urnitin Originality Report			
<u>cological Engineering 37 (2011) 940–947</u> w Sunvadi Ismadii	Similarity Index	Similarity by Source	
rom journal (Hippo-hippo)	18%	Internet Sources: Publications:	12% 17%
Processed on 15-Feb-2018 17:49 WIB ID: 916388696 Word Count: 6883	1070	Sudeni Papers:	
rces:			
1% match (publications) Vandi, Luigi-Jules, Rowan Truss, Martin Rowan Paton. "Fluorine Mobility During poxy/Fluoropolymer Interfaces", The Journal	<u>Veidt, Ronald Rasch, SEM-EDX Analysis: A of Physical Chemistry</u>	<u>Michael T. Heitzmann Challenge for Charac C, 2013.</u>	<u>, and</u> <u>terizing</u>
2 1% match (Internet from 12-Sep-2017) http://eprints.gla.ac.uk/109380/1/109380	<u>.pdf</u>		
3 1% match (publications) Janos, P., "Utilization of waste humate p waters", Desalination, 20110115	roduct (iron humate) f	or the phosphorus ren	noval from
1% match (Internet from 19-Nov-2017) <u>https://www.yumpu.com/xx/glvt/3</u>			
5 1% match (Internet from 18-Jun-2013) http://www.sciencedirect.com/science/ar	<u>ticle/pii/S1369703X08</u>	<u>004075</u>	
6 < 1% match (Internet from 09-Jan-2015) <u>http://modernscientificpress.com/Journal H86Z5Noa2iKDNvH/0wRKWqG81pRqxi</u>	ls/ViewArticle.aspx? mA2r7GgnJ8rNhmag(D0kMSf7t1e79Km7ba	<u>VB</u>
7 < 1% match (student papers from 05-Jun Submitted to Universidad Nacional de C	n-2014) olombia on 2014-06-0	<u>5</u>	
8 < 1% match (Internet from 09-Jun-2017) <u>https://portal.helcom.fi/meetings/FISH-M</u> <u>439/MeetingDocuments/Kristensen%206</u>	 %204-2017- et%20al.%202011_EE	.pdf	
Submitted to University of Bath on 2015.	y-2015) - <u>05-11</u>		
10 < 1% match (publications) Yousif, Ahmed M., and Sherif A. Labib. Fast and Efficient Removal of Hazardo Dispersion Science and Technology, 2015.	"Fabrication of New C us Al(III) Ions From Th	Cellulose-Based Sorbe neir Aqueous Solution	ents for s", Journal
11 < 1% match (Internet from 25-May-201 http://journal.hep.com.cn/fcse/CN/10.10	6) 007/s11705-011-1160-	<u>6</u>	
12 < 1% match (publications) Piyush Malaviya. "Physicochemical Teo Waters and Wastewaters", Critical Rev 1/2011	chnologies for Remed iews in Environmental	iation of Chromium-Co Science and Technol	ontaining ogy,
13 < 1% match (Internet from 03-Aug-201 <u>http://www.zhaodongfeng.com/Uploadf</u>	2) Files/20126895810.pd	ſ	
4 1% match (Internet from 06-Sep-201 http://researchbank.rmit.edu.au/eserv/r	7) mit:162127/Ravishanl	<u>kar.pdf</u>	
15 < 1% match (publications) Ong, L.K., A. Kurniawan, A.C. Suwand green preparation of durian shell-derive	<u>i, C.X. Lin, X.S. Zhao,</u> ed carbon electrodes f	and S. Ismadji. "A fac	<u>ile and</u> uble-layer

16	< 1% match (Internet from 27-Nov-2017) http://awc.ksu.edu.sa/sites/awc.ksu.edu.sa/files/imce_images/04-
adsorp	tion_of_copper_cu2_from_aqueous_solution_using_date_palm_trunk_fibre_isotherms_and_kinetics.p
17	< 1% match (publications) S. H. Hasan. "Biosorption of Cd (II) from Water Using Citrobacter koseri", IFMBE Proceedings, 2008
18	< 1% match (student papers from 10-Oct-2013) Submitted to University of Dayton on 2013-10-10
19	< 1% match (publications) <u>Mohammad Hassan Khani. "Uranium biosorption by Padina sp. algae biomass: kinetics and</u> <u>thermodynamics", Environmental Science and Pollution Research, 05/24/2011</u>
20	< 1% match (publications) Blazquez, G "Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark", Journal of Industrial and Engineering Chemistry, 201109/11
21	< 1% match (publications) Han, Y "Electrochemically enhanced adsorption of aniline on activated carbon fibers", Separation and Purification Technology, 20060715
22	< 1% match (publications) <u>Fiol, N "Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe</u> <u>bark", Bioresource Technology, 200807</u>
23	< 1% match (Internet from 19-May-2014) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561113/
24	< 1% match (Internet from 29-Dec-2017) http://www.sphinxsai.com/2014/ch_vol6_no14/2/(5535-5543)%20014.pdf
25	< 1% match (publications) <u>Dogan, M "Adsorption kinetics and mechanism of cationic methyl violet and methylene blue</u> <u>dyes onto sepiolite", Dyes and Pigments, 2007</u>
26 <u>Arabia</u>	< 1% match (publications) <u>Hussain, Sajjad, Saima Gul, Sabir Khan, and Habib ur Rehman. "Retention studies of</u> <u>chromium (VI) from aqueous solution on the surface of a novel carbonaceous material"</u> , <u>n Journal of Geosciences, 2013.</u>
27	< 1% match (publications) <u>Šipuš, I, A Štrkalj, and Z Glavaš. "Removal of Cr(VI) ions from aqueous solution using foundry</u> waste material: Kinetic and equilibrium studies", Canadian Metallurgical Quarterly, 2012.
28	< 1% match (Internet from 27-Jan-2017) https://springerplus.springeropen.com/articles/10.1186/s40064-016-2983-x
29 <u>Yellow</u>	< 1% match (publications) <u>Bouatay, Feriel, Sonia Dridi-Dhaouadi, Neila Drira, and Mohamed Farouk Mhenni.</u> <u>"Application of modified clays as an adsorbent for the removal of Basic Red 46 and Reactive</u> 181 from aqueous solution", Desalination and Water Treatment, 2015.
30	< 1% match (publications) Mohan, D., "Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water", Journal of Hazardous Materials, 20060921
31 Applied	< 1% match (publications) <u>Vusumzi Emmanuel Pakade, Themba Dominic Ntuli, Augustine Enakpodia Ofomaja.</u> <u>"Biosorption of hexavalent chromium from aqueous solutions by Macadamia nutshell powder",</u> <u>d Water Science, 2016</u>
32	< 1% match (publications) <u>Mohamed Nasser Sahmoune. "Advanced biosorbents materials for removal of chromium from</u> water and wastewaters". Environmental Progress & Sustainable Energy, 10/2011

33	< 1% match (Internet from 21-May-2014)		
<u>http://2</u>	202.127.207.43/bitstream/334002/6640/1/Hexavalent%20chromium%20removal%20from%20aquec	ous%20solution%20by%20a	<u>algal%2</u>
34	< 1% match (student papers from 19-Mar-2014) Submitted to SASTRA University on 2014-03-19		
35	< 1% match (Internet from 01-Dec-2017) http://edu.zndxzk.com.cn/down/2013/05_znen/24-p1319-e122108.pdf		
36	< 1% match (Internet from 29-Aug-2017) <u>https://brage.bibsys.no/xmlui/bitstream/handle/11250/2409304/Irfan%20Yasir.pdf?</u> <u>isAllowed=y&sequence=1</u>		
37	< 1% match (publications) LIU, Y.g., "Tolerance and removal of chromium(VI) by Bacillus sp. strain YB-1 isolated from electroplating sludge", Transactions of Nonferrous Metals Society of China, 200804		
38	< 1% match (publications) <u>Dhir, Bhupinder. "Potential of biological materials for removing heavy metals from</u> wastewater", Environmental Science and Pollution Research, 2014.		
39	< 1% match (student papers from 04-Jan-2017) <u>Submitted to National Institute of Technology, Rourkela on 2017-01-04</u>		
40	< 1% match (student papers from 06-Feb-2015) <u>Submitted to University of Brighton on 2015-02-06</u>		
41	< 1% match (Internet from 12-Jun-2015) http://cdn.intechopen.com/pdfs/13254.pdf		
42 Hazar	< 1% match (publications) <u>Wang, Gang, Qing Chang, Xiaoting Han, and Mingyue Zhang, "Removal of Cr(VI) from</u> <u>aqueous solution by flocculant with the capacity of reduction and chelation", Journal of</u> <u>dous Materials, 2013.</u>		
43	< 1% match (publications) <u>T. K. Naiya. "Applicability of shrinking core model on the adsorption of heavy metals by</u> <u>clarified sludge from aqueous solution", Adsorption, 05/29/2009</u>		
44 Resea	< 1% match (publications) <u>Oh, Seok-Young, and Yong-Deuk Seo. "Sorption of halogenated phenols and pharmaceuticals</u> <u>to biochar: affecting factors and mechanisms", Environmental Science and Pollution</u> <u>irch, 2015.</u>		
45	< 1% match (student papers from 06-Jul-2017) <u>Submitted to Myongji University Graduate School on 2017-07-06</u>		
46	< 1% match (student papers from 04-Apr-2014) <u>Submitted to KTH - The Royal Institute of Technology on 2014-04-04</u>		
47	< 1% match (student papers from 28-Apr-2017) Submitted to Karabük Üniversitesi on 2017-04-28		
48	< 1% match (student papers from 28-May-2009) Submitted to University of Queensland on 2009-05-28		
49	< 1% match (Internet from 09-Aug-2013) http://chalcogen.ro/917_VladOros.pdf		
50	< 1% match (Internet from 18-Dec-2016) http://www.ijsciences.com/pub/pdf/V220131016.pdf		

< 1% match (Internet from 23-Nov-2016)

51	https://pdfs.semanticscholar.org/3e73/03e5e0d28530ade4aa6ddbbe9acf7d168609.pdf				
52	< 1% match (Internet from 06-May-2015) http://www.electrochemsci.org/papers/vol10/100403236.pdf				
53	< 1% match (publications) A. Kamari. "Adsorption of Cu(II) and Cr(VI) onto Treated Shorea dasyphylla Bark: Isotherm, Kinetics, and Thermodynamic Studies", Separation Science and Technology, 01/2010				
54 <u>of Pb(I</u> 2014.	< 1% match (publications) <u>Din, Muhammad Imran, Umar Farooq, Makshoof Athar, and M. Latif Mirza. "Environmenta</u> <u>benevolent urea modified Saccharum bengalense as a high capacity biosorbent for remov</u> <u>I) ions: metal uptake modeling and adsorption efficiency"</u> , Desalination and Water Treatmen	<u>lly</u> <u>al</u> <u>t,</u>			
55	< 1% match (publications) Sari, A "Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies", Journal of Hazardous Material 230	<u>s,</u>			
56 g <u>lutara</u>	< 1% match (publications) <u>Ki-Seob Hwang, Hee-Young Park, Jung-Hyun Kim, Jun-Young Lee. "Fully organic CO2</u> <u>absorbent obtained by a Schiff base reaction between branched poly(ethyleneimine) and</u> <u>ildehyde", Korean Journal of Chemical Engineering, 2018</u>				
57	< 1% match (publications) Chunhua Xu. "Adsorption of Cr. (VI) from Aqueous Solution with nano B-FeOOH", 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 06/2010	1			
58	< 1% match (Internet from 07-Apr-2014) http://www.gi-j.com/serial%204/227-234-3c-anwar%20hossain.pdf				
59	< 1% match (Internet from 09-Feb-2014) http://www.sid.ir/en/VEWSSID/J_pdf/856200903B06.pdf				
60	< 1% match (publications) Sreejalekshmi, K.G "Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbo Kinetic and equilibrium isotherm studies", Journal of Hazardous Materials, 20090130	<u>on:</u>			
61 <u>solutio</u> Sustain	< 1% match (publications) <u>Shanmugaprakash, Muthusamy, Venkatachalam Sivakumar, Manickavelu Manimaran, and</u> <u>Jeyaseelan Aravind. "Batch and dynamics modeling of the biosorption of Cr(VI) from aque</u> <u>ns by solid biomass waste from the biodiesel production", Environmental Progress &</u> <u>nable Energy, 2013.</u>	<u>1</u> ous			
62	< 1% match (publications) Battersby, S "Metal doped silica membrane reactor: Operational effects of reaction and permeation for the water gas shift reaction", Journal of Membrane Science, 20080515				
63 Physic	< 1% match (publications) Mohammadi, Zahra, Shahram Sharifnia, and Yaser Shavisi. "Photocatalytic degradation of aqueous ammonia by using TiO2ZnO/LECA hybrid photocatalyst", Materials Chemistry an s, 2016.	f d			
paper te This articl internal no sharing w posting to to post the repository encourage	e appeared in a journal published by Elsevier. The attached copy is furnished to the author to on-commercial research and education use, including for instruction at the authors institution ith colleagues. Other uses, including reproduction and distribution, or selling or licensing cop personal, institutional or third party websites are prohibited. In most cases authors are perm eir version of the article (e.g. in Word or Tex form) to their personal website or institutional . Authors requiring further information regarding Elsevier's archiving and manuscript policies ed to visit: http://www.elsevier.com/copyright	for a and bies, or nitted s are			
	18Ecological Engineering 37 (2011) 940–947 Contents lists available at ScienceDirect Ecological Engineering journal homepage: www.elsevier.com/locate/ecoleng Performance of				

11durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater

Alfin Kurniawana, Vincentius Ochie Arief Sisnandya, Kiki Trilestaria, Jaka Sunarsob, Nani Indraswatia,

5Suryadi Ismadjia,* a Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia b Division of Chemical Engineering, The University of Queensland, St. Lucia 4072, Qld, Australia

13article info Article history: Received 25 October 2010 Received in revised form 9 January 2011 Accepted 23 January 2011 Available online 18 February 2011 Keywords:

Durian shell Biomass Biosorbent Chromium Biosorption abstract The capability of durian shell waste biomass as a novel and potential

11biosorbent for Cr(VI) removal from synthetic wastewater

was studied. The adsorption study was performed in batch mode at differ- ent temperatures and

60pH. Langmuir and Freundlich isotherm models fit the equilibrium data

very well

20(R2 > 0.99). The maximum biosorption capacity of durian shell was 117 mg /g.

On modeling its kinetic

46experimental data, the pseudo-first order prevails over the pseudo-second order model. Thermodynami- cally, the

characteristic of Cr-biosorption process onto durian shell surface was spontaneous, irreversible and endothermic. © 2011

33Elsevier B.V. All rights reserved. 1. Introduction Water contamination by heavy metal is a

major concern for environmental preservation and human health. Chromium is a type of heavy metal originated from various industrial activities such as leather tanning, dye, mining, iron sheet cleaning, textile dying, cement industries and electroplating industries. Depending on the type of industry, chromium's concentration in wastewa- ter may vary from about ten to hundreds of mg/L (Dakiky et al., 2002; Srivastava and Thakur, 2006; Bishnoi

12et al., 2007; Han et al., 2007; Malkoc and Nuhoglu, 2007; Ziagova et al., 2007).

While Cr is obviously carcinogenic and possesses

55adverse potential to modify the DNA transcription process, it can also cause

several diseases, like epigastria pain, nausea, vomiting, severe diarrhea, lung cancer, pneumonitis, allergic dermatitis, renal malfunction and hemor- rhage (Pmila et al., 1991; Das and Guha, 2007; Han et al., 2007; Gokhale et al., 2008). Ecological engineering is a very interesting multidisciplinary research field since the goal of this field is to repair the damage of ecosystem caused by various pollutants, including heavy met- als

pollution. The design of sustainable and balanced ecosystems * Corresponding author. Tel.: +62 313891264, fax: +62 313891267. E-mail addresses: suryadiismadji@yahoo.com, a1f1n kwn@yahoo.com (S. Ismadji).

80925-8574/\$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ecoleng.2011.

01.019 between human society and environment is also one of the inter- est of this field (Asgher and Bhatti, 2010; Mitsch and Jørgensen, 2003). The restoration of an aquatic ecosystem contaminated by heavy metal using environmentally friendly adsorbent and a more economical method is one of the implementations of the ecological engineering. A large variety of treatment methods to remove chromium are available, namely chemical precipitation and ion exchange (Malkoc and Nuhoglu, 2007), membrane separation

43(Chakravarti et al., 1995), electrochemical treatment (Kongsricharoern and Polprasert, 1996), reverse osmosis (Dakiky et al., 2002; Li et al.,

2004), solvent extraction (Pagilla and Canter, 1999) and adsorption (Srivastava and Thakur, 2006; Razmovski and S'ciban, 2008). In the case of low chromium concentration, most of them are considered ineffective due to high capital and operational costs incurred besides its low removal efficiency. Adsorption, on the other hand, is already well-known for its selectivity and effectiveness on even a very low concentration of contaminants. Cost of adsorbent, however, serves as a barrier for its industrial application, as nearly all commercially available adsorbents are expensive. Numerous studies have been and are still being conducted to screen and pinpoint alternative adsorbents that can satisfy the industrial demand from both performance and economic perspectives, including different kinds of biomass. In recent reports, numerous biomasses have been tested as alternative adsorbent to remove Cr(VI), including Tamarindus indica Fig. 1. SEM micrographs of pristine durian shell at two magnifications. (a) 5000× and (b) 10,000× seeds (Agarwal et al., 2006), Acinetobacter sp. (Srivastava et al., 2007), waste tea fungus (Razmovski and S'ciban, 2008), cactus leaves, pine needles and wool (Dakiky et al., 2002), Aspergillus sydoni (Kumar et al., 2008), distillery sludge (Selvaraj et al., 2003), Chlorella miniata (Han

50et al., 2007), Spirulina platensis (Gokhale et al., 2008), Eichhornia crassipes (Mohanty et al.,

2006), Rhizopus arrhizus (Preetha and Viruthagiri, 2007), Saccharomyces cerevisiae (Parvathi and Nagendran, 2007) and Strepmoyces rimosus (Chergui et al., 2007). Most of them have high adsorption capacity and there- fore are worthy to be acknowledged. In order to be viable for industrial-scale application, however several criteria for adsorbent are required, namely

38(1) high adsorption capacity; (2) high avail- ability in large quantity within one location; (3) low economical value (less

advantage for other purpose); and (4) high reusability potential (attached metal can be easily removed). Indeed, nearly all of the mentioned alternative adsorbents already fulfilled 2 or 3 of these criteria. The second criterion imposes the most difficult con- dition for some microorganisms, as their isolation, screening and harvesting in large scale are complicated and very expensive, pre- venting their utilization in industry, unless they can be obtained as waste or by-product of an industrial fermentation process. Although most biosorption studies have focused on finding a new alternative adsorbent, this spotlight is still considered impor- tant and attractive due to its interdisciplinary challenge, mystery of biomass-metal interaction and unsolved heavy metals threat towards the environment faced by most developing countries. As a developing country, Indonesia also faces a serious heavy metal pollution problem on its environment to the extent that many req- ulations have been issued by the Indonesian government. Direct discharge of waste and wastewater onto river and ground surface by most industry are still the main practice attributable to the economic constraints and lack of adaptable technology. To that end, leftover of durian shells which are commonly available in Indonesia abundantly (797,798 ton fruits are produced in 2009) without any further economic value are highlighted here to verify their potential employment as novel biosorbent so that they can be used further instead of ending as a mere waste. This present study highlights various aspects of Crbiosorption using durian shell waste as a novel and potential alternative biosor- bent. The characterizations of pristine and Cr-loaded durian shell were given, followed by reliable metal biosorption equilibrium and kinetic experimental data presentation, which collaborated with its thermodynamic properties. 2.

r-----

51Materials and methods 2.1. Materials All reagents used in this study

(K2Cr2O7, 1,5-diphenylcarbazide, NaHCO3, NaOH, Na2CO3, HCI, Na2B4O7, H2C2O4, and NaCl) were purchased at PT. KurniaJaya Multisentosa as

59analytical grade and directly used without any further treatment. 2.2. Preparation of

biosorbent Durian shell (Monthong variety) was used as biosorbent in this study. It was obtained and collected as solid wastes from durian processing industry near Surabaya. After collection, they were washed repeatedly with tap water to remove physical impu- rities like surface dirt. Subsequently, they were cut-off into smaller size with knife

58and dried in vacuum oven (MEMMERT UM400) at 80 °C for 24 h. The dried

durian shell then was grounded by micro hammer mill (JANKE and KUNKEL) and sieved into three different particle sizes of -30/ + 40, -40/ + 60, -60/ + 80 mesh. Finally, the durian shell powder was kept in desiccators for further exper- imental used. 2.3. Characterization of biosorbent 2.3.1. Boehm titration The surface chemistry of biosorbent was determined using Boehm's titration method (Boehm, 2002). Boehm's titration pro- cedure is conducted as follows: A known amount of durian shell (0.5 g) was introduced into several conical flasks which containing 50 cm3 of 0.05 N: NaOH, Na2CO3, NaHCO3, and HCI solution. Subsequently, the conical flasks then were sealed and shaken for 48 h at room temperature. The suspension then was decanted and fil- tered pass through Whattman 42 filter paper of which 10 mL of the remaining solution was titrated with

190.05 N HCI or NaOH, depends on the original solution used. The number of

acidic groups was cal- culated

7under the assumptions that NaOH neutralizes carboxylic, phenolic, and lactonic groups; Na2CO3 neutralizes carboxylic and lactonic groups; and NaHCO3 neutralizes only carboxylic groups. The number of basic sites presented on the

biosorbents surface was determined from the amount of HCI that reacted with samples. 2.3.2. pH drift The pHpzc

44(point of zero charge) of biosorbent was determined using pH drift method (Faria et al., 2004).

The pH drift procedure is described as follows: 50 cm3 of 0.01 N NaCl solutions were pre- pared and

6placed in several conical flasks. The pH of these solutions was adjusted to value between 2 and 10 by adding

630.1 N NaOH or 0.1 N HCl solutions.

Subsequently, 0.15 g of durian shell was added into each conical flask and shaken at room temperature for 48 h. After 48 h, the pH of solution was measured with digital pH-meter (Schott CG-825) and noted as pHfinal. The pHpzc of biosorbent is determined

6as the point where the curve pHfinal versus pHinitial crosses the line pHfinal = pHinitial.

942 A. Kurniawan et al. / Ecological Engineering 37 (2011) 940–947 2.3.3. FTIR spectroscopy The surface functional groups of biosorbent were analyzed using infrared spectroscopy method. The characterization of pristine and Cr-loaded durian shell was conducted in FTIR SHIMADZU 8400S using KBr pelleting technique and the biosorbent spectra were recorded in mid-IR wavenumber range (500–4000 cm–1). 2.3.4. Scanning electron microscopy (SEM) analysis SEM images of durian shells were recorded using JEOL JSM-6400F field emission SEM. A thin layer of platinum was sputter-coated on the samples for change dissipation

during FESEM imaging. The sputter-coater (Eiko IB-5 Sputter Coater) was oper- ated in an argon atmosphere using a current of 6 mA for 4 min.

15The coated samples were then transferred to the SEM specimen cham- ber and observed at an accelerating voltage of 10 kV, eight spot size, four aperture and 37 mm working distance.

2.3.5. Energy dispersive X-ray (EDX) and X-ray elemental mapping EDX and X-ray elemental mapping was performed in

1JEOL JSM- 6460 LA low vacuum analytical Scanning Electron Microscope equipped with an integrated JEOL Hyper mini-cup, 133 eV

resolu- tion, ultra thin window (UTW), SiLi crystal and Energy Dispersive X-ray

1Spectrometer. Integrated JEOL Analysis Station (v3.

2) soft- ware was employed

1to collect and analyze the X-ray data.

Samples were coated with custom-made carbon coater with carbon fiber.

48Acquisition conditions on the scanning electron microscope were 20 kV, 10 mm working distance

and 30 s live time acquisition at approximately 10–15% dead time. 2.4. Biosorption experiments The biosorption experiments in this study

57were conducted at initial Cr(VI) concentration of 200 mg/L. The 42Cr(VI) stock solution was prepared by diluting a fixed amount of potassium dichromate (K2Cr2O7)

with 1 L deionized water. Biosorption

23isotherm studies were carried out by adding various mass of

durian shell (1-10 g) into

16a series of conical flasks, which containing 50 mL

of metal solu- tion. Subsequently, the conical flasks were

23placed in a thermostatic water-bath shaker (MEMMERT SV-1422) and shaken for

60 min with constant speed at 100 rpm. The biosorption isotherm exper- iments were also performed

36at four different temperatures (30 °C, 40 °C, 50 °C and 60 °C)

and three different pH (2.5, 6.6, and 7.2). The residual Cr(VI) ions concentration in solution after sorption process was determined spectrophotometrically (SHIMADZU UV/Vis-1700 PharmaSpec)

37at = 540 nm using 1,5- diphenylcarbazide as the complexing agent in acidic solution.

The total Cr-content in solu- tion was determined by flame atomic absorption spectroscopy (SHIMADZU AA6200) at wavelength of 357.8 nm. The Cr(III) ions concentration in metal solution

35was calculated from the difference between the total Cr and Cr(VI) concentration. To study the

biosorption kinetics, 400 mL of metal solution with initial concentration of 250 mg/L was introduced into glass vessel (11 cm in inner diameter and 15 cm in height) and equipped with four glass baffles (1 cm in width). Subsequently, a known amount of durian shell (10 g) with certain particle size fraction (-30/+40, -40/+60 and -60/+80 mesh) were weighed analytically and added into the vessel. The glass vessel then was placed in thermostatic water-bath shaker for 60 min and heated up from room tempera- ture to the desired operating temperature. The pH of solution was also adjusted to certain value (2.5, 6.6, and 7.2) by adding some amount of HCl 0.1 N or NaOH 0.1 N onto the vessel. This mixture then was agitated at 500 rpm. During the kinetic experiments, at predetermined intervals of time, the metal solution was withdrawn from the vessel (10 mL using volumetric pipette). Subsequently, 11 10 9 8 7 pHfinal 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 pH initial Fig. 2. pHpzc determination of pristine durian shell. the metal solution was diluted with deionized water, centrifuged (4000 rpm for 5 min) and analyzed immediately. All of biosorp- tion experiments in this study were

53performed in triplicate and the average results are presented in this work. The

biosorption capacity of durian shell for Cr-metal removal at equilibrium state (qe), in the unit concentration of mg g-1 or mmol g-1 can be determined by using following mathematic equa- tion: $qe = (C0 - Ce) \times V m (1)$

9where m is the mass of durian shell used (g), V is the volume of metal solution (L), C0 is the initial concentration of Cr-ions in solution (mg L-1

or mM)

31and Ce is the Cr-ions concentration in solution at equilibrium state (mg L-1

or mM). 3. Results and discussion 3.1. Characteristics of pristine durian shell Physical characterization of durian shell was conducted by sev- eral analysis techniques.

16Scanning electron microscopy (SEM) was performed to determine the surface morphology of biosorbent. The

SEM analysis of pristine durian shell at several magnifications was displayed in Fig. 1. The surface oxides characterization by Boehm's titration method was performed to analyze the surface chemistry of biosorbent. The analysis result showed that the acidic surface oxides (carboxylic, phenolic, and lactonic) are more prevalent in durian shell (0.514 meq/g) compared with its basic surface oxides (0.117 meq/g). The acid nature of pristine durian shell was also confirmed from its pHpzc value (Fig. 2). The existence of surface functional groups on durian shell was also determined by FTIR technique, which the result was summarized in Table 1. The following wavenumbers appear in pristine durian shell: 653 cm-1 corresponded to the bending modes of C–H vibration in aromatic compounds; 1800–1990 cm-1 attributed to the C O stretch of saturated aliphatic esters and carboxylic acids; 2170 cm-1 attributed to the C–C stretch of alkynes (–C C–) structure; 2673 cm-1 revealed to the C O stretch of aldehyde groups (H–C O) that may present in lignocellulosic compounds; 2943

52cm-1 ascribed to the C-H stretching vibration of methylene (-CH2) groups; 3363 56cm-1 corresponded to the N-H stretch of primary or secondary amines and

the last peak at 3905 cm-1 indi- Table 1 Functional groups analysis of pristine and Cr-loaded durian shell by FTIR. Functional groups Wavenumber (cm-1) Pristine Cr-loaded C–H bend (aromatic compounds)

40C O stretch (carboxyls) C O stretch (saturated aliphatic esters) C O stretch (carboxylic acids) C C stretch

(alkynes) C O stretch (lignocellulosic compounds) C–H stretch (methylenes) N–H stretch (1° or 2° amines) O–H stretch (alcohols or phenols) 653 – 1893 1995 2248 2673 2943 3364 3905 675 1674 1857 1988 2250 2484 2950 3366 3891 cated the O–H stretch of free hydroxyls, either in alcohol or phenol groups. 3.2. Characteristics of Cr-loaded durian shell To understand the biosorption of Cr-metal onto durian shell, the surface chemistry characterization of durian shell loaded with Cr(VI) ion was also performed using FTIR, Energy dispersive X-ray with scanning electron microscopy (SEM-EDX) and X-ray elemen- tal mapping techniques. The FTIR result for durian shell loaded with Cr(VI) ion was given in Table 1 while the spectra of pristine and Cr-loaded durian shell was shown in Fig. 3 for direct comparison purpose. The shifting of absorption peak, corresponded to C O groups of aldehydes struc- ture in lignocellulosic compounds from 2673 cm–1 to 2484 cm–1 was observed, a strong indication that this functional group was

22involved in the Cr(VI) ions binding. The

lignocellulosic compounds in biomass

22have the ability to reduce Cr(VI) ions into Cr(III) ions in

acidic condition (Fiol et al., 2008). The alteration of C–H stretch in methylene groups and O–H stretch bonded within alcohols or phenols, associated to their peak energy were also observed in Cr-loaded durian shell spectra, which also caused due to the bind- ing of lignocellulosic materials with metal ions. Moreover, the presence of new absorption peak corresponded to C O stretch of carboxyl groups was also noticed in the Cr-loaded durian shell spec- tra at wavenumber of 1674 cm–1. The presence of this peak was contributed from primary alcohols and/or aldehydes oxidation by Cr(VI) anions in acidic condition, resulting in carboxyls formation, while Cr(VI) anions being reduced to Cr(III) cations. All of these phenomena indicate that reaction or binding between surface func- %Transmittance 3891 3905 2250 1857 3366 2484 1674 675 2950 1988 2673 3364 2248 1893 2943 1995 653 Pristine durian shell Cr-loaded durian shell 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. 3. FTIR spectra of pristine and Cr-loaded durian shell. tional groups of durian shell with Cr-metal ions have already taken place and also imply that the metal biosorption process is not only relying on physical binding, but also on chemical binding.

1Energy dispersive X-ray (EDX) is a technique to analyze the

element's presence based on its characteristic X-ray energy, com- monly coupled with SEM. The SEM-EDX spectra of Cr-loaded durian shell were shown in Fig. 4. The Cr–K peaks confirmed the presence of Cr-ions on the biosorbent surface. The SEM and Cr-elemental X- ray elemental mapping at two spots are depicted in Fig. 5. The area that contains Cr(VI) ions was represented as bright region, most of which are not uniform, attributable to the non-uniformity of Cr(VI) ions distribution on the durian shell surface. 3.3. Biosorption isotherms In this study, the two well-known isotherm models, Langmuir and Freundlich were chosen to represent and correlate the biosorp- tion equilibrium experimental data. The fitted parameters of both isotherm models were calculated by non-linear regression method. The Langmuir isotherm model is expressed as follows: qe = qmax KLCe 1 + KLCe (2) While Freundlich isotherm model is expressed by following equa- tion: qe = KF.Ce1/n (3) where qmax and KL is Langmuir parameter represented the maximum biosorption capacity of biosorbent (mmol/g) and the equilibrium constant (L/mmol), respectively. On the other hand, KF and n is Freundlich parameter represented the equilibrium con- stant associated to biosorption affinity [(mmol/g) (L/mmol)1/n] and the system heterogeneity, respectively. The fitted parameters of Cr-biosorption equilibrium experimental data

32by Langmuir and Freundlich isotherm model

were summarized in Table 2. In Table 2, it can be shown that both of Langmuir and Freundlich model could fit the experimental data very well, indicated from very good value of correlation coefficient

20(R2 > 0.99). The highest Langmuir based maximum biosorption capacity (qmax) of

durian shell is 2.25 mmol/g (117

30mg/g) at pH 2.5

and 60 \circ C (Table 2). High percentage of Cr-metal ions removal at low pH was caused by the low content of Cr(VI) ions in solution

30due to the reduction of Cr(VI) into Cr(III) by

lignocellulosic material in durian shell. For compar- ison purpose, the maximum biosorption capacity (qmax) of several alternative biosorbents which were used for uptaking Cr(VI) metal ions were also given in Table 3. High adsorption capacity of Cr-metal ions onto durian shell at low pH value may also attribute to the presence of excess H+ ions in solution which capable of partially neutralizing the negatively charged biosorbent surface, therefore reduces the hindrance for dif- fusion of Cr(VI) anions that majorly existed in dichromate (Cr2O-72) species onto biosorbent surface (Kumar et al., 2008). Increasing pH will enhance the electrostatic repulsion forces between Cr(VI) anions and negatively charged biosorbent surface, thus the removal of Cr-metal ions will be limited. Similar tendency has also been noticed by other authors in the biosorption of Cr(VI) by various biosorbents (Ahalya et al., 2005; Park et al., 2005; Mohanty

28et al., 2006; Anjana et al., 2007; Das and Guha, 2007; Garg et al., 2007; Malkoc and Nuhoglu, 2007; Isa et al., 2008; Li et al.,

2008). The qmax parameter magnitude in Langmuir isotherm seems to be increased by increasing the temperature, suggesting the enhancement of biosorption capacity at higher temperature. Fur- thermore, the KL parameter, which related to binding affinity, also increase by increasing temperature which is a strong indica- tion that the Cr-biosorption process has an endothermic nature 944 A. Kurniawan et al. / Ecological Engineering 37 (2011) 940–947 Fig. 4. EDX-SEM spectra of Cr-loaded durian shell. and more favorable conducted at high temperature. The similar biosorption trends were also encountered in Freundlich isotherm, as the KF parameter magnitude is also enlarged with temper- ature rise. Moreover, the enhancement of n parameter as the temperature increase suggests that the mobility of Cr-metal ions in solution was promoted due to greater contribution of kinetic energy hence increased the randomness degree and the hetero- geneity of the system in bulk metal solution. All of these results clearly indicate that increasing the temperature will facilitate the penetration of Cr-metal ions onto durian shell surface; consequently the chemisorption process was predominant in this case. Fig. 5. SEM and X-ray elemental mapping analysis of Cr in Cr-loaded durian shell. Table 2 The fitted parameter of isotherm models for Cr-biosorption using durian shell. Isotherm model Parameter pH

45Temperature 30 °C 40 °C 50 °C 60 °C Freundlich KF (mmol /g)

(L mmol-1)1/n n R2 2.5 0.1139 1.3608 0.9933 0.2890 1.6191 0.9965 0.6280 2.0385 0.9911 0.9891 2.3794 0.9887 Freundlich

21**KF (mmol/g) (L mmol-1)1/n n**

R2 6.6 0.0266 1.3464 0.9913 0.0821 1.6397 0.9963 0.2059 2.0468 0.9901 0.3680 2.4375 0.9857 Freundlich

21KF (mmol/g) (L mmol-1)1/n n

R2 7 2 0 0128 1 2908 0 9940 0 0504 1 6890 0 9950 0 1202 1 9991 0 9889 0 2486 2 4808 0 9812 Langmuir

10qmax, mmol/g KL (L mmol-1) R2

2.5 1.3404 0.0799 0.9954 1.7352 0.1734 0.9956 1.9883 0.4617 0.9968 2.2487 0.9324 0.9919 Langmuir

10qmax, mmol/g KL (L mmol-1) R2

6.6 0.5428 0.0385 0.9923 0.6973 0.0968 0.9970 0.8794 0.2497 0.9981 1.0348 0.5548 0.9960 Langmuir

10qmax, mmol/g KL (L mmol-1) R2

7.2 0.3927 0.0247 0.9940 0.4667 0.0797 0.9934 0.6442 0.1619 0.9983 0.8215 0.3699 0.9977 3.4. Biosorption kinetics Biosorption kinetics is provided vital information for determin- ing and selecting optimum operational conditions for full-scale batch heavy metal removal process in industry. In this work, the

26pseudo-first order (Lagergren, 1898) and the pseudo-second order

(Blanchard et al., 1984) kinetic models were employed to correlate kinetic

experimental data. The pseudo-first order kinetic

model has the mathematic form as follow: qt = qe(1 - exp(-k1t)) (4) where qt is the amounts of Cr-metal ions adsorbed per mass of durian shell used at time t (mmol

25/g), k1 is the rate constant of pseudo-first-order reaction (min-1) and t is time (min).

The

61pseudo-second order kinetic model, on the other hand can be expressed in the

following mathematic form: qt = qe 1 + qek2t qek2t (5)

27where k2 is the rate constant of pseudo-second order reaction () (g mmol -1 min-1). The fitting of

Eqs. (4) and (5) with kinetic experimental data were performed by non-linear least square method of which the resulting parameters of both kinetic models were tabulated in Table 4. As shown in Table 4, durian shell with smaller particle size gives higher removal of Cr-metal ion. It was also obvious that the rate constant (k) of both kinetic model was also enlarged for smaller particle fraction, to the extent that the equilibrium condition can be reached within shorter time. Accordingly, for a same amount of biosorbent, smaller particle size would contribute larger surface area so that more active binding sites of Cr-metal ion on the durian shell surface were exposed and available. In this study,

49the pseudo-first order represents kinetic experimental data better than pseudo-second order

model as indicated in Table 4. This statement was confirmed from better value of correlation coefficient (R2)

24of pseudo-first order rather than pseudo-second order model.

3.5. Thermodynamics aspects With the aim to obtain complete features of the Cr-biosorption onto durian shell, the thermodynamic properties like standard Gibb's

34free energy change (?G0), standard enthalpy change (?H0) and standard entropy change (?S0) of the

biosorption process were also investigated. The standard Gibb's

19free energy change can be determined by following mathematic expression: ?

G0 = -RT In

KL (6)

14where R is the universal gas constant (R = 8.314 J/mol K), T is the absolute temperature (K) and KL is the Langmuir equilibrium

con- stant (L/mol). To obtain the value of standard enthalpy change and standard entropy change, the KL parameter can be

17expressed in terms of ?H0 (kJ mol- 1) and ?S0 (kJ mol- 1 K- 1) as a

function of temperature: ?H0 ?S0 In KL = - RT + R

(7) where the value of ?S0 and ?H0 is

of Cr-biosorption was reported in Table 5. Fig. 6 displayed the thermodynamic plot of In KL versus 1/T at different pH and temperatures. The Gibb's free energy change, in general indicates the spontaneity of the biosorption pro- cess (Ho and Ofomaja, 2006), in which the negative value suggests that the biosorption process is spontaneous. Increasing the temper- ature will lead to the more negative value of ?G0, which suggested that the metal biosorption process was favorable performed at higher temperature. Table 3 The maximum biosorption capacity (qmax) of several biosorbents for Cr(VI) removal at certain operating condition. Biosorbent pH T (K) qmax (mg/g) Reference Rice straw By-product of Lentinus edodes LCS from wheat bran Brown seaweed, S. siliquosum Brown seaweed, S. wightii Durian shell 2 300.15 3.9–4.4 298.15 2.1 298.15 3.6–4.2 303.15 3.5–3.8 298.15 2.5 333.15 3.15 21.5 37.4 15.9 38 117 Gao

12**et al. (2008)** Chen **et al. (2006)** Dupont **and** Guillon (2003) Cabatingan **et al.** (2001) Aravindhan **et al.**

(2004) Present study 946 A. Kurniawan

8et al. / Ecological Engineering 37 (2011) 940–947 Table 4

The fitted parameter of kinetic models for Cr-biosorption using durian shell. pH T (K) Kinetic model Parameter Particle size fraction (mesh) -30/+40 -40/+60 -60/+80 2.5 303.15 2.5 313.15 2.5 323.15 2.5 333.15 6.6 333.15 7.2 333.15

2Pseudo-first order Pseudo-second order Pseudo-first order Pseudo-second order Pseudo-first order Pseudo-second order Pseudo-first order Pseudosecond order Pseudo-first order Pseudo-second order Pseudo-first order Pseudo-second order

29qe (mmol/g) k1 (min- 1) R2 qe (mmol/g) k2 (g/ mmolmin) R2 qe (mmol/ g) k1 (min- 1) R2 qe (mmol/g)

k2 (g/mmolmin) R2

3qe (mmol/g) k1 (min -1) R2 qe (mmol/g) k2 (g/ mmolmin) R2 qe (mmol/ g) k1 (min -1) R2 qe (mmol/g)

k2 (g/mmolmin) R2

3qe (mmol/g) k1 (min -1) R2 qe (mmol/g) k2 (g/ mmolmin) R2 qe (mmol/ g) k1 (min -1) R2 qe (mmol/g)

k2 (g/mmolmin) R2 1.0482 0.0799 0.9876 1.2567 0.0724 0.9653 1.2268 0.0814 0.9870 1.4648 0.0641 0.9670 1.4832 0.0738 0.9852 1.8069 0.0444 0.9636 1.6691 0.0693 0.9827 2.0583 0.0354 0.9618 1.5268 0.0603 0.9902 1.9302 0.0309 0.9741 1.4674 0.0667 0.9875 1.8203 0.0380 0.9694 1.1276 0.0850 0.9927 1.3361 0.0752 0.9764 1.2962 0.0861 0.9907 1.5329 0.0667 0.9740 1.5772 0.0800 0.9871 1.8926 0.0479 0.9653 1.8421 0.0739 0.9903 2.2397 0.0361 0.9712 1.5720 0.0658 0.9928 1.9494 0.0352 0.9792 1.5416 0.0699 0.9919 1.8924 0.0395 0.9753 1.2137 0.0874 0.9931 1.4306 0.0735 0.9770 1.3481 0.0948 0.9870 1.5715 0.0748 0.9648 1.7039 0.0839 0.9853 2.0260 0.0483 0.9640 2.0342 0.0788 0.9923 2.4421 0.0367 0.9736 1.6377 0.0705 0.9948 1.9904 0.0393 0.9915 1.6213 0.0756 0.9945 1.9581 0.0432 0.9810

?H0 value also indicates the adsorption type. Adsorption process with heat of adsorption between 2.1 and 20.9 kJ/mol is classified into physisorp- tion while heat of adsorption between 20.9 and 400 kJ/mol is 6 classified into chemisorption. Additionally,

41**the activation energy** parameter (Ea0) **for chemisorption** lies within **the same** range **as the heat of chemical**

reaction, that is between 20.9 and 418.4 kJ/mol 5 (Deng et al., 2006). As shown in Table 5, the positive value of ?H0 of biosorption process also strengthen earlier hypothesis that the ln KL (L.mol-1) mechanism of Cr(VI) biosorption onto durian shell surface was pre- dominated by chemisorption. On the other hand, the positive value 4 of ?S0 denotes the increased randomness at the solid–solution pH 2.5 pH 6.6 interface during metal binding process (Tan and Cheng, 2003; pH 7.2 3 Table 5 0.0030 0.0031 0.0032 0.0033 Thermodynamic parameters for Cr-biosorption using durian shell. 1/T (K-1)

47pH T (K) ?G0 (kJmol-1) ?H0 (kJmol-1) ?S0 (kJ mol -1 K-1) R2 24Fig. 6. Thermodynamic plot of In KL versus 1/T for

Cr-biosorption using durian shell. 2.5 70.1085 0.2674 0.9965 303.15 -11.0413 313.15 -13.4228 323.15 -16.4825 Ho and Ofomaja, 2006; Yavuz et al., 2006; Anber and Matouq, 333.15 -18.9393 2008; Aydin et al., 2008) beside its irreversibility characteristic, 6.6 75.1823 0.2783 0.9996 303.15 -9.2011 where as negative value of ?S0 represents the opposite phenomena 313.15 -11.9050 (decreased randomness) (Ngah and Hanafiah, 2008). 323.15 -14.8311 333.15 -17.5013 7.2 303.15 -8.0824 74.2669 0.2723 0.9923 4. Conclusions 313.15 -11.3990 323.15 -13.6670 333.15 -16.3785 Durian shell waste was found to be one potential biosorbent candidate

31for Cr(VI) removal from wastewater.

Both the

32Langmuir and Freundlich isotherm model could represent the biosorption equilibrium experimental data very well. The

maximum biosorp- tion capacity of durian shell was 117 mg/g at pH 2.5 and 60 \circ C. The pseudo-first order gave better correlation for fitting kinetic exper- imental data in comparison with pseudo-second order model. The investigation of biosorption isotherms and kinetics, in combination with thermodynamics aspects confirmed that the Cr-biosorption using durian shell waste was controlled by chemisorption which has endothermic (?H0 > 0), spontaneous (?G0 < 0) and irreversible (?S0 > 0) characteristic. Acknowledgments The authors wish to thank A/Prof. João C. Diniz da Costa from

62FIMLab, Division of Chemical Engineering, the University of Queensland, Australia

for his support in terms of analysis equip- ment access. References Agarwal, G.S., Bhuptawat, H.K., Chaudhari, S., 2006. Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Bioresour. Technol. 97, 949–956. Ahalya, N., Kanamadi, R.D., Ramachandra, T.V., 2005. Biosorption of chromium(VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). J. Biotechnol. 8, 258–264. Anber, Z.A.A., Matouq, M.A.D., 2008. Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J. Hazard. Mater. 151, 194–201. Anjana, K., Kaushik, A., Kiran, B., Nisha, R., 2007. Biosorption of Cr(VI) by immobi- lized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J. Hazard. Mater. 148, 383–386. Aravindhan, R., Madhan, B., Rao, J.R., 2004. Bioaccumulation of chromium from tan- nery wastewater: an approach for chrome recovery and reuse. Environ. Sci. Technol. 38, 300–306. Asgher, M., Bhatti, H.N., 2010. Mechanistic and kinetic evaluation of biosorption of reactive azo dyes by free, immobilized and chemically treated Citrus sinensis waste biomass. Ecol. Eng. 36, 1660–1665. Aydin, H., Bulut, Y., Yerlikaya, C., 2008. Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87, 37–45. Blanchard, G., Maunaye, M., Martin, G., 1984. Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501–1507. Bishnoi, N.R., Kumar,

R., Kumar, S., Rani, S., 2007. Biosorption of Cr(III) from aqueous solution using alga biomass Spirogyra spp. J. Hazard. Mater. 145, 142-147. Boehm, H.P., 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149. Cabatingan, L.K., Agapay, R.C., Rakels, J.L.L., 2001. Potential of biosorption for the recovery of chromate in industrial wastewaters. Ind. Eng. Chem. Res. 40, 2302-2309. Chakravarti, A.K., Chowdhury, S.B., Chakrabarty, S., Chakrabarty, T., Mukherjee, D.C., 1995. Liquid membrane multiple emulsion process of chromium(VI) sep- aration from wastewaters. Colloids Surf. A: Physicochem. Eng. Aspects 103, 59-71. Chen, G.Q., Zeng, G.M., Tu, X., Niu, C.G., Huang, G.H., Jiang, W., 2006. Application of a by-product of Lentinus edodes to the bioremediation of chromate contaminated water. J. Hazard. Mater. 135, 249–255. Chergui, A., Bakhti, M.Z., Chahboub, A., Haddoum, S., Selatnia, A., Junter, G.A., 2007. Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Strep- tomyces rimosus biomass. Desalination 206, 179–184. Dakiky, M., Khamis, M., Manassra, A., Mer'eb, M., 2002. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv. Environ. Res. 6, 533–540. Das, S.K., Guha, A.K., 2007. Biosorption of chromium by Termitomyces clypeatus. Colloids Surf. 60, 46–54. Deng, L., Su, Y., Su, H., Wang, X., Zhu, X., 2006. Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 12, 267-277. Dupont, L., Guillon, E., 2003. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ. Sci. Technol. 37, 4235–4241. Faria, P.C.C., Orfao, J.J.M., Pereira, M.F.R., 2004. Adsorption of anionic and cationic dves on activated carbons with different surface chemistries. Water Res. 38, 2043-2052, Fiol. N., Escudero, C., Villaescusa, I., 2008. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresour. Technol. 99, 5030–5036. Gao, H., Liu, Y., Zeng, G., Xu, W., Li, T., Xia, W., 2008. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-rice straw. J. Hazard. Mater. 150, 446-452. Garg, U.K., Kaur, M.P., Garg, V.K., Sud, D., 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 140, 60-68. Gokhale, S.V., Jyoti, K.K., Lele, S.S., 2008. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vul- garis biomass. Bioresour, Technol. 99, 3600-3608, Han, X., Wong, Y.S., Wong, M.H., Tam, N.F.Y., 2007. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J. Hazard. Mater. 146, 65–72. Ho, Y.S., Ofomaja, A.E., 2006. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 30, 117-123. Isa, M.H., Ibrahim, N., Aziz, H.A., Adlan, M.N., Sabiani, N.H.M., Zinatizadeh, A.A.L., Kutty, S.R.M., 2008. Removal of chromium(VI) from aqueous solution using treated oil palm fibre. J. Hazard. Mater. 152, 662–668. Kongsricharoern, N., Polprasert, C., 1996. Chromium removal by a bipolar electro- chemical precipitation process. Water Sci. Technol. 34, 109–116. Kumar, R., Bishnoi, N.R., Garima, Bishnoi, K., 2008. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135, 202–208. Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1–39. Li, C., Chen, H., Li, Z., 2004. Adsorptive removal of Cr(VI) by Fe-modified steam exploded wheat straw. Process Biochem. 39, 541-545. Li, H., Li, Z., Liu, T., Xiao, X., Peng, Z., Deng, L., 2008. A novel technology for biosorption and recovery hexavalent chromium by biofunctional magnetic beads. Biore- sour. Technol. 99, 6271-6279. Malkoc, E., Nuhoglu, Y., 2007. Potential of tea factory waste for chromium(VI) removal from aqueous solutions: thermodynamic and kinetic studies. Sep. Purif. Technol. 54, 291–298. Mitsch, W.J., Jørgensen, S.E., 2003. Ecological engineering: a field whose time has come. Ecol. Eng. 20, 363–377. Mohanty, K., Jha, M., Meikap, B.C., Biswas, M.N., 2006. Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chem. Eng. Process 117, 71–77. Ngah, W.S.W., Hanafiah, M., 2008. Adsorption of copper on rubber (Hevea brasilien- sis) leaf powder: Kinetic, equilibrium, and thermodynamic studies. Biochem. Eng. J. 39, 521-530. Pagilla, K., Canter, L.W., 1999. Laboratory studies on remediation of chromium- contaminated soils. J. Environ. Eng. 125, 243-248. Park, D., Yun, Y.S., Jo, J.H., Park, J.M., 2005. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res. 29, 533-540. Parvathi, K., Nagendran, R., 2007. Biosorption of chromium from effluent generated in chrome-electroplating unit using Saccharomyces cerevisiae. Sep. Sci. Technol. 42, 625-638. Pmila, D., Subbaiyan, P.S., Ramaswamy, M., 1991. Toxic effect of chromium and cobalt on sarotherodon mossambicus. Indian J. Environ. HITH 33, 218-224. Preetha, B., Viruthagiri, T., 2007. Batch and continuous biosorption of chromium (VI) by Rhizopus arrhizus. Sep. Purif. Technol. 57, 126–133. Razmovski, R., S'ciban, M., 2008. Biosorption of Cr(VI) and Cu(II) by waste tea fungal biomass. Ecol. Eng. 34, 179–186. Selvaraj, K., Manonmani, S., Pattabhi, S., 2003. Removal of hexavalent chromium using distillery sludge. Bioresour. Technol. 89, 207-211. Srivastava, S., Ahmad, A.H., Thakur, I.S., 2007. Removal of chromium and pen- tachlorophenol from tannery effluents. Bioresour. Technol. 98, 1128–1132. Srivastava, S., Thakur, I.S., 2006. Biosorption potency of Aspergillus niger for removal of chromium(VI). Curr. Microbiol. 53, 232–237. Tan, T.W., Cheng, P., 2003. Biosorption of metal ions with Penicillium chrysogenum. Biochem. Biotechnol. 104, 119–128. Yavuz, H., Denizli, A., Gungunes, H., Safarikova, M., Safarik, I., 2006. Biosorption of mercury on magnetically modified yeast cells. Sep. Purif. Technol. 52, 253-260. Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E.L., Liakopoulou-Kyriakides, M., 2007. Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour. Technol. 98, 2859-2865.

4Author's personal copy Author's personal copy

1

A. Kurniawan et al. / Ecological Engineering 37 (2011) 940-947 941

4Author's personal copy Author's personal copy

A. Kurniawan et al. / Ecological Engineering 37 (2011) 940–947 943

4Author's personal copy Author's personal copy

A. Kurniawan et al. / Ecological Engineering 37 (2011) 940-947 945

4Author's personal copy Author's personal copy

A. Kurniawan et al. / Ecological Engineering 37 (2011) 940–947 947