

Turnitin Originality Report

<u>authorreprints-RSC Advances</u> by Suryadi Ismadji

From paper 2 (Hippo-hippo 02)

Processed on 16-Feb-2018 14:57 WIB

ID: 916903113 Word Count: 12872

Similarity	Index	

10%

Similarity by Source

Internet Sources: Publications: Student Papers: 5% 10% 3%

sources:

1% match (student papers from 22-May-2017)
Submitted to B.S. Abdur Rahman University on 2017-05-22

2 1% match (publications)

Soetardji, Jennifer Pieter, Jeannete Cindy Claudia, Yi-Hsu Ju, Joseph A. Hriljac, Tzu-Yu Chen, Felycia Edi Soetaredjo, Shella Permatasari Santoso, Alfin Kurniawan, and Suryadi Ismadji.

"Ammonia removal from water using sodium hydroxide modified zeolite mordenite", RSC Advances, 2015.

< 1% match (publications)</pre>

<u>George W. Huber, Sara Iborra, Avelino Corma. "Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering", Chemical Reviews, 2006</u>

- < 1% match (student papers from 11-Mar-2017)</p>
 - Submitted to University of Kufa on 2017-03-11
- **5** < 1% match (publications)

Yang, Wenjing, Haiyang Cheng, Bin Zhang, Yan Li, Tong Liu, Mingli Lan, Yancun Yu, Chao Zhang, Weiwei Lin, Shin-ichiro Fujita, Masahiko Arai, and Fengyu Zhao. "Hydrogenation of levulinic acid by RuCl2(PPh3)3 in supercritical CO2: the significance of structural changes of Ru complexes via interaction with CO2", Green Chemistry, 2016.

6 < 1% match (publications)

Ruppert, A. M., J. Grams, M. Jędrzejczyk, J. Matras-Michalska, N. Keller, K. Ostojska, and P. Sautet. "Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield", ChemSusChem, 2015.

7 < 1% match (publications)</pre>

Galletti, Anna Maria Raspolli, Claudia Antonetti, Valentina De Luise, and Marco Martinelli. "A sustainable process for the production of î³-valerolactone by hydrogenation of biomass-derived levulinic acid", Green Chemistry, 2012.

< 1% match (publications)

8

<u>Kurniawan, Alfin, L. K. Ong, Fredi Kurniawan, C. X. Lin, Felycia E. Soetaredjo, X. S. Zhao, and Suryadi Ismadji. "Easy approach to synthesize N/P/K co-doped porous carbon microfibers from the control of the control </u>

cane molasses as a high performance supercapacitor electrode material", RSC Advances, 2014.

9 < 1% match (publications)

Yan, Kai, and Aicheng Chen. "Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst", Energy, 2013.

10 < 1% match (Internet from 19-Jan-2016)</p>

http://real.mtak.hu/26272/1/Catal.%20Sci.%20Technol.%2C%202014%2C%204%2C%202908-2912.pdf

< 1% match (publications)</p>

11

<u>Jie Zou, Dong Cao, Weitong Tao, Shaoyin Zhang, Li Cui, Fanli Zeng, Weijie Cai. "Sorbitol dehydration into isosorbide over a cellulose-derived solid acid catalyst", RSC Advances, 2016</u>

12 < 1% match (publications)</p>
Novodárszki, Gyula, Nóra Rétfalvi, Gábor Dibó, Péter Mizsey, Edit Cséfalvay, and László T.
Mika. "Production of platform molecules from sweet sorghum", RSC Advances, 2014.

< 1% match (publications)</pre>

Kim, Jaeheon, Changbum Jo, Seungjun Lee, and Ryong Ryoo. "Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis", Journal of Materials Chemistry A, 2014.

< 1% match (publications)</pre>

Kurniawan, Alfin, Chintya Effendi, Lu Ki Ong, Yi-Hsu Ju, Chun Xiang Lin, and Suryadi Ismadji.

"Novel, Integrated Biorefinery Approach of Ceiba pentandra (Kapok) Seed and Its Secondary
Waste", ACS Sustainable Chemistry & Engineering, 2013.

15 < 1% match (publications)

Nitsos, Christos K., Chrysa M. Mihailof, Konstantinos A. Matis, Angelos A. Lappas, and Kostas S. Triantafyllidis. "The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals", The Role of Catalysis for the Sustainable Production of Bio-fuels and Biochemicals, 2013.

< 1% match (publications)</pre>

Ramli, Nur Aainaa Syahirah, and Nor Aishah Saidina Amin. "A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid", Journal of Molecular Catalysis A Chemical, 2015.

17 < 1% match (publications)</p>
Green Chemistry and Sustainable Technology, 2014.

18 < 1% match (publications)</pre>

<u>Yamaguchi, Daizo, Masaaki Kitano, Satoshi Suganuma, Kiyotaka Nakajima, Hideki Kato, and Michikazu Hara. "Hydrolysis of Cellulose by a Solid Acid Catalyst under Optimal Reaction</u>

19

Conditions", The Journal of Physical Chemistry C, 2009.

< 1% match (publications)</p>

Chandra, Ivon Kusmijo, Novy Srihartanti Kasim, Phuong Lan Tran Nguyen, Ngoc Yen Tran-Thi, Suryadi Ismadji, and Yi-Hsu Ju. "Physicochemical characterization of starch isolated from red Monascus rice: STARCH ISOLATED FROM RED MONASCUS RICE", Asia-Pacific Journal of Chemical Engineering, 2013.

- < 1% match (publications)</pre>
 - <u>Gupta, R.. "Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide", Bioresource Technology, 201011</u>
- 21 < 1% match (publications)</p>
 Gowda, Ravikumar R., and Eugene Y.-X. Chen. "Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ Valerolactone", ChemSusChem, 2016.
- < 1% match (Internet from 19-Jan-2016)</p>
 http://real.mtak.hu/26258/1/Green%20Chem%20doi%20c5gc01099c.pdf
- < 1% match (publications)</p>
 Putro, Jindrayani Nyoo, Felycia Edi Soetaredjo, Shi-Yow Lin, Yi-Hsu Ju, and Suryadi Ismadji.
 "Pretreatment and conversion of lignocellulose biomass into valuable chemicals", RSC
 Advances, 2016.
- 24 < 1% match (publications)</p>
 "UNDERSTANDING OF ALKALINE PRETREATMENT PARAMETERS FOR CORN STOVER ENZYMATIC SACCHARIFICATION", Fuel Production from Non-Food Biomass, 2015.
- < 1% match (publications)</p>
 Komadel, Peter. "Acid activated clays: Materials in continuous demand", Applied Clay Science, 2016.
- < 1% match (publications)</p>
 Anggraini, Merry, Alfin Kurniawan, Lu Ki Ong, Mario A. Martin, Jhy-Chern Liu, Felycia E.
 Soetaredjo, Nani Indraswati, and Suryadi Ismadji. "Antibiotic detoxification from synthetic and real effluents using a novel MTAB surfactant-montmorillonite (organoclay) sorbent", RSC Advances, 2014.
- < 1% match (publications)</p>
 <u>Gürbüz, Elif, Jesse Q. Bond, James A. Dumesic, and Yuriy Román-Leshkov. "Role of Acid Catalysis in the Conversion of Lignocellulosic Biomass to Fuels and Chemicals", The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 2013.</u>
- 28 < 1% match (publications)</pre>

<u>Upare, Pravin P., Myung-Geun Jeong, Young Kyu Hwang, Dae Han Kim, Young Dok Kim, Dong Won Hwang, U.-Hwang Lee, and Jong-San Chang. "Nickel-promoted copper—silica nanocomposite catalysts for hydrogenation of levulinic acid to lactones using formic acid as a hydrogen feeder", Applied Catalysis A General, 2015.</u>

< 1% match (publications)</pre>

ALEMDAROĞLU, Tülay, AKKUŞ, Gülcan, ÖNAL, Müşerref and SARIKAYA, Yüksel.

"Investigation of the surface acidity of a bentonite modified by acid activation and thermal treatment", TUBITAK, 2003.

- **30** < 1% match (Internet from 11-Dec-2016)
 - http://researchbank.rmit.edu.au/eserv/rmit:161800/Velisoju.pdf
- < 1% match (Internet from 28-Oct-2011)</p>
 http://www.cheric.org/PDF/JIEC/IE17/IE17-2-0287.pdf
- 32 < 1% match (Internet from 29-Dec-2017)</p>
 http://ajer.org/papers/v3%288%29/Vol,3-Issue,8.pdf
- < 1% match (Internet from 18-May-2009)</p>
 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1169044
- < 1% match (publications)</p>
 Sérgio Lima, David Chadwick, Klaus Hellgardt. "Towards sustainable hydrogenation of 5-(hydroxymethyl)furfural: a two-stage continuous process in aqueous media over RANEY® catalysts", RSC Advances, 2017
- < 1% match (publications)</p>
 M.N. Lyulyukin, P.A. Kolinko, D.S. Selishchev, D.V. Kozlov. "Hygienic aspects of TiO 2 mediated photocatalytic oxidation of volatile organic compounds: Air purification analysis using a total hazard index", Applied Catalysis B: Environmental, 2018
- < 1% match (publications)</p>
 Weingarten, R.. "Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Bronsted acid sites", Journal of Catalysis, 20110401
- < 1% match (publications)</p>
 Zhang, Luxin, Guoyun Xi, Ze Chen, Zhaoyu Qi, and Xiaochang Wang. "Enhanced formation of 5-HMF from glucose using a highly selective and stable SAPO-34 catalyst", Chemical Engineering Journal, 2016.
- < 1% match (student papers from 18-Mar-2016)</p>
 Submitted to City University of Hong Kong on 2016-03-18
- < 1% match (Internet from 12-Sep-2016)

39

http://ftp.palgrave-journals.com/ja/journal/v63/n9/full/ja201080a.html

40

< 1% match (Internet from 11-Nov-2017)

http://theses.ucalgary.ca/jspui/bitstream/11023/2144/2/ucalgary_2015_sooriyaarachchi_melani.pdf

41

< 1% match (publications)

Ki, Ong Lu, Alfin Kurniawan, Chun Xiang Lin, Yi-Hsu Ju, and Suryadi Ismadji. "Bio-oil from cassava peel: A potential renewable energy source", Bioresource Technology, 2013.

42

< 1% match (student papers from 14-Sep-2010) Submitted to Cranfield University on 2010-09-14

paper text:

RSC Advances PAPER Production of gamma-valerolactone from Cite this: RSC Adv., 2015, 5, 41285

3sugarcane bagasse over TiO2 -supported platinum and acid-activated bentonite as a co-catalyst Jindrayani N. Putro, a Alfin Kurniawan, b Felycia E. Soetaredjo,* a Shi-Yow Lin, b Yi-Hsu Jub and Suryadi Ismadji*

a Nowadays, biomass utilization has become the center of attention for researchers worldwide and is driven by the depletion of global petroleum supplies for the production of energy and valuable chemicals while easing the atmospheric CO2 burden. We propose here a green strategy for transforming sugarcane bagasse into gamma-valerolactone (GVL), an attractive platform molecule that can be further converted into a variety of chemical derivatives for wide use in industrial applications. Our recent strategy involves the solid acid-catalyzed hydrothermal conversion of cellulose and hemicellulose derived from biomass to give an aqueous solution comprising levulinic acid (LA), followed by catalytic hydrogenation of LA to GVL. Native and acid-activated bentonites were used as solid acid catalysts to promote hydrothermal conversion of cellulose and hemicellulose. The maximum achievable yield of LA was 159.17 mg per gram of oven-dried biomass for 60 min reaction at 473.2 K in the presence of a 2% acid-activated bentonite catalyst. Catalytic hydrogenation reactions of LA to GVL over 1% Pt@TiO2 and acid-activated bentonite as a co-catalyst were performed at temperatures of 393.2-473.2 K and residence times of 120-360 min. The combined solid catalyst gave an attractive performance with respect to LA conversion (100%) and Received 7th April 2015 GVL selectivity (95%) under milder reaction conditions in comparison to 1% Pt@TiO2 without an acid co-Accepted 30th April 2015 catalyst. The spent catalyst could be reused for five consecutive hydrogenation cycles with

28a marginal decrease in the catalytic activity and GVL selectivity. Coke formation was

believed to be the main cause DOI: 10.1039/c5ra06180f of catalyst poisoning and calcination of the spent catalyst under a stream of pure oxygen at 723.2 K was www.rsc.org/advances applied for removing coke

deposits from the active catalyst sites, thus restoring the catalytic performance. Introduction Over the past decade, the 2nd generation of liquid biofuels has become the present global challenge in the energy ?eld. The primary focus of such research is to develop sustainable liquid biofuels from lignocellulosic biomass in a competitive market and environmentally sustainable route, which can be used to replace ?nite fossil fuel resources and boost the economics of biofuel production.1,2

15**Lignocellulosic biomass, in the form of** agricultural crops, forestry **residues** or waste **from**

whole food supply chains is being paid more attention worldwide as a potential resource for the production of liquid biofuels, thanks to its renewability, high abundance and inherently carbon neutral nature.3–5 Lignocellulosic biomass consists of 35–50% cellulose, 20–35% hemicellulose and 10–25% lignin.5 All are natural polymeric materials which constitute the structural integrity and much of the mass of plants. The challenge now is aDepartment

23of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia. E-mail: suryadiismadji@yahoo.com

bDepartment of

2Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd, Taipei 106, Taiwan, Republic of China

to ?nd an alternative route to convert the hardly decomposed cellulose and hemicellulose into ?ve- and six-carbon sugars that can be run economically at the scale required. The existing thermochemical routes which are considered more economi- cally and technically feasible than conventional biochemical route featuring enzymatic hydrolysis and fermentation for the conversion of lignocellulosic biomass to fuels and commodity chemicals include the Fischer–Tropsch synthesis (FTS) and bio?ne processes, catalytic hydrotreatment, catalytic pyrolysis and hydrothermal liquefaction.5–11 However, one the major obstacles faced in these thermochemical conversion routes is associated with the production of bio-crude containing high oxygen, nitrogen and sulfur, which renders the product with undesirable properties as fuel including thermally and chemi- cally unstable, corrosive and low energy density. Further phys- ical or chemical upgrading strategies are required in order to improve the quality of as-produced biocrude, which o?en involves a series of unit operations and extensive energy input requirements for the processes performed under high temper- ature conditions. Furthermore, the implementation of most, if not all, of the aforesaid thermochemical technologies for industrial process scale-up is now under-performing. There are two critical steps

3in the conversion of cellulosic components of lignocellulosic biomass into fuels and chemicals:

hydrolysis and dehydration processes. In the hydrolysis process, hemicellulose is converted into ?ve- and six-carbon sugars under catalysis by mineral acids (mostly sulfuric acid) while cellulose ?ber is enzymatically hydrolyzed into glucose by commercial cellulase and cellobiase enzymes. The resulting aqueous mixture of fermentable sugars containing xylose, arabinose and glucose then undergoes dehydration reaction, leading to formation of levulinic acid (LA) and furan derivatives. In the next process, the aqueous solution containing LA undergoes catalytic reduction with molecular hydrogen to form gammavalerolactone (GVL), which serves as a high-value chemical intermediate for the production of straight and branched alkanes and cycloalkanes with appropriate molecular weight and structure for use in gasoline and jet fuel applications. Intensive research activities have sought to develop

10a simple yet highly efficient catalyst for the hydrogenation of LA to GVL.

Heterogeneous catalysts based on noble metals such as Pd, Ru, Rh, Pt, Au and Ir and base metals such as Fe, Cu, Co and Ni on carbon, zeolite or metal oxide support materials have received much attention for practical use, 8, 10, 12–18 mainly associated with their advantages such as ease of catalyst separation, reusability, less damage to reactor and relatively high turnover numbers (TONs). Homogeneous catalytic systems have also shown great potential

22for the hydrogenation of LA to GVL in terms of

catalyst

5activity and selectively under relatively mild reaction conditions. For

instance, ruthenium/ phosphine complexes, especially complexes with the facially coordinating tridentate ligand (TriPhos) have found application as a highly active catalyst toward carbonyl compounds such as esters and amides and even free carboxylic acids in the homo- geneous hydrogenation reaction.19 Robust iridium trihydride complexes of pincer ligands with TONs as high as 71 000 have been tested for the synthesis of GVL from hydrogenation of biomass-derived LA under relatively mild reaction conditions by Zhou and his group 20 and the GVL yield could reach 99%.

28Very recently, Tukacs and co-workers have reported the application of

ruthenium catalysts modi?ed with bidentate phosphine ligands and they showed that the proposed catalytic system could be reused

10for ten consecutive runs while achieving full conversion of LA

with a representative turnover frequency

10(TOF) of 21 233 h 1 in solvent-, chlorine- and additive-free reaction environments.

21 GVL has proved to demonstrate many of the important properties of an ideal liquid fuel including renewable, easy and safe to store and transport, very low vapor pressure even at high temperature (3.5 kPa at 80 C), high boiling point (207 C) and open cup ?ash point (96 C) and miscible with water.22 Therefore, the produc- tion of GVL from lignocellulosic biomass has moved globally in large numbers and very recent potential applications include a green reaction medium for the conversion of various carbohy- drates to 5hydroxymethylfurfural (5-HMF) and LA,22,23 ionic liquid phase catalytic system for the hydrogenation of different ole?ns,24 precursors in manufacturing bio-based polymers and resins25 or chemical additives for gasoline and diesel fuel.23 Sugarcane bagasse (SB) is a major agro-industrial byproduct generated from the sugar milling. In the sugar milling process, a part of this ?brous residue is normally burned to generate steam and electricity for factory operation and stockpiling becomes a common practice for handling the excess bagasse. However, long-term storage of large quantities of bagasse in the uncovered stockpiles continues to be a menace to the environ- ment and surrounding communities through hazards associ- ated with spontaneous combustion, groundwater seepage and generation of contaminated leachates. It is required to ?nd a suitable use for the excess bagasse as a means of managing these hazards and minimizing potential environmental impacts. SB is composed of cellulose, hemicellulose and lignin and more importantly this lignocellulosic biomass has signi?- cant advantage that it does not interfere with food resources for chemicals and fuels production. Several studies22,23,26 have demonstrated different methods for transforming sugars in lignocellulosic biomass into sustainable platform chemicals such as LA, GVL and furanic aldehydes (e.g., 5-HMF and furfural). For instance, the

12high sugar-containing juice derived from sweet sorghum can be

utilized as a non-food source to produce platform molecules namely

12LA and 5-HMF by a microwave dielectric heating

method.27 The maximum yield of LA (31.4%) was achieved from the sorghum sample treated for 20 min centrifugation time

12in the presence of 2 M sulfuric acid under 30 min microwave irradiation.

Horvath and co-workers28 investigated

38several intermediates and different reaction path- ways in the acid-catalyzed dehydration of fructose to 5 -HMF in dimethyl sulfoxide solvent

with or without sulfuric acid as catalyst. They found from isotopic labeling results that the reversible formation of 2,6-anhydro-b-D-fructofuranose inter- mediate played a crucial role in controlling two irreversible pathways toward desirable product (5-HMF) via a furanose route or toward the unwanted side products via a pyranose route. In this study, we utilize non-food SB biomass as a potential raw material for the production of GVL via a two-step process involving a ?rst

15step for hydrothermal conversion of biomass to LA and a second step for hydrogenation of

LA to GVL. In the ?rst step, subcritical water (herea?er called sub-CW) is used as a reaction medium, which is safe, non-toxic, inexpensive and readily available. The native and acid-activated bentonites are used as heterogeneous solid acid catalysts in the ?rst step and the catalyst performance study for given reaction is presented. On the other hand, titania-supported platinum catalysts (Pt@TiO2) in the absence or in combination with

21acid-activated bentonite as a co-catalyst are utilized in the second step.

The catalyst performance evaluation in the second step is based on LA conversion, GVL selectivity and GVL yield. Furthermore, the effects of temperature and residence time on the extent of hydrogenation of LA to GVL are investigated and discussed in this paper. Finally, studies were carried out to assess the potential reuse of the hydrogenating catalyst in at least ?ve consecutive reaction cycles. Experimental Materials SB was collected

8from a cane sugar mill located at Klaten district in Central Java.

The collected

41biomass was repeatedly washed with tap water to remove surface impurities and dried in an oven at 80 C for

12 h. The dried biomass was pulverized using a bench-scale hammer mill to particle sizes ranging from 0.15– 0.18 mm (80/100 mesh, U.S. Sieve Series). Moisture content of the pulverized biomass was determined by using an Ohaus® MB-35 moisture analyzer. Deligni?cation step was conducted by soaking powdered biomass into a 20 wt% sodium hydroxide

26solution with a solid to solution ratio of 1:10

under continuous stirring (500 rpm) at room temperature for 24 h. The treated biomass was separated by vacuum ?ltration, washed with warm distilled water until the pH of the washing solution ranged between 6.5 and 7 and oven-dried at 110 C for 12 h. The ?nal product (DSB) was stored in sealed plastic bags for further

use. The determination of lignocellulose contents of SB and DSB samples was carried out following the standardized wet chem- ical methods used in the wood industry sector. The percentage weights of the elements C, H, N, O and S of SB and DSB samples were determined by a CHNS/O analyzer model 2400 from Perkin-Elmer. The proximate analysis was conducted following the established ASTM procedure. The results from three repeated analyses are presented as average values standard deviations (Table 1). Natural Ca-bentonite with grayish white color was collected from a mining site located at Pacitan district in East Java. Prior to its use, the bentonite was puri?ed according to the procedure described by Soetaredjo and colleagues.29 The chemical composition of the puri?ed bentonite was SiO2 (63.5%), Al2O3 (17.8%), Fe2O3 (2.2%), MnO2 (0.5%), TiO2 (0.2%), MgO (1.2%), K2O (1.6%), Na2O (1.5%), CaO (2.8%) and LOI (loss on ignition) (8.7%). The montmorillonite content of the bentonite was 78%. Anatase titanium(IV) oxide (TiO2) powder (99%) was purchased from Sigma Aldrich, Singapore and used as-received. For chemical analysis and preparation of catalysts, the following reagents include anhydrous sodium hydroxide pellets (98%, Table 1 Characteristics of SB and DSB lignocellulosic materials Components SB DSB Hemicellulose Cellulose Lignin 24.7 35.4 21.8 2.5 1.8 1.2 Ultimate compositions, wt% (on dry basis) Carbon 53.2 Hydrogen 6.1 Nitrogen 0.5 Sulphur 1.8 Oxygen (by difference) 38.4 Proximate compositions, wt% (on dry basis) Volatile matter 66.1 2.4 Fixed carbon 15.8 0.5 Moisture content 5.9 0.7 Ash content 12.2 1.2 Sugar compositions, mg g 1 (on dry basis) Glucan 348.7 5.9 Xylan 216.0 4.4 Galactan 2.5 0.3 Arabinan 27.6 2.5 18.8 52.7 10.3 53.8 6.2 0.6 1.7 37.7 64.8 17.0 6.5 11.7 0.9 2.1 0.8 1.7 1.2 0.3 0.7 507.8 2.7 165.6 3.5 1.9 0.2 20.1 1.3 Sigma Aldrich), sulfuric acid (98%, Merck), chloroplatinic acid hexahydrate (8 wt% in H2O, Aldrich), acetonitrile (LC-MS CHROMASOLV®, 99.9%, Fluka), hexyl alcohol (99.9%, Fluka) and standards of D(+)glucose (99.5%, Sigma), D(+)xylose (99%, Aldrich), L(+)arabinose (98%, Aldrich), D(+)galactose (99%, Fluka), furfural (98.5%, Fluka), 5-HMF (98%, Fluka), LA (98%, Aldrich) and GVL (98.5%, Fluka) were directly used without further puri?cation. Ultra-high purity nitrogen and hydrogen gases (99.9%) were supplied by a local company. The ultrapure water obtained from a Milli-Q water ?Itration station (Millipore Corp., Milford, MA) was used in all experiments unless other- wise stated. Preparation of catalyst materials Natural Ca-bentonite was utilized as a heterogeneous solid catalyst in this study due to its mechanical and hydrothermal stability, low swelling capacity, high cation exchange capacity (CEC, 58.3 meg. 100 g 1 clay according to methylene blue test method designed in ASTM C837-99), environmentally benign and easily obtainable material. The acid treatment of bentonite aims to enhance its adsorption and catalytic properties for the hydrolysis of cellulosic components of biomass into water- soluble saccharides. The acid-activated bentonite was prepared based on the following procedure: 50 g of puri?ed bentonite was immersed in a 500 ml solution of sulfuric acid (2 N) and transferred into a round-bottom ?ask. The resulting suspension was heated at 80 C under re?ux and stirring for 4 h. Then, the solid was separated by vacuum ?ltration, washed with warm distilled water until free of sulphate ions (tested by BaCl2 solution) and dried in an oven at 110 C for 6 h. The acid- activated bentonite was crushed and sieved to particle sizes of 125-150 mm. Here, the untreated and acid-activated bentonite samples were designated as UB and AAB, respectively. The titaniasupported 1 wt% Pt catalyst (1% Pt@TiO2) was prepared by incipient wetness impregnation method based on Zhang and co-workers procedure.30 Characterizations of biomass precursors and catalyst materials The thermal stability of SB and DSB samples was determined by thermal gravimetric analysis (TGA)

8using a Mettler-Toledo TGA/DTA 1 thermal analyzer

with a heating and cooling rate of 10 K min 1 up to 1073 K under continuous nitrogen gas ?ow of 150 ml min 1. The mass of the samples in each experiment was about 10 mg. The surface morphology of biomass precur- sors and catalyst materials was visualized

11by scanning electron microscope (SEM), on a JEOL JSM-

6390F

2operated at an accel- erating voltage of 10 kV. Prior to

SEM imaging, an

2ultra-thin layer of conductive platinum was sputter-coated on the speci- mens using an auto ?ne coater (JFC-1200, JEOL, Ltd., Japan) for 120 s in an argon atmosphere. The powder X-ray diffraction

(XRD) patterns were acquired

2on a Philips PANalytical X'Pert powder X-ray diffractometer with a monochromated high- intensity Cu Ka1 radiation (I 1/4 0.15406 nm)

operating

2at 40 kV, 30 mA and a step size of 0.05 s in the

2-theta scan 1 range of 5–90 . The peak locations corresponding to the crystalline phases were compared with standard JCPDS ?les. The speci?c surface areas and pore structures of the catalysts were characterized by nitrogen adsorption–desorption isotherms. The adsorption and desorption isotherms were conducted at the boiling temperature of

2liquid nitrogen (77. 2 K) using an automated Micromeritics ASAP2010 sorption

appa- ratus. Before measurements, the

13samples were outgassed under vacuum for 6 h at 473.2 K. The Brunauer– Emmett–Teller (BET) equation was used to calculate the speci?c surface area from adsorption data in the relative pressure (P/ Po) range of 0. 80.30. Total pore volume (VT) was determined from the amount of adsorbed gas at a relative pressure of 0.

995. Catalytic hydrothermal conversion of DSB biomass The hydrothermal conversion of DSB biomass was carried out in a 150 ml lab-scale high pressure batch reactor. The high pressure batch reactor was equipped with a pressure gauge, an external electrical heating system, a Type K thermocouple as internal temperature control device and M8 screws for tight- ening the reactor with its cap. The maximum allowable oper- ating

14pressure and temperature of the reactor are 10 MPa and 523.2 K, respectively.

Typical hydrothermal conditions were described as follows: temperatures 393.2–473.2 K, catalyst loading 0–2% (w/v), DSB to water ratio 1 : 10 (w/v), stirring speed (300 rpm) and internal pressures (3–5 MPa). The hydro- thermal reaction was conducted at desired temperatures for 60 min and

11a?er the completion of reaction, the reactor was rapidly cooled down to room temperature by quenching in a cold water bath and

the gas pressure was recorded and vented. The solid fraction was separated by centrifugation at 3000 rpm for 15 min. An aliquot of liquid samples obtained a?er the reaction was withdrawn and the concentrations of 5-HMF, furfural, LA, organic acids and monomeric sugars were quan- ti?ed by using high performance liquid chromatography (HPLC) as described later. Catalytic hydrogenation of hydrothermal liquor containing LA The catalytic hydrogenation reactions were performed in a 250 ml Parr 4576A bench top stirred HP/HT reactor equipped with a temperature controller unit (model P.I.D. 4843), a pressure transducer and gage and overhead stirring. Before use, the catalyst was activated under ?owing H2 at 573.2 K and atmo- spheric pressure

7for 3 h. In a typical procedure, the

aqueous solution containing LA obtained from hydrothermal reaction at 453.2 K with 2% AAB catalyst was introduced into the reactor,

9followed by the addition of 0.5 g of catalyst

comprising 0.4 g 1% Pt@TiO2 and 0.1 g AAB as an acid co-catalyst. An equivalent amount of 1% Pt@TiO2 hydrogenation catalyst (0.4 g) was also used in the reaction.

9In order to remove air inside the

reaction vessel, the reactor

9was slowly ?ushed with argon three times before hydrogen gas was charged.
A?

erward, the

6reactor was pressurized with hydrogen gas to 3 MPa and sufficient temperature ramping time was

allowed before the reaction step at the chosen temperature. Zero reaction time was de?ned when the temperature inside the reactor reached the chosen temperature. The hydrogenation reactions were performed at temperatures of 393.2–473.2 K and residence times were varied between 120 and 360 min. During the course of the reaction, mixing was achieved through an internal 4-blade impeller operating at 1200 rpm. Preliminary experiments showed that this stirring speed was sufficient to avoid external mass transfer limitation, thus ensuring the reaction operates in the kinetic regime. A?er the predetermined reaction time, the reactor was rapidly cooled down to room temperature and the residual gases were discharged. The reaction mixtures containing liquid and solid fractions were centrifuged at

93000 rpm for 15 min and then vacuum-?ltered to obtain a clear solution. HPLC analysis of the

product mixture from hydrothermal reaction The aqueous phase containing various water-soluble reaction products from hydrothermal liquefaction of DSB was analyzed using a Jasco chromatographic separation module consisting of a model PU-2089 quaternary low pressure gradient pump, a model RI-2031 refractive index detector and a model LC-NetII/ ADC hardware interface system. All solution samples

26were ?Itered through a 0. 22 mm PVDF syringe ?Iter

prior to injection in the HPLC. The analysis of monomeric sugars including glucose, fructose, xylose, galactose and arabinose was con- ducted

24with an Aminex HPX-87P sugar column (Bio-Rad,

300 7.8 mm) using

42degassed HPLC-grade water isocratically ?owing at a rate of 0. 60 ml min 1.

The column was operated at

358.2 K and detection of effluent sugars was performed by using a RI- 2031 detector. For the analysis of simple organic acids (i.e., formic, acetic and levulinic acids) and furan derivatives (i.e., 5- HMF and furfural), the separation of compounds was achieved with a Bio-Rad Aminex HPX-87H column (300 7.8 mm) using isocratic elution of sulfuric acid aqueous solution (5 mM)

40as the mobile phase at a ?ow rate of 0.60 ml min 1. The RI-2031 detector was used to identify the

compounds and the column oven was set to 328.2 K. The concentrations of each compound in the product mixture were determined using the calibration curves obtained from the injection of solutions of authentic samples with known concentrations. Gas chromatography analysis of the reaction products containing GVL The reaction products containing GVL were quantitatively analyzed by using

14a Shimadzu GC-2014 gas chromatograph equipped with a Phenomenex Zebron™ ZB -Wax capillary

34column (30 m length 0.32 mm i.d., 0. 25 mm ?lm thickness) and a ?ame ionization detector (FID).

The carrier gas was ultra- high purity (UHP) grade helium (99.99%) with a constant ?ow

39rate of 1.0 ml min 1. The injection volume was 1.0 ml in splitless mode. The following temperature program was used in the

analysis: an isothermal step

14at 60 C (held for 3 min), which was ramped

33at a rate of 10 C min 1 to 230 C and held for 5 min. The

injector and detector temperatures were kept at 250 and 300 C, respectively. The identi?cation of reaction products was accomplished by comparison of sample peak retention times with those of authentic standards analyzed under identical conditions. Standard solutions encompassing the concentration range of the

samples were used to construct the calibration curves for quantifying the concentrations of the compounds of interest. Results and discussion The characteristics of SB and DSB samples include elemental and proximate compositions and their lignocellulose contents are presented in Table 1. In order to examine the thermal stability of biomass precursor, TGA was conducted under nitrogen environment by raising the temperature gradually from ambient to an upper limit of 1073.2 K,

20where it is safely assumed that all the elemental oxygen and hydrogen are liber- ated to gaseous compounds, thus leaving only elemental carbon.

TGA result indicates that SB is a potential feedstock for energy and chemical production due to high cellulose (35.4%) and hemicellulose (24.7%) contents, which are the main sour- ces of fermentable sugars. From TGA curves shown in Fig. 1, it is clearly seen that SB sample undergoes a gradual thermal decomposition process with a signi?cant weight loss happening at temperatures between 260 and 360 C. The weight loss of about 60% corresponds to the rapid breakdown of hemi- cellulose and cellulose fractions with the DTG peak tempera- tures at 295 and 352 C, respectively. The degradation of lignin might also happen over this temperature range, which is primarily caused by the breakdown of chemical bonds with low activation energy.31 A minor weight loss about 5% occurring between 400 and 500 C is attributed to the lignin degradation reaction involving the breakdown of more stable bonds. The temperature regions where depolymerization of hemicellulose and the random cleavage of the glycosidic linkages in cellulose structure occur are in good agreement with the studies of Yang et al..31 Garcia-Perez et al.32 and Cao and Aita.33 At high temperatures between 500 and 800 C, the weight loss signal was not very evident, approaching a value for the charcoal yield of 15.7%. The cellulose, hemicellulose and lignin contents (on a dry basis) of SB sample

32obtained from TGA method are in good agreement with the values determined

from "wood-industry" Fig. 1 Thermogravimetric curves of sugarcane bagasse before (SB) and after NaOH delignification pretreatment (DSB), methods and the established protocols of National Renewable Energy Laboratory (NREL). The thermogravimetric curve of DSB sample shows a similar characteristic to that of SB sample with higher onset of degradation temperatures for hemicellulose and cellulose at 306 and 364 C, respectively. This indicated that the treated biomass exhibited higher thermal stability due to the lignin and hemicellulose removal. Maximum rates of weight loss occur between 270 and 380 C for deligni?ed biomass. Again, the amount of weight loss was insigni?cant at high temperatures between 500 and 800 C, yielding residual carbon of 17.2%. The individual monosaccharides include glucose, xylose, galactose and arabinose present in the hydrolysate solution obtained from dilute acid hydrolysis (5% HCl under re?ux at 96 C for 2 h) of SB and DSB samples were quanti?ed with a chromatographic procedure of du Toit et al.34 and the monomeric sugar yields, in the unit of mg g 1 dry biomass, were given as follows: glucose (387.4) for SB and (564.2) for DSB, xylose (245.5) for SB and (188.2) for DSB, galactose (2.8) for SB and (2.1) for DSB and arabinose (31.4) for SB and (22.8) for DSB. In this respect, the concentrations of the polymeric sugars corresponding to its monosaccharide units (Table 1) are calculated according to NREL conversion formula. Lignin can act as a physical barrier, encapsulating and con?ning cellulose and this complex threedimensional aromatic polymer architecture is highly recalcitrant toward enzymatic, chemical and biological

degradation. Therefore, pretreatment strategy to promote efficient hydrolysis is an essential step in the lignocellulosic biomass-processing bio- re?neries to reduce the inherent lignocellulosic cell wall recalcitrance for cost-effective downstream processing. Since the biomass feedstock contains a guite high portion of lignin (21.8%), deligni?cation pretreatment with NaOH solution is employed to effectively remove lignin from the biomass, at the expense of parts of the structural carbohydrates are decom- posed. A?er deligni?cation, the lignin content signi?cantly decreased from 21.8% in the native biomass to 10.3% in the treated biomass. In line with this, the concentrations of poly-meric hemicellulose sugars including xylan, galactan and ara- binan in the treated biomass were 165.6, 1.9 and 20.2 mg g 1 dry biomass, respectively, indicating that alkaline deligni?ca- tion brought hemicellulose dissolution. On the other hand, most of the glucan portion was preserved during deligni?cation pretreatment, which could be ascribed to the robust crystalline structure and low reactivity of cellulose with alkali. For comparison purposes, the alkaline deligni? cation conditions of various lignocellulosic biomass resources are listed in Table 2. From this table, it can be shown that deligni?cation efficiency varies greatly with process conditions and types of the biomass feedstocks. In general, alkali pretreatment is more effective for removing a substantial portion of lignin from hardwood biomass and agriculture waste products. Moreover, the deligni?cation efficiency under conditions described in this study (52.8%) compares well with other studies performed at higher temperatures (e.g., 368.2, 394.2 and 433.2 K) and shorter residence time (e.g., 1, 1.5 and 3 h) in the absence of stirring. The main chemical mechanism by which the lignin polymer degrades in alkaline and alkaline-oxidative environments has Table 2 Summary of alkaline delignification conditions of various lignocellulosic biomass resources Deligni?cation conditions Solid-liquid Temperature Residence Deligni?cation Lignocellulosic resources Alkali ratio (w/v) (K) time Stirring speed (rpm) efficiency (%) Sugarcane bagasse – Aita et al.33 Corn stalk – Yu et al.35 Corn stover – Kim and Holtzapple36a Sorghum – Salvi et al.37a Cotton stalk – Silverstein et al.38 Switchgrass – Gupta and Lee39 Mixed hardwood chips – Yu et al.40b Rice straw – Cheng et al.41c Sugarcane bagasse – this study NH4OH NaOH Ca(OH)2 NH4OH NaOH NaOH NH4OH GL NaOH Ca(OH)2 NaOH 1:20 433.2 1:15 333.2 1:2 328.2 2:1 433.2 1:10 394.2 1:10 358.2 1:10 393.2 1:4 433.2 5:1 328.2 10:1 368.2 1:10 Room 1 h 1.5 h 4 weeks 1 h 1.5 h 24 h 24 h Not available 3 h 3 h 24 h NA S00 14 60 87.5 44 65.6 76.1 67.8 28.8 23.1 24.4 52.8 a The loading ratios of alkali to raw biomass are given on a mass basis. b GL (green liquor) is an alkaline solution prepared by mixing sodium carbonate and sodium sul?de with a sul?dity of 25%. c The loading ratio is expressed as g H2O g 1 oven-dried rice straw with an alkali loading of 4 wt% for NaOH and 10 wt% for Ca(OH)2. been mechanistically studied and is through the cleavage of hydrolysable

24a- and b-aryl ether bonds in lignin and glycosidic bonds in

polysaccharides. Meanwhile, hemicellulose dissolu- tion and cellulose swelling are a consequence of hydrogen bond weakening. The post-pretreatment biomass washing step by warm or hot distilled water aims to remove the alkali residues, soluble phenolics and other degradation products formed during lignin depolymerization. In this regard, the concentration of alkali metal ion remained with the washed biomass was very low or absent a?er repeated washing step. The pretreatment liquor from deligni?cation step containing dissolved lignin, lignin- derived soluble phenolics, acetic acid, hemicellulose-derived poly/oligosaccharides, proteic compounds and other extractives can be reclaimed for further applications such as production of bioethanol or biohydrogen. Alkaline deligni?cation pretreatment had a notable effect on the biomass morphology. Images obtained by SEM show some visible changes associated with the biomass wall disruption a?er deligni?cation. The rod-like morphology of native biomass (SB) was easily recognizable in Fig. 2(a) and the untreated SB had a relatively smooth and intact surface. Deligni?cation

pretreatment by NaOH resulted in the disrupted surface struc- ture due to the breakdown of lignin as shown in Fig. 2(b) and therefore the surface of deligni?ed biomass (DSB) appears rougher when compared to the native biomass. Moreover, the structure of DSB biomass was opened up as a result of lignin removal, indicating the more available or exposed surface area of cellulose for hydrolysis. Fig. 2(c) depicts the morphological features of DSB biomass wall a?er sub-CW treatment. The surface structure of sub-CW treated DSB biomass changed signi?cantly when compared with DSB sample, showing a sponge-like structure. The small pores/cavities formed on the wall of sub-CW treated DSB sample

17might be the result of release of hemicellulose or cellulose decomposition

products from the interior of the biomass particle. Fig. 2(d) shows the aggregates of irregularly-shaped, nonuniform solid particles obtained from hydrothermal conversion of DSB sample. The size distribution of the solid aggregates ranged from tens of microns to submicron. The electron micrograph clearly reveals that spherical particles were not likely formed in the hydro- thermal processing at low temperatures. Titirici and group42 obtained sphere-shaped and monodisperse hydrothermal carbons derived from pure glucose at 533.2 K while the overall morphology of hydrothermal carbons derived from cellulose and rye straw (a model of lignocellulosic biomass) was not as homogeneous as from pure glucose, with some structural components of the precursor material still remained intact and arranged together with spherical carbon particles. The elemental composition analysis was conducted by an INCA energy dispersive X-ray microanalysis system integrated with the hardware of the SEM and result showed that the solid Fig. 2 Scanning electron micrographs of untreated sugarcane bagasse – SB (a) and after NaOH delignification pretreatment - DSB (b), morphological structure of biomass (DSB) wall following sub-CW treatment (c) and solid 'humin' byproduct obtained from hydrothermal conversion of DSB biomass (d). aggregates were comprised of elemental carbon (64.8 at%) and oxygen (35.2 at%). The morphological features of the catalysts are depicted in Fig. 3. From SEM images, it can be seen that UB catalyst is aluminosilicate clay with a layered structure and smooth surface.

11The speci?c surface area of UB catalyst calculated from the BET method was

61.8 m2 g 1 and its total pore volume was 8.3 10 2 cm3 g 1. Nitrogen adsorption-desorption isotherms revealed a classical combination of micro/mesoporous struc- tures in the catalyst particle. A?er chemical modi?cation by sulfuric acid, some evident changes in the platelet morphology of UB catalyst were observed. Generally speaking, an acid treatment results in the replacement of exchangeable cations that are between the layers (i.e., Na+, K+ or Ca2+) with H+ ions of the acid and depending on the treatment conditions, partial delamination of Al-octahedral and Si-tetrahedral layers, fol-lowed by subsequent dissolution of structural cations (typical examples are Fe2+/3+, Mg2+ or

25Al3+ in the Al -octahedral layer and Al3+ or Si4+ in the Si -tetrahedral

layer).43 The small difference in CEC between UB (58.3) and AAB (57.5) samples suggests that the structural cations in the Al-octahedral and Si-tetrahedral layers are marginally affected by dilute acid attack. The surface acidity (or catalytic acid sites) of the bentonite, as determined by a simple acid-base titration method,44 increased dramatically from 30.7 (UB) to 118.2 meq. 100 g 1 clay a?er treatment by 2 N sulfuric

acid. Results of nitrogen adsorption—desorption measurements for AAB catalyst show an increase in the BET speci?c surface area and total pore volume. The BET speci?c surface area and total pore volume of AAB catalyst are 122.4 m2 g 1 and 0.12 cm3 g 1, which is 2- and 1.5-fold higher compared to those values of UB catalyst. The scanning electron micrograph of 1% Pt@TiO2 in Fig. 3(b) shows that the catalyst is spherical-like irregular particles with average diam- eter sizes are in the submicrometer range (150–200 nm). The BET speci?c surface area of 1% Pt@TiO2 was lower compared to bare TiO2 (48.4 vs. 51.3 m2 g 1), likely due to the deposition of ?ne Pt particles on the surface of the support that might block pores of TiO2. The wide angle XRD patterns of AAB and

351% Pt@TiO2 cata- lysts are shown in Fig. 4. From the

XRD spectrum of AAB cata- lyst, the montmorillonite (2q $\frac{1}{4}$ 6.7 , 20.2 , 21.8 , 35.1 and 61.8) and quartz (2q $\frac{1}{4}$ 26.8 , 50.4 and 68.3) are the major phases with other minor re?ections corresponding to mineral impurities of crystobalite, calcite, K-feldspar, mica and/or illite Fig. 3 Scanning electron micrographs of AAB clay (a) and 1% Pt@TiO2 catalysts (b). phases. The re?ection at 2q $\frac{1}{4}$ 6.7 is correlated to the basal spacing (001) of montmorillonite, corresponding to a value of 1.32 nm. Compared to UB catalyst, the position of the (001) basal re?ection in AAB catalyst remains essentially unchanged (2q $\frac{1}{4}$ 6.8 , 1.30 nm), showing the minor

25effect of dilute acid treatment on the lattice structure of

clay. As it can be seen from Fig. 4(b), the bare TiO2 exhibits re?ections at 2q angles of 25.5 , 37.2 , 38.0 , 48.1 , 54.4 , 55.2 , 62.7 and 68.9 in which all these re?ection peaks can be well indexed to the (101), (103), (004), (200), (105), (211), (204) and (116) crystal planes of TiO2 with anatase phase according to JCPDS database card no. 21- 1272. The diffraction lines for (111), (200) and (220) of Pt cubic phases were located at about 2q angles of 39.8 , 46.4 and 67.5 (JCPDS database card no. 04-0802). Result showed that the diffraction pattern of 1% Pt@TiO2 was essentially the same as that of diffraction pattern from bare anatase TiO2. Similar observations have been noted by Zhang

32et al. 30 and Moonsiri et al. 45 in their studies.

The absence of diffraction signals from metallic Pt species could be attributed to the small size and highly distributed Pt particles supported on TiO2. Zhang and co- workers30 observed that Pt particles were highly dispersed on TiO2 support into a size smaller than 1 nm from high-resolution transmission electron microscope (HRTEM) image.

31Hence, we believe that in case of fresh 1% Pt@TiO2 catalyst, the average Pt particle sizes are around 1 nm

(or even smaller) since the catalyst preparation in our study was adopted from Zhang et al. procedure. The high dispersion of nano-sized Pt particles on anatase TiO2 support could be very important for high activity

and selectivity of this catalyst in the hydrogenation of LA. In the hydrothermal reaction with the aim of producing building block chemicals for clean liquid fuels, the cellulose and hemicellulose components of biomass were hydrolyzed to six and ?ve carbon sugar monomers, followed by dehydration reactions of these monomeric sugars to produce 5-HMF and furfural in water under subcritical condition. Given the fact that sub-CW possesses the catalytic role of an acid or base and has been widely used as an alternative medium for the conversion of lignocellulosic biomass into platform chemicals, Table 3 pres- ents the conversion yields of cellulose and hemicellulose components of DSB biomass into a variety of reaction products including sugars, 5-HMF, furfural and organic acids in the absence or presence of solid acid catalysts. From this table, it is easily noticed that the performance of non-catalyzed, mildly sub-CW treatment for cellulose hydrolysis is not so impressive with glucose yield ranged between 32.74 and 54.18 mg g 1 dry biomass (3.27–5.42 wt%) in the temperature range of 393.2–473.2 K for 60 min reaction. The incomplete and slow conver- sion rate of cellulose into glucose under non-catalyzed, mildly sub-CW treatment might be due to the fact that hydrolysis reaction was limited at the surface region without cellulose swelling and dissolution compared to the reaction taking place in high-density regions (near-critical and supercritical water)46 as well as insufficiently high temperature to disrupt the robust structure of cellulose. Hemicellulose-derived monosaccharides were also present in the reaction product mixture, accounting for 3.3-4.1 wt% yields. The quantities

16of 5-HMF and LA were barely detectable in the reaction product

mixture, affording Fig. 4 XRD patterns of AAB (a) and bare TiO2 and 1% Pt@TiO2 catalysts (b). Table 3 Non-catalytic and catalytic results of sub-CW treatment of DSB biomass in the presence of 2% (w/v) UB or AAB clay-based catalysts at various temperatures for reaction time of 60 min Yields (mg g 1 dry biomass) Sub-CW treatments T (K) Glucose Xylose Arabinose Galactose 5-HMF LAa FAa Furfural AAa Non-catalytic UB-catalyzed AAB-catalyzed 393.2 32.74 413.2 35.56 433.2 42.33 453.2 54.18 473.2 50.69 393.2 38.38 413.2 46.28 433.2 54.19 453.2 89.41 473.2 78.56 393.2 92.00 413.2 115.71 433.2 145.06 453.2 216.75 473.2 190.46 28.36 4.24 29.70 4.44 32.41 4.83 35.69 5.33 33.25 5.02 41.47 6.20 43.01 6.43 47.45 7.09 63.08 9.42 54.25 8.18 58.64 8.76 64.82 9.68 72.33 10.81 95.30 14.35 86.71 12.62 0.28 0.30 0.32 0.35 0.37 0.42 0.44 0.49 0.67 0.63 0.62 0.67 0.75 0.93 0.91 a LA, FA and AA represent levulinic

17acid, formic acid and acetic acid,

respectively. 0.76 0.90 1.16 1.67 1.49 2.18 2.82 3.60 6.79 5.54 23.18 30.78 41.63 80.41 65.69 0.08 0.01 0.11 0.02 0.16 0.04 0.28 0.09 0.23 0.12 0.44 0.14 0.65 0.23 0.89 0.34 3.14 1.38 2.76 1.59 30.52 9.10 43.64 14.30 74.78 23.68 159.17 55.09 125.44 61.72 0.52 0.58 0.61 0.71 0.74 0.87 0.95 1.02 0.88 1.14 5.49 0.80 6.64 0.93 8.03 1.09 14.38 1.17 13.15 1.32 28.90 1.41 32.90 1.64 37.78 1.90 53.87 2.23 46.48 2.56 yield less than 0.2 wt%. In pure sub-CW medium, the dehy- dration of glucose into 5-HMF is non-selective,47 leading to formation of multiple side-products and insoluble carbona- ceous residue 'humin'. The reaction mixture a?er sub-CW treatment also turned into dark brown, which could

37be ascribed to the formation of soluble and insoluble polymeric side -products.

These polymeric side-products were not charac- terized in this study due to several analytical issues. The pres- ence of furfural was detected in the reaction product mixture and a maximum yield of 0.95 mg g 1 was achieved at 453.2 K. The furfural yield for non-catalyzed, mildly sub-CW treatment in this study compares well with results in the literature for a one-stage process where hydrolysis and dehydration reactions occur simultaneously within the same reactor. In the absence of catalysis, the hydrothermal degradation rate of cellulose to glucose is not signi?cant. It was later revealed by Kuster48 that the enolization rate of glucose, a rate- determining step for 5-HMF formation, is slow in water and intermediate 5-HMF is more likely to undergo a series of

27unwanted side reactions such as condensation, rehydration, fragmentation and cross-polymerization reactions involving sugars, water molecules and

various reactive intermediates. The

27use of heterogeneous solid acid catalysts for enhanced cellulose conversion

and also selective and high-yielding production of 5- HMF and LA has been coming up to a promising direction of research. In this regard, clays and clay minerals can catalyze chemical reactions via Bronsted and/or Lewis acid sites on their surfaces although native or natural clays generally show low or almost no catalytic activity prior to acid or cation exchange treatments. As expected, the cellulose conversion catalyzed with UB solid slightly enhanced compared with blank reaction (no catalyst) and the glucose yield reached only 89.41 mg g 1 dry biomass for 60 min reaction at 453.2 K. Low catalytic activity of untreated bentonite might lead to speculation that the solid acid catalyst is not active enough for promoting hydrolysis of cellulose, possibly attributed to: (1) the surface of solid acid catalyst cannot readily adsorb or attach

18to cellulose and b-1,4 glucan

in water or (2) the absence of freely available, strong Bronsted acid

18sites for decomposing hydrogen bonds and hydrolyzing b-1,4 glycosidic bonds in cellulose.

Under the same reaction condition, 5-HMF and LA with the corresponding yields of 6.79 and 3.14 mg g 1 dry biomass were produced.

30Based on the results obtained, it could be inferred that

the product distribution was affected by addition of UB catalyst while minor improvement on the cellulose conversion in water was observed compared to blank reaction. Moreover, the yield values of 5-HMF and LA are higher than those obtained from blank reaction, showing that water, in the presence of acid catalyst, is a

favorable medium for promoting rehydration of 5- HMF to LA. Very recently, Li and his team49 demonstrated that the decomposition of 5-HMF to LA was the preferred reaction pathway in water and an unexpectedly high LA yield could be obtained in the presence of Amberlyst™ 70 as the solid acid catalyst. Under our experimental conditions, fructose was present at trace level in the reaction product mixture either due to limited extent of glucose isomerization to fructose or once formed, fructose was rapidly dehydrated to 5-HMF.50 The temperature variation experiments for UB-catalyzed hydro- thermal treatment showed an upward trend of cellulose depolymerization rate with temperature. The actual yields of glucose, 5-HMF and LA increased when the reaction tempera- ture was raised from 393.2 to 453.2 K and a decrease in yield was noted at 473.2 K. Such results imply that an increase in temperature not only improves the extent of cellulose depoly- merization, but also enhances the rate of side reactions. The actual yields of pentoses increased to the range of 47.67–72.50 mg g 1 dry biomass, indicating that UB catalyst was active for hemicellulose conversion. Over the temperature range studied, ca. 0.55-1.44 wt% furfural yields were achieved with UB catalyst having a Si/Al molar ratio of 5.3. A similar increasing trend in pentoses and furfural yields from hemicellulose conversion over synthetic zeolites (HBeta, HMOR and HUSY) and K10 montmorillonite catalysts has been demonstrated as well.51 The increase in furfural yield implies that the Bronsted acid sites located at the external surface of the Si-tetrahedral layer (one may refer to the terminal silanol groups, Si-OH2+) are particularly active in catalyzing the dehydration of xylose to furfural. The effects of

37catalyst loading on the yields of sugars, 5- HMF, furfural and

LA were investigated by varying the catalyst amounts from 0 to 2% (w/v) for 60 min reaction at 473.2 K. Experimental results depicted in Fig. 5 show that higher yields of LA and furfural could be obtained by increasing the catalyst loading from 1 to 2%,

30due to a higher number of catalytic acid sites

are available for reaction. Further increase in the catalyst loading may or may not adversely affect the formation of LA and furfural and optimization of the catalyst loading is beyond the scope of this study. Table 4 summarizes comparison of hexoses (e.g., glucose and fructose), xylose and other carbonaceous feedstocks (cellulose and hemicellulose) conversion into 5-HMF, LA and furfural over solid acid catalysts having only Bronsted acid sites or rationally designed by varying the

36Bronsted-to-Lewis ([B]/[L]) acid site ratios such as

H-mordenite, ion-exchange polymeric resins (Amberlyst™ 15 and Amberlyst™ 70), Sn-exchanged montmorillonite, acid-functionalized mesoporous SBA-15, K10 mont- morillonite and metal oxides catalysts (TiO2 and ZrO2). In this table, it can be seen that most studies used commercial sources Fig. 5 Effect of AAB solid acid catalyst load amounts on the yields of reaction products obtained from hydrothermal conversion of DSB biomass at 453.2 K. of high purity sugars or microcrystalline cellulose (MCC, Avicel®) as model compounds to produce 5-HMF or furfural as end products. For this case, the product selectivity term is de?ned as the mol% yield of targeted product divided by mol% of reactant consumed or mathematically described by: selec- tivity, S (%) ½ product yield (mol%)/conv. (mol%). Using simple carbon sources such as glucose,

xylose or other mono/ disaccharides, it is reasonable to achieve moderate to very high selectivity toward targeted product due to simpler and better control in reaction within one reactor. Following this statement, the determination of product selectivity term by the above mathematical expression for direct conversion pathways such as from glucose or fructose into 5-HMF, from MCC into LA or from xylose or hemicellulose into furfural is deemed to be valid. On the other hand, there still exists con?icting de?nitions for the product yield and selectivity terms in the study utilizing real lignocellulosic biomass. In such typical cases, the conver- sion of lignocellulosic biomass into platform chemicals involves a complex multi-step route. Another potential issue to consider is the determination of initial amount (moles) of biomass reactant fed into the reactor may not be possible unless a thorough characterization study (e.g., gel permeation chromatography or cross-polarization magic angle spinning 13C- NMR spectroscopy) is performed to interpret the molecular mass of biomass. Thus, the product selectivity term for hydro- thermal conversion step is not evaluated in this paper due to a set of main and side reactions are involved during the indirect conversion of DSB biomass to LA and several reaction products remained unidenti?ed by HPLC analysis, which may overestimate true selectivity values. Another reason was due to the instrumentation issues for conducting a thorough character- ization of biomass feedstock in this study. On the contrary, the cellulose conversion to glucose and

16rehydration of 5-HMF to LA was

quite signi?cant with AAB as a solid acid catalyst (Si/Al molar ratio 1/4 6.8). AAB catalyst also possesses dual Bronsted and Lewis acidity similar to the untreated bentonite; however the number of

36Bronsted acid sites appears to be higher than the Lewis acid sites

a?er H2SO4 treatment. In this regard, the presence of Bronsted acid sites Table 4 Conversion and selectivity in the aqueous-phase dehydration reaction of hexoses, xylose and other carbonaceous sources into 5-HMF, LA and furfural catalyzed by various solid acid catalysts Selectivity (%) Conv. Entry Catalyst Reaction pathway 5-HMF LA Furfural (%) Reference 1 LZY zeolite 2 HUSY zeolite 3 K10 montmorillonite 4 H-mordenite (Si/Al ¼ 11) 5 HY zeolite 6 Sn-beta/HCl zeolite 7 Amberlyst™ 15 8 Sn-exchanged montmorillonite 9 Ca-montmorillonite 10 Amberlyst™ 70 11 Acid-functionalized SBA-15 12 Anatase TiO2 13 Zirconia 14 Zirconia 15 Tungstated alumina (AIW) Fructose / LA Hemicellulose / furfural Hemicellulose / furfural Fructose / 5-HMFa Xylose / furfural Glucose / 5-HMF Glucose / 5-HMFa Glucose / 5-HMF Glucose / 5-HMFa Xylose / furfural Fructose / 5-HMFa Fructose / 5-HMFa Glucose / 5-HMF Fructose / 5-HMF Cellulose / LA Cellulose / LA 6.5 — — 91.0 — 6/72a 8.9 16.2/54.4a 0 — 60.0 66.0 16.5 15.6 2 — 84.4 — — 45.7 — 67.0 — — — 22.7 — — — — — — — — 99.8 — — — — 1.2 — 1.1 53.9 8.0 6.4 — 96.0 36.1 24.6 76.0 62.3 45/79a 78.7 40.2/98.4a 48.0 8.0 85.0 79.0 85.0 90.0 100 47 50 51 51 52 53 54 55 55 55 53 56 56 57 57 58 59 a Dehydration reactions were carried out in biphasic systems such as in water/methyl isobutyl ketone (Entry 4), H2O/THF with 0.35 g salt per g H2O (Entry 6), THF/DMSO (Entries 7–9), aqueous and methyl isobutyl ketone/2-butanol phases (Entry 10: fructose / 5-HMF, Entry 11). located at the external surface of the Si-tetrahedral layer and in the interlayer region can serve as the catalytic acid sites for hydrolysis of cellulose to glucose and rehydration of 5-HMF to LA. The Bronsted acid sites in the acidactivated clay might also coordinate with hydroxyl groups bonded with Al3+ cations in the Al-octahedral layer based on FTIR spectroscopic study of Tyagi and his group.60 The selective hydrolysis of cellulose to glucose over various solid acid catalysts include a robust sulfonated activated carbon (AC-SO3H) catalyst at

423.2 K has been con- ducted by Onda and co-workers.44 Further, they found that the AC-SO3H catalyst displayed signi?cant catalytic activity and a remarkably high selectivity toward glucose production, which was attributed to high hydrothermal stability, strong acidic SO3H groups and the hydrophobic graphene planes of the catalyst. Tong and co-workers61 conducted

3catalytic hydrolysis of cellulose to reducing sugar in water over acidactivated montmorillonite catalysts

and their study showed that the higher concentrations of the Bronsted acid sites in the inter- layer region contributed to greater conversion of cellulose. Since AAB possesses a micro-mesoporous structure with slit-shaped pores of 3–4 nm in diameter, it can be argued that the internal diffusion limitation may not be signi? cant. The molecular dimensions of monomeric sugars and their degra- dation products are found to be similar to pore sizes of micro- porous materials (0.4–0.9 nm),62 thus the 3 to 4 nm-sized pores are large enough for monomeric sugars, furans (5-HMF and furfural) and simple organic acids (LA) to diffuse in and out of the catalyst particle. Once monomeric sugars or intermediate oligomers (e.g., dimers, trimers or tetramers) are formed within pores, these molecules can enter narrow channels in the cata- lyst particles and interact with internal acid sites to give furans and LA. The Lewis acidity associated with the clay edge sites, although less prominent than the Bronsted acid sites, might also take part in the catalytic reaction. The Lewis acid sites on clays can also be generated

29due to octet vacancies that occur as a result of structural metal cations

(e.g., Mg2+ or Al3+)

29being carried away during acid activation. However, the

extent of catalysis by the Lewis acid sites toward the rates of cellulose and hemicellulose depolymerization remains unknown in our experiments. The polymerization reactions leading to formation of soluble and insoluble polymeric side-products did occur in the sub-CW treatment catalyzed by AAB solid, but to a lesser extent compared to blank and UB-catalyzed sub-CW treatments. It is anticipated that the catalyst mesoporosity might enhance diffusion of furan and LA products away from the active sites where hydronium-catalyzed side and secondary reactions could occur. In consequence, higher LA yield was obtained in the AAB- catalyzed sub-CW treatment as shown in Table 3. The yield of LA ranged between 30.52 and 159.17 mg g 1 dry biomass in the AAB-catalyzed sub-CW treatment, representing a signi?cant increase in yield over the range of values obtained from UB- catalyzed sub-CW treatment. Therefore, an aqueous solution containing LA (15.92 wt%) obtained from AAB-catalyzed sub- CW treatment at 453.2 K and 2% catalyst loading was further used in the catalytic hydrogenation process to produce GVL. Saturated lactone (GVL) can be synthesized from an aqueous solution containing LA by catalytic hydrogenation reaction. For this reaction, it is well recognized that supported catalysts featuring noble metals such as platinum and ruthenium in nano-sizes and highly dispersed form are the most active and product selective toward GVL. In the catalytic hydrogenation of LA to GVL, the reaction pathways can be distinguished into two main routes, depending on the order in which dehydration and hydrogenation occur:63 (i) acid-catalyzed dehydration of LA into angelica lactones (ALs, a or b isomers) as intermediate followed by hydrogenation of ALs to GVL (i.e., dehydration—hydrogenation route) or (ii) direct synthesis through 4-hydroxy- pentanoic acid (4-HPA) which subsequently undergoes highly favorable acid-catalyzed intramolecular esteri?cation (ring closure) to ?ve member ring GVL (i.e., hydrogenation-dehydra- tion route). Results for the

5effects of reaction time and temper- ature on the conversion and GVL selectivity in Pt@TiO2- catalyzed hydrogenation of LA

are shown in Table 5. In this table, it can be seen that

17the conversion of LA increased with the extension of reaction time,

from 59.3% (120 min) to 88.5% (360 min) at 433.2 K. The same promoting effect was noticed for temperature, in which higher LA conversion was achieved by conducting the reaction at higher temperatures. The best cata- lytic activity shown by 1% Pt@TiO2 catalyst was observed at 473.2 K for 360 min reaction, corresponding to 99.3% GVL yield (99.3% selectivity at 100% conversion). The selectivity of 1% Pt@TiO2 catalyst toward GVL in this work was considerably higher than that reported by Upare and coworkers64 for 5% Pt@C catalyst (30% selectivity at 100% conversion). The differ- ence in hydrogenation activity between Pt@C and Pt@TiO2 catalysts might be attributed to the nature of the support material in which TiO2 support could adsorb and activate the carbonyl group of LA and consequently enhance the catalytic activity several times with respect to conventional Pt supported on carbon that does not perform such activation.65 Another explanation proposed in the literature for high GVL selectivity over titaniasupported catalysts is the absence of strong acid sites that are responsible for formation of GVL decomposition products, for example, 2-methyl tetrahydrofuran (2-MTHF), valeric acid (VA) or 1,4pentanediol (PD).66 An excellent perfor- mance of 1% Pt@TiO2 catalyst in the hydrogenation of LA was noticed in the study of Lange and his group,67 yielding >90% conversion and >95% GVL selectivity for reaction at 473.2 K. A more recent study conducted by Ruppert et al.66 also showed Table 5

5Effects of reaction time and temperature on the conversion and product yields in the catalytic hydrogenation of LA

with 1% Pt@TiO2 catalyst Yield (%) Conv. T (K) Time (h) (%) GVL AL 2-MTHF VA Selectivitya 393.2 2 4 6 413.2 2 4 6 433.2 2 4 6 453.2 2 4 6 473.2 2 4 6 35.3 32.0 42.8 39.9 54.4 52.1 47.1 43.5 58.6 55.3 72.2 69.7 59.3 55.9 71.7 68.7 88.5 85.9 77.8 74.3 97.4 94.7 100.0 98.4 93.6 90.8 100.0 98.2 100.0 99.3 — 1.6 — 1.4 — 1.0 — 1.6 — 1.5 — 1.1 — 1.5 — 1.4 — 1.2 — 1.7 — 1.2 — 0.7 — 1.3 — 0.7 — 0.2 1.7 90.7 1.5 93.2 1.3 95.8 1.9 92.4 1.8 94.4 1.4 96.5 1.8 94.3 1.6 95.8 1.4 97.1 1.8 95.5 1.4 97.2 0.9 98.4 1.5 97.0 1.1 98.2 0.4 99.3 a Selectivity was de?ned as the product yield (mol%) divided by LA conversion (mol%), high GVL selectivity (81.8–97.6 mol%, 343.2 K) for the hydro-genation of LA in water over anatase or anatase/rutile mixed- phase TiO2-supported platinum catalysts. Under our reaction conditions, the resulting byproducts from Pt@TiO2-catalyzed hydrogenation of LA were 2-MTHF and VA, both formed with 0.6 and 4.2% selectivity at the upper and lower temperature limits for 360 min reaction. ALs was untraceable in the reaction product mixture, suggesting that this species was rapidly transformed into GVL under H2

atmosphere and Pt@TiO2 catalyst. Due to the fact that GVL is the dominant product, it seems that the role of TiO2

6support in the reaction pathway is limited to its interaction with platinum metal (adhesion and

dispersion properties) and in?uencing

6the hydrogenation active sites on its

surface.

16In order to investigate the role of AAB as a heterogeneous acid co -catalyst, the

catalytic performance between 1% Pt@TiO2 and 1% Pt@TiO2 combined with AAB co- catalyst was compared

6in terms of conversion and GVL

selec-tivity.

6When it comes to the selectivity, in the case of

1% Pt@TiO2 catalyst, the primary product was GVL with >90% selectivity. Fig. 6 shows the compositions of reaction products obtained from catalytic hydrogenation of LA with 1% Pt@TiO2 in combination with AAB co-catalyst. The results reveal that a similar product distribution consisting mainly of GVL (>92% selectivity) was obtained and only very few amounts of byprod- ucts such as 2-MTHF and VA were detected. Full conversion of LA could be achieved at 413.2 K a?er 240 min reaction by utilizing combined catalyst system. Hence, AAB was

7demonstrated to be an effective acid co-catalyst,

which contributed

7a remarkable positive effect on the catalytic

performance. A similar ?nding has been reported by the group of Galletti et al.68 for

7commercial ruthenium supported catalysts in combination with different heterogeneous acid co-

catalysts include Amberlyst resins and niobium phosphate or oxide. Further studies on the rational design and optimization of the acid co-catalyst dosage and reaction tests under industrial viable conditions are still being carried out by our research group (Table 6). The catalyst stability and its possible reuse are both crucial issues with respect to economic and green chemistry consid- erations. Moreover, catalyst reuse considerably reduces both production costs and chemical waste, which is another critical issue of sustainability and environmental impact. The combined 1% Pt@TiO2 and AAB co-catalyst was recovered from the decanted reaction mixture and reused ?ve times. In detail procedure, a fresh charge of reactant was introduced into the reactor containing spent catalyst from the ?rst reaction test and the subsequent catalytic run was continued. The recyclability results of the spent catalyst are shown in Fig. 7. It is clearly shown that there is a gradual decrease in the catalytic activity (conversion) and GVL selectivity a?er ?ve consecutive catalytic runs, reaching a value of 87.4% conversion and 86.3% selec-tivity. This indicates that deactivation of the catalyst occurs during the subsequent reaction cycles, presumably due to coke formation from the polymerization of ALs over acidic AAB co- catalyst surface. The coke formation renders the catalyst less active, due to a decrease in the number of active surface sites available for hydrogenation. We also examined the extent of Pt metal leaching by performing inductively coupled plasma-mass Fig. 6 Time and temperature effects on the

22hydrogenation of LA to GVL in the presence of

1% Pt@TiO2 (0.25 g) and AAB clay (0.25 g) as an acid co-catalyst (LA: levulinic acid; GVL: gammavalerolactone; 2-MTHF: 2-methyl tetrahydrofuran; VA: valeric acid). spectrometry (ICP-MS) analysis in the liquid phase a?er 240 min reaction. The loss of the metal phase to the liquid phase was found to be very limited under applied reaction conditions. Hence, lower catalytic activity (LA conversion) and selectivity to GVL in the consecutive catalytic hydrogenation cycles points at deactivation of the spent catalyst by coking. In this regard, the spent catalyst a?er the ??h catalytic run was subjected to calcination at 723.2 K under a stream of pure oxygen for 180 min in order to remove as much carbon residue deposited on the catalyst surface as possible. By performing calcination at this temperature, the phase transformation of TiO2 support, for example from anatase to rutile phase and the sintering or collapse of the 2: 1 layer lattice structure of AAB clay do not occur and this appears to result in comparable catalytic performance of the calcined sample to that of fresh catalyst. The severe deformation of the layer lattice structures of clays and clay minerals was observed upon calcination at high tempera-tures (i.e., 973.2-1473.2 K).70 Table 6 Comparison of the performance of various heterogeneous solid catalysts with or without co-catalysts in the hydrogenation of LA to GVL Hydrogenation Catalyst Entry Metal Particle sizea (nm) Support Acid Co-catalyst Conv. (%) Selectivity to GVL (%) Reference Without acid co-catalyst 1 Ru (5%) Pd (5%) Pt (5%) 2 Ru (0.6%) 3 Pt (1%) Ru (1%) 4 Pt (1%) 5 Cu–Cr 6 Ru (5%) Raney Ni 7 Cu 8 Pt (1%) With acid co-catalyst 9 Ru (5%) 10 Pt (1%) 2–5 Carbon 17–18 Carbon 9 Carbon 2 A-TiO2b 4.5 A-TiO2 3.2 R-TiO2b — A-TiO2 2.2 R-TiO2 NA A-TiO2 NA — NA Carbon NA — 10–14 Zirconia 1 A-TiO2 — 100 — 100 — 100 — 100 — 54 — 27 — 38 — 95 — >90 — 100 — 92 — 19 — 100 — 58.6 98.6 64 90 30 93 65 92.6 66 85.2 81.6 87.4 >95 67 90.8 8 99 69 32 100 17 94.4 This study NA Al2O3 1 A-TiO2 Niobium oxide Niobium phosphate Amberlyst™ 70 Acidactivated bentonite 32 36 57 100 97.5 68 97.8 98.6 99.2 This study a The metal particle sizes dispersed on

the support materials were determined by using TEM/HRTEM, H2 chemisorption or XRD techniques (NA ¼ not available). b A-TiO2: anatase TiO2 and R-TiO2: rutile TiO2 (Entry 3: the R-TiO2 support for Pt was a mixed phase of 20% rutile and 80% anatase). Fig. 7 LA conversion and GVL selectivity after 4 h reaction in the presence of 1% Pt@TiO2 and AAB co-catalyst (fresh and consecutive hydrogenation cycles of the spent catalyst). We also examined hydrogenation of furfural to furfuryl alcohol, an important industrial chemical intermediate and possible formation of reaction side-products such as tetrahy- drofurfuryl alcohol (THFA) and 2-methylfuran (2-MF) over 1% Pt@TiO2 and 1% Pt@TiO2 in combination with AAB co-catalyst. The resultant 1% Pt@TiO2 and combined 1% Pt@TiO2 and AAB co-catalyst both display good catalytic performance with actual yields of furfuryl alcohol of 33.3% (65.7% selectivity at 50.7% conversion) in the case of 1% Pt@TiO2 and 45.4% (68.4% selectivity at 66.4% conversion)

35in the case of 1% Pt@TiO2 with AAB co-

catalyst for 240 min reaction at 413.2 K. The favorable formation of furfuryl alcohol from hydrogenation of furfural in water has been recently reported by Li and his group49 in the presence of Pd@C and Amberlyst™ 70 dual catalysts. Details of the

5effects of reaction time and temperature on the conversion and selectivity toward furfuryl alcohol in the hydrogenation of

furfural over 1% Pt@TiO2 and 1% Pt@TiO2 in combination with AAB co-catalyst are not given because our study focused on the production of GVL as desirable end product. Conclusions We demonstrate herein a green approach for production of GVL from sugarcane bagasse involving a ?rst

15step for hydrothermal conversion of biomass to LA and a second step for catalytic hydrogenation of

LA to GVL; both steps worked in a green solvent such as water. The temperature variation experiments in the hydrothermal conversion step showed an upward trend of cellulose and hemicellulose conversion with reaction tempera- ture; however LA yields did not follow the same trend. A very low amount of LA was detected in the reaction product mixture from non-catalyzed hydrothermal reaction, which was attributed to incomplete, slow and non-selective conversion of cellulose in pure sub-CW medium.

7lt has been demonstrated that the presence of heterogeneous solid acid catalyst

having strong Bronsted and Lewis acidity such as acid-activated bentonite increases not only the hydrothermal degradation rates of cellulose and hemicellulose into monosaccharides, but also favors the formation of furan ring-opening products such as LA. The TiO2-supported platinum metal (Pt@TiO2) in combination with

21acid-activated bentonite as a co-catalyst was utilized in the

catalytic hydrogenation of LA to GVL under moderate temper- atures. It was found that the presence of acid-activated bentonite co-catalyst could improve the reaction rate while maintaining high selectivity toward GVL, thus enabling the adoption of even milder conditions to perform the reaction. Recyclability study showed that the spent 1% Pt@TiO2 combined with AAB co-catalyst could retain its catalytic performance up to ?ve consecutive hydrogenation cycles. Catalyst poisoning was primarily caused by coke deposition on the active catalyst sites, presumably from the polymerization of ALs over solid AAB surface. Acknowledgements J. N. Putro

19would like to express her sincere appreciation to the department of chemical engineering, National Taiwan Univer- sity of Science and Technology (NTUST) for providing

all the research facilities under the undergraduate internship program. The partial ?nancial support from the Directorate General of Higher Education (DIKTI) through Undergraduate Student Research Grant Programs is also gratefully acknowledged. References 1 R. E. H. Sims, W. Mabee, J. N. Saddler and M. Taylor, Bioresour. Technol., 2010, 101, 1570–1580. 2 G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2006, 106, 4044–4098. 3 S. Liu, L. P. Abrahamson and G. M. Scott, Biomass Bioenergy, 2012, 39, 1–4. 4 H. Schwaiger, A. Tuerk, N. Pena, J. Sijm, A. Arrasto and C. Kettner, Biomass Bioenergy, 2012, 38, 102-108. 5 J. Wang, J. Xi and Y. Wang, Green Chem., 2015, 17, 737–751. 6 S. W. Fitzpatrick, Production of levulinic acid from carbohydrate-containing materials, US Pat., 5608105, Bio?ne Incorporated, March 04 1997. 7 S. S. Toor, L. Rosendahl and A. Rudolf, Energy, 2011, 36, 2328–2342. 8 K. Yan and A. Chen, Energy, 2013, 58, 357–363. 9 J. M. Tukacs, R. V. Jones, F. Darvas, G. Dibo, G. Lezsak and L. T. Mika, RSC Adv., 2013, 3, 16283-16287. 10 K. Shimizu, S. Kanno and K. Kon, Green Chem., 2014, 16, 3899–3903. 11 A. V. Bridgwater, Catal. Today, 1996, 29, 285–295, 12 M. Selva, M. Gottardo and A. Perosa, ACS Sustainable Chem. Eng., 2013, 1, 180–189. 13 S. G. Wettstein, J. Q. Bond, D. M. Alonso, H. N. Pham, A. K. Datye and J. A. Dumesic, Appl. Catal., B, 2012, 117-118, 321-329. 14 O. A. Abdelrahman, A. Heyden and J. Q. Bond, ACS Catal., 2014, 4, 1171–1181. 15 K. Yan and A. Chen, Fuel, 2014, 115, 101–108. 16 W. R. H. Wright and R. Palkovits, ChemSusChem, 2012, 5, 1657–1667. 17 A. M. Hengne and C. V. Rode, Green Chem., 2012, 14, 1064-1072. 18 X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao and K. N. Fan, ChemSusChem, 2011, 4, 1838-1843. 19 F. M. A. Geilen, B. Engendahl, M. Holscher, J. Klankermayer and W. Leitner, J. Am. Chem. Soc., 2011, 133, 14349–14358. 20 W. Li, J. H. Xie, H. Lin and Q. L. Zhou, Green Chem., 2012, 14, 2388–2390. 21 J. M. Tukacs, M. Novak, G. Dibo and L. T. Mika, Catal. Sci. Technol., 2014, 4, 2908–2912. 22 I. T. Horvath, H. Mehdi, V. Fabos, L. Boda and L. T. Mika, Green Chem., 2008, 10, 238-242. 23 L. Qi, Y. F. Mui, S. W. Lo, M. Y. Lui, G. R. Akien and I. T. Horvath, ACS Catal., 2014, 4, 1470–1477. 24 A. Stradi, M. Molnar, M. Ovari, G. Dibo, F. U. Richter and L. T. Mika, Green Chem., 2013, 15, 1857–1862. 25 M. Chalid, H. J. Heeres and A. A. Broekhuis, J. Appl. Polym. Sci., 2012, 123, 3556–3564. 26 L. Hu, G. Zhao, W. Hao, X. Tang, Y. Sun, L. Lin and S. Liu, RSC Adv., 2012, 2, 11184–11206. 27 G. Novodarszki, N. Retfalvi, G. Dibo, P. Mizsey, E. Csefalvay and L. T. Mika, RSC Adv., 2014, 4, 2081–2088. 28 G. R. Akien, L. Qi and I. T. Horvath, Chem. Commun., 2012, 48, 5850–5852. 29 F. E. Soetaredjo, A. Ayucitra, S. Ismadji and A. L. Maukar, Appl. Clay Sci., 2011, 53, 341–346. 30 C. Zhang, H. He and K. Tanaka, Appl. Catal., B, 2006, 65, 37–43. 31 H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, Fuel, 2007, 86, 1781–1788. 32 M. Garcia-Perez, A. Chaala, J.

Yang and C. Roy, Fuel, 2001, 80, 1245–1258, 33 S. Cao and G. M. Aita, Bioresour, Technol., 2013, 131, 357-364. 34 P. J. du Toit, S. P. Olivier and P. L. van Biljon, Biotechnol. Bioeng., 1984, 26, 1071-1078. 35 H. Yu, W. Du, J. Zhang, F. Ma, X. Zhang and W. Zhong, Bioresour. Technol., 2010, 101, 6728–6734. 36 S. Kim and M. T. Holtzapple, Bioresour. Technol., 2005, 96, 1994–2006. 37 D. A. Salvi, G. M. Aita, D. Robert and V. Bazan, Appl. Biochem. Biotechnol., 2010, 161, 67-74. 38 R. A. Silverstein, Y. Chen, R. R. Sharma-Shivappa, M. D. Boyette and J. Osborne, Bioresour. Technol., 2007, 98, 3000-3011. 39 R. Gupta and Y. Y. Lee, Bioresour. Technol., 2010, 101, 8185-8191. 40 Z. Yu, H. Jameel, H. M. Chang and S. Park, Bioresour. Technol., 2011, 102, 9083–9089. 41 Y. S. Cheng, Y. Zheng, C. W. Yu, T. M. Dooley, B. M. Jenkins and J. S. VanderGheynst, Appl. Biochem. Biotechnol., 2010, 162, 1768–1784. 42 C. Falco, N. Baccile and M. M. Titirici, Green Chem., 2011, 13, 3273–3281, 43 D. Doulia, C. Leodopoulos, K. Gimouhopoulos and F. Rigas, J. Colloid Interface Sci., 2009, 340, 131-141, 44 A. Onda, T. Ochi and K. Yanagisawa, Green Chem., 2008, 10, 1033–1037. 45 M. Moonsiri, P. Rangsunvigit, S. Chavadej and E. Gulari, Chem. Eng. J., 2004, 97, 241– 248. 46 Y. Yu, X. Lou and H. Wu, Energy Fuels, 2008, 22, 46-60. 47 J. N. Chheda, Y. Roman-Leshkov and J. A. Dumesic, Green Chem., 2007, 9, 342–350. 48 B. F. M. Kuster, Starch-Starke, 1990, 42, 314–321. 49 X. Hu, R. J. M. Westerhof, L. Wu, D. Dong and C. Z. Li, Green Chem., 2015, 17, 219–224. 50 J. Jow, G. L. Rorrer, M. C. Hawley and D. T. A. Lamport, Biomass, 1987, 14, 185–194. 51 P. L. Dhepe and R. Sahu, Green Chem., 2010, 12, 2153–2156. 52 C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros and G. Avignon, Appl. Catal., A, 1996, 145, 211–224, 53 R. Weingarten, G. A. Tompsett, W. C. Conner Jr and G. W. Huber, J. Catal., 2011, 279, 174–182. 54 E. Nikolla, Y. Roman-Leshkov, M. Moliner and M. E. Davis, ACS Catal., 2011, 1, 408-410. 55 J. Wang, J. Ren, X. Liu, J. Xi, Q. Xia, Y. Zu, G. Lu and Y. Wang, Green Chem., 2012, 14, 2506–2512. 56 A. J. Crisci, M. H. Tucker, M. Y. Lee, S. G. Jang, J. A. Dumesic and S. L. Scott, ACS Catal., 2011, 1, 719-728. 57 M. Watanabe, Y. Aizawa, T. Iida, T. M. Aida, C. Levy, K. Sue and H. Inomata, Carbohydr. Res., 2005, 340, 1925–1930, 58 S. S. Joshi, A. D. Zodge, K. V. Pandare and B. D. Kulkarni, Ind. Eng. Chem. Res., 2014, 53, 18796–18805. 59 F. Chambon, F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and N. Essayem, Appl. Catal., B, 2011, 105, 171–181, 60 B. Tyaqi, C. D. Chudasama and R. V. Jasra, Spectrochim. Acta, Part A, 2006, 64, 273–278, 61 D. S. Tong, X. Xia, X. P. Luo, L. M. Wu, C. X. Lin, W. H. Yu, C. H. Zhou and Z. K. Zhong, Appl. Clay Sci., 2013, 74, 147–153. 62 J. S. Kruger, V. Nikolakis and D. G. Vlachos, Curr. Opin. Chem. Eng., 2012, 1, 312–320. 63 J. C. Serrano-Ruiz, R. M. West and J. A. Dumesic, Annu. Rev. Chem. Biomol. Eng., 2010, 1, 79–100, 64 P. P. Upare, J. M. Lee, D. W. Hwang, S. B. Halligudi, Y. K. Hwang and J. S. Chang, J. Ind. Eng. Chem., 2011, 17, 287–292. 65 A. Primo, P. Concepcion and A. Corma, Chem. Commun., 2011, 47, 3613–3615, 66 A. M. Ruppert, J. Grams, M. Jedrzejczyk, J. Matras-Michalska, N. Keller, K. Ostojska and P. Sautet, ChemSusChem, 2015, DOI: 10.1002/cssc.201403332. 67 J. P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clarke and H. Gosselink, Angew. Chem., Int. Ed., 2010, 49, 4479–4483. 68 A. M. R. Galletti, C. Antonetti, V. De Luise and M. Martinelli, Green Chem., 2012, 14, 688-694. 69 Z. P. Yan, L. Lin and S. Liu, Energy Fuels, 2009, 23, 3853–3858. 70 Y. Sarikaya, M. Onal, B. Baran and T. Alemdaroglu, Clays Clay Miner., 2000, 48, 557–562.

4RSC Advances Paper Paper RSC Advances RSC Advances Paper Paper RSC Advances This journal is © The Royal Society of Chemistry 2015 RSC Adv.,

2015, 5, 41285-41299 | 41285 41286 |

1RSC Adv., 2015, 5, 41285–41299 This journal is © The Royal Society of Chemistry 2015 This journal is © The Royal Society of Chemistry 2015 RSC Adv., 2015, 5,

41285-41299 | 41287 41288 |

1RSC Adv., 2015, 5, 41285-41299 This journal is © The Royal Society of Chemistry 2015 This journal is © The Royal Society of Chemistry 2015 RSC Adv., 2015, 5,

41285-41299 | 41289 41290 |

1RSC Adv., 2015, 5, 41285-41299 This journal is © The Royal Society of Chemistry 2015 This journal is © The Royal Society of Chemistry 2015 RSC Adv., 2015, 5,

41285-41299 | 41291 41292 |

1RSC Adv., 2015, 5, 41285-41299 This journal is © The Royal Society of Chemistry 2015 This journal is © The Royal Society of Chemistry 2015 RSC Adv., 2015, 5,

41285-41299 | 41293 41294 |

1RSC Adv., 2015, 5, 41285-41299 This journal is © The Royal Society of Chemistry 2015 This journal is © The Royal Society of Chemistry 2015 RSC Adv., 2015, 5,

41285-41299 | 41295 41296 |

1RSC Adv., 2015, 5, 41285-41299 This journal is © The Royal Society of Chemistry 2015 This journal is © The Royal Society of Chemistry 2015 RSC Adv., 2015, 5,

41285-41299 | 41297 41298 | RSC Adv., 2015, 5, 41285-41299 This journal is © The Royal Society of Chemistry 2015 This journal is © The Royal Society of Chemistry 2015 RSC Adv., 2015, 5, 41285–41299 | 41299