.062 1.60 ± 0.032 474 3.51 ± 0.070 14 727 2.43 ± 0.049 1.26

Turnitin Originality Report

 $\pm 0.025\ 627\ 4.12\ \pm 0.082\ 2.12\ \pm 0.042\ 523\ 5.76\ \pm 0.115\ 15\ 750\ 2.66\ \pm 0.053\ 1.37\ \pm 0.027\ 659\ 5.69\ \pm 0.114$ $2.94 \pm 0.05956310.14 \pm 0.203167693.41 \pm 0.0681.76 \pm 0.0356857.32 \pm 0.1463.78 \pm 0.07559813.33$ \pm 0.267 17 787 3.62 \pm 0.072 1.87 \pm 0.037 709 9.02 \pm 0.180 4.66 \pm 0.093 627 18.40 \pm 0.368 18 803 4.04 \pm $0.081\ 2.08\pm 0.042\ 729\ 10.83\pm 0.216\ 5.59\pm 0.111\ 653\ 23.09\pm 0.462\ 19\ 818\ 5.06\pm 0.101\ 2.61\pm 0.052\ 748$ 13.70 ± 0.274 7.07 ± 0.141 675 28.71 ± 0.574 20 831 5.07 ± 0.101 2.62 ± 0.052 765 15.50 ± 0.310 8.01 ± 0.160 696 37.40 ± 0.748 21 844 5.59 ± 0.112 2.89 ± 0.057 780 17.68 ± 0.354 9.14 ± 0.182 714 43.92 ± $0.878\ 22\ 856\ 6.65\ \pm\ 0.133\ 3.43\ \pm\ 0.069\ 794\ 19.77\ \pm\ 0.395\ 10.21\ \pm\ 0.204\ 732\ 48.00\ \pm\ 0.960\ 23\ 867\ 6.68\ \pm\ 0.68\ \pm\$ $0.133\ 3.44\pm 0.069\ 808\ 20.05\pm 0.401\ 10.36\pm 0.207\ 747\ 58.02\pm 1.160\ 24\ 877\ 7.16\pm 0.143\ 3.70\pm 0.074$ 820 21.83 ± 0.436 11.28 ± 0.225 762 67.20 ± 1.343 25 887 8.25 ± 0.165 4.26 ± 0.085 832 26.40 ± 0.528 $13.64 \pm 0.27377573.97 \pm 1.479268968.22 \pm 0.1644.25 \pm 0.08484328.35 \pm 0.56714.65 \pm 0.293788$ $75.47 \pm 1.509\ 0.82 \pm 0.016\ 1.81 \pm 0.036\ 2.97 \pm 0.059\ 5.24 \pm 0.105\ 6.89 \pm 0.138\ 9.51 \pm 0.190\ 11.93 \pm 0.239$ 14.84 ± 0.297 19.33 ± 0.386 22.70 ± 0.454 24.80 ± 0.496 29.98 ± 0.599 34.72 ± 0.694 38.22 ± 0.764 38.99± 0.780 342 1.60 ± 0.032 390 3.67 ± 0.073 436 8.13 ± 0.162 478 7.50 ± 0.290 515 21.18 ± 0.423 549 31.54 ± 0.631 578 47.20 ± 0.944 604 55.84 ± 1.117 628 77.93 ± 1.559 649 89.25 ± 1.785 669 117.6 ± 2.351 687 $124.2 \pm 2.485\ 704\ 160.0 \pm 3.200\ 719\ 166.5 \pm 3.330\ 734\ 206.7 \pm 4.133\ 0.83 \pm 0.016\ 1.89 \pm 0.038\ 4.20 \pm 0.038\ 4.20 \pm 0.038\ 4.20 \pm 0.038\ 4.20 \pm 0.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4.038\ 4.20\ 4$ $0.0847.50 \pm 0.15010.94 \pm 0.21916.30 \pm 0.32524.39 \pm 0.48828.86 \pm 0.57740.27 \pm 0.80546.12 \pm 0.922$ 60.76 ± 1.215 64.20 ± 1.284 82.68 ± 1.654 86.03 ± 1.721 106.8 ± 2.136 a P ±0.01 MPa and T ±1 K. n 1/2 b y is mole fraction. The standard uncertainty is estimated using standard deviation of the mean, u(xi) = n(n + 1)-1) (Xi,k - XI)2. (k=1 5) 223 224 F.E. Soetaredio et al. / Fluid Phase Equilibria 358 (2013) 220-225 Fig. 6. Chrastil correlation (wire mesh) and experimental solubility data of (+)- catechin (•). good as expected, then the first trial is that the association number should be varied linearly with density (k = e0 + e1 1, where e0 and e1 are constant). And in the extreme case, the association number can be in a quadratic (k = e0 + e11 + e2 21, where e0, e1 and e2 are constant). González et al.

6[24] derived an equation for solubilization of a solute in

SC-CO2 modified with co-solvent based on Chrastil equa- tion. They assumed that each

1molecule of solute (A) associates with k molecules of carbon dioxide (B)

and molecules of co-solvent (C). González equation has the form $y1 = km \exp T + b a$ (7) where a = ?Hto(tal/R, b)= q - k ln MB - k ln - k ln Mc + ln(MA + kMB + Mc) = constant, k is the association number of carbon diox- ide and is the association number of co-solvent. The estimation of constants for the semi-empirical

16density based correlations (Chrastil, del Valle and Aguilera, Adachi and Lu

and González) was done using multivariable non-linear regression analysis. The quality of all data correlations was quantified by the sum of squared errors (SSE), defined as follows: 1/2 SSE = (y1(exp) - y1(cal))2 () (8) \sum N where y1(exp)

1is the actual solubility of (+)-catechin in SC -CO2, y1(cal) is the calculated solubility, and N is the number of experimental data. The

multivariable non-linear regression technique involved an iterative curve fitting procedure. An initial estimation for each parameter was provided, and then calculation of a point by point sum of squares (Eq. (8)) for each iteration was conducted until convergence criteria were fulfilled. Figs. 6–9 show the results of multivariable non-linear regression calculations for the correlation

3of Chrastil, del Valle and Aguilera, Adachi and Lu, and

González, respectively. Table 4 summarizes the constants resulted from the calculations. The association num- ber obtained by

3Chrastil and del Valle and Aguilera correlation is the sum of association

number of carbon dioxide and ethanol which indicates that each catechin molecule associates with 5.3 molecules of carbon dioxide and ethanol. The association num- ber obtained from González correlation shows that each catechin molecule associates with 3.37 molecules of carbon dioxide and 1.97 Fig. 7. del Valle and Aguilera correlation (wire mesh) and experimental solubility data of (+)-catechin (•). of co-solvent ethanol molecule. The associate number in Adachi and Lu correlation is presented

3as a linear function of density

(Table 4). The constant a is directly related to

3the enthalpy of solvation and vaporization

(a = ?H/R); except for the correlation of

3del Valle and Aguilera. The value of

total enthalpy calculated from del Valle and Aguilera equation is similar to the other correlations (Table 4). This shows that the variation of temperature in the range of these exper- iments is not affecting the enthalpy of vaporization. Méndez-Santiago and Teja [25] proposed a semi-empirical cor- relation

6based on the theory of dilute solution. Méndez-Santiago and Teja equation

is a density based model and requires knowl- edge

8of the sublimation pressure of the solid solute. This equation

8demonstrates that the solubility data for a binary system over a significant range of temperatures and pressures can be plotted on a single straight line:

T In E = A+B (9) Fig. 8. Adachi and Lu correlation (wire mesh) and experimental solubility data of (+)catechin (•). F.E. Soetaredjo et al. / Fluid Phase Equilibria 358 (2013) 220–225 225 Table 4 Semi-empirical density based correlation constants. Model k a b d H (kJ/mole) SSE

20Chrastil Del Valle and Aguilera Adachi and Lu

González 5.35 5.34 1.9049 + 0.0007 3.37 -21,424.35 -22,315.73 -21,725.75 -21,424.35 14.7716 - 16.0853 151,185.56 34.7191 - 24.4236 - - - 1.97 -178.12 -(177.50 to 178.20) -180.63 -178.12 0.142 0.141 0.140 0.143 Fig. 9. González correlation (wire mesh) and experimental solubility data of (+)- catechin (•). where E = y1P/P1sub is the enhancement factor. P is pressure, P1sub is sublimation pressure A and B are constants independent of tem- perature. Since the sublimation pressure of (+)-catechin is very low (Table 2) and the mass loss rate below 423 K was undetectable using the existing micro balance, therefore, the

18Clausius–Clapeyron type expression for the sublimation pressure was

introduced and the derivation of semi-empirical relation

18for the solid solubility becomes: T In(

y1P) A' B' 1 + C'T = + (10) Fig. 10. Méndez-Santiago and Teja correlation (wire mesh) and experimental solu- bility data of (+)-catechin (•). where A', B' and C' are constants, which are independent of tem- perature and pressure. Fig. 10 shows the results of multivariable non-linear regression calculations. The obtained values of A', B' and C' are -20818, 3.650 and 46.050, respectively. The sum of squared errors (SSE) of this calculation is 0.145. Based on the SSE, the semi-empirical density based equations were fitted very well to the experimental data of (+)-catechin solubility. 4. Conclusion

5The solubility of (+)-catechin in SC-CO2 with ethanol as the

co- solvent

2was measured at several temperatures (313.15, 323.15, 333.15 and 343.15 K) and pressure in the range of 12–26 MPa.

Semi- empirical density based equations were found to fit the measured solubility data very well. (+)-Catechin is a stable phenolic com- pound with very low sublimation pressure. References [1] C. Garlapati, G. Madras, J. Chem. Eng. Data 53 (2008) 2913–2917. [2] A. Braeuer, S. Dowy, A. Leipertz, R. Schatz, E. Schluecker, Opt. Express 15 (2007) 8377–8382. [3] W.J. Schmitt, R.C. Reid, Fluid Phase Equilib. 32 (1986) 77–99. [4] A. Berna, A. Chafer, J.B. Monton, S. Subirats, J. Supercrit. Fluids 20 (2001) 157–162. [5] A.R.C. Duarte, S. Santiago, H.C. de Sousa, C.M.M. Duarte, J. Chem. Eng. Data 50 (2005) 216-220. [6] C. Garlapati, G. Madras, J. Chem. Eng. Data 53 (2008) 2637–2641. [7] Z. Huang, W.D. Lu, S. Kawi, Y.C. Chiew, J. Chem. Eng. Data 49 (2004) 1323–1327. [8] L.-H. Wang, Y.-Y. Cheng, J. Chem. Eng. Data 50 (2005) 1747–1749. [9] S. Sang, X. Cheng, R.E. Stark, R.T. Rosen, C.S. Yang, C.-T. Ho, Bioorg. Med. Chem. 10 (2002) 2233–2237. [10] S. Sang, S. Tian, H. Wang, R.E. Stark, R.T. Rosen, C.S. Yang, C.-T. Ho, Bioorg. Med. Chem. 11 (2003) 3371–3378. [11] Y. Yilmaz, Food Sci. Technol.: LEB 17 (2006) 64–71. [12] P. Lacopini, M. Baldi, P. Storchi, L. Sebastiani, J. Food Compost. Anal. 21 (2008) 589–598. [13] M. Palma, Z. Pineiro, C.G. Barroso, J. Chromatogr. A 968 (2002) 1–6. [14] C. Passos, R.M. Silva, F.A. Da Silva, M.A. Coimbra, C.M. Silva, Chem. Eng. J. 160 (2010) 634-640. [15] Y. Yilmaz, E.B. Ozvural, H. Vural, J. Supercrit. Fluids 55 (2011) 924–928. [16] I. Ramirez-Sanchez, L. Maya, G. Ceballos, F. Villarreal, J. Food Compost. Anal. 23 (2010) 790–793. [17] S.M. Anthonysamy, N.B. Saari, K. Muhammad, F.A. Bakar, J. Food Biochem. 28 (2004) 91-99. [18] C.-Y. Day, C.J. Chang, C.-Y. Chen, J. Chem. Eng. Data 41 (1996) 839-843. [19] K. Suzuki, H. Sue, J. Chem. Eng. Data 35 (1990) 63–66. [20] S.N. Joung, C.W. Yoo, H.Y. Shin, S.Y. Kim, K.-P. Yoo, C.S. Lee, W.S. Huh, Fluid Phase Equilib. 185 (2001) 219–230. [21] S.E. Guigard, W.H. Stiver, Ind. Eng. Chem. Res. 37 (1998) 3786–3792. [22] M. Skerget, Z. Knez, M. Knez-Hrncic, J. Chem. Eng. Data 56 (2011) 694–719. [23] J. Chrastil, J. Phys. Chem. 86 (1982) 3016–3021. [24] J.C. Gonzalez, M.R. Vieytes, A.M. Botana, J.M. Vieites, L.M. Botana, J. Chromatogr. A 910 (2001) 119. [25] J. Mendez-Santiago, A.S. Teja, Fluid Phase Equilib. 158–160 (1999) 501–510. [26] S.S. Pinto, H.P. Diogo, J. Chem. Thermodyn. 38 (2006) 1515–1522. [27] W. Gückel, R. Kästel, T. Kröhl, A. Parg, Pest. Sci. 45 (1995) 27–31. [28] D.M. Prince, S. Bashir, P.R. Derrick, Thermochim. Acta 327 (1999) 167–171. [29] A. Lahde, J. Raula, J. Malm, E.I. Kauppinen, M. Karppinen, Thermochim. Acta 482 (2009) 17–20. [30] J.P. Elder, J. Therm. Anal. 49 (1997) 897–905. [31] A. Gairola, G.V. Kunte, A.M. Umarii, S.A. Shivashankar, Thermochim. Acta 488 (2009) 17–20. [32] Y. Zuo, H. Chen, Y. Deng, Talanta 57 (2002) 307–316. [33] R. Stryjek, J.H. Vera, Can. J. Chem. Eng. 64 (1986) 323–333. [34] J.M. del Valle, J.M. Aquilera, Ind. Eng. Chem. Res. 27 (1988) 1551–1553. [35] Y. Adachi, B.C.-Y. Lu, Fluid Phase Equilib. 14 (1983) 147–156. [36] D.L. Sparks, L.A. Estevez, R. Hernandez, K. Barlow, T. French, J. Chem. Eng. Data 53 (2008) 407-410.