

turnitin Originality Report

Chemical Engineering Journal 209 (2012) 223-234 by Suryadi Ismadji

From journal (Hippo-hippo)

Processed on 15-Feb-2018 22:36 WIB

ID: 916458427 Word Count: 10184

	Similarity by Sol
Similarity Index	
	Internet Sources

19%

Internet Sources: Publications: Student Papers:

15% 17% 8%

sources:	
1	1% match (Internet from 30-Jul-2013) http://www.mjkelly.info/Publications/Dellinger2013RedWolf.pdf
2 for lea	1% match (publications) Moharram, Mohamed Abdel Kader, Khairi Tohami, Walid Mosad El Hotaby, and Ahmed Mohamed Bakr. "Graphene oxide porous crosslinked cellulose nanocomposite microspheres ad removal: Kinetic study", Reactive and Functional Polymers, 2016.
3 Earth-	1% match (publications) <u>Wu, Lin Mei, Chun Hui Zhou, John Keeling, Dong Shen Tong, and Wei Hua Yu. "Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation", Science Reviews, 2012.</u>
4	1% match (student papers from 25-Aug-2015) <u>Submitted to Higher Education Commission Pakistan on 2015-08-25</u>
5	1% match (student papers from 07-May-2015) Submitted to The University of Manchester on 2015-05-07
6	1% match (Internet from 15-Nov-2017) http://textile.webhost.uoradea.ro/Annals/Vol%20XVIII-No%202-2017/Textile/Art.nr.%20249-pag.%2023-28.pdf
7 Journa	< 1% match (publications) Sibel Tunali. "Utilization of the Phaseolus vulgaris L. Waste biomass for decolorization of the textile dye Acid Red 57: determination of equilibrium, kinetic and thermodynamic parameters", all of Environmental Science and Health Part A, 2007
8	< 1% match (publications) <u>Tunali, S "Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by</u>

Cephalosporium aphidicola", Separation and Purification Technology, 200601

< 1% match (publications)

9

Zhou, Chun-Hui, Zhang-Feng Shen, Li-Hong Liu, and Shao-Min Liu. "Preparation and functionality of clay-containing films", Journal of Materials Chemistry, 2011.

< 1% match (publications) 10

Lin Mei Wu, Chun Hui Zhou, Dong Shen Tong, Wei Hua Yu, Hao Wang, "Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar", Cellulose, 2014

- < 1% match (publications) 11
 - Ismadji, Suryadi, Felycia Edi Soetaredjo, and Aning Ayucitra. "The Characterization of Clay Minerals and Adsorption Mechanism onto Clays", SpringerBriefs in Molecular Science, 2015.
- < 1% match (publications) 12 Xia, H.. "Preparation and catalysis in epoxidation of allyl chloride of zeolitic titanosilicate-1/smectitic clay minerals", Applied Clay Science, 201108
- < 1% match (Internet from 22-Mar-2016) 13 http://www.ijeit.com/Vol%204/Issue%206/IJEIT1412201412 40.pdf
- < 1% match (publications) 14 Gok, O.. "Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper(II) ions onto 8-hydroxy quinoline immobilized bentonite", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 20080320
- < 1% match (publications) 15 Gerçel, Özgül, Adnan Özcan, A. Safa Özcan, and H. Ferdi Gerçel. "Capacity of Activated Carbon Derived from Peach Stones by in the Removal of Acid, Reactive, and Direct Dyes from Aqueous Solution", Journal of Environmental Engineering, 2009.
- < 1% match (publications) 16 Tekin, Nalan, Akif Şafaklı, and Deniz Bingöl. "Process modeling and thermodynamics and kinetics evaluation of Basic Yellow 28 adsorption onto sepiolite", Desalination and Water Treatment, 2015.
- < 1% match (publications) 17 Chen, H., "Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay", Journal of Colloid And Interface Science, 20070315
- < 1% match (student papers from 03-Feb-2016) 18 Submitted to The International School Bangalore on 2016-02-03
- < 1% match (publications) 19 Tamer Akar. "Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus", Applied Biochemistry and Biotechnology, 03/2007

< 1% match (publications) 20

Wei Xie, Rongcai Xie, Wei-Ping Pan, Doug Hunter, Bryan Koene, Loon-Seng Tan, Richard Vaia. "Thermal Stability of Quaternary Phosphonium Modified Montmorillonites", Chemistry of Materials, 2002

< 1% match (Internet from 10-May-2010) 21

http://eprints.usm.my/13208/1/equilibrium and kinetics.pdf

< 1% match (publications) 22

Bowen Liu, Xiaoxuan Ma, Chenhui Zhu, Yu Mi, Daidi Fan, Xian Li, Lan Chen. "Study of a novel injectable hydrogel of human-like collagen and carboxymethylcellulose for soft tissue augmentation", e-Polymers, 2013

< 1% match (publications) 23

Ru-Ling Tseng, Feng-Chin Wu, Ruey-Shin Juang. "Characteristics and applications of the Lagergren's first-order equation for adsorption kinetics", Journal of the Taiwan Institute of Chemical Engineers, 2010

< 1% match (Internet from 27-Nov-2017) 24

http://dspace.univ-usto.dz/bitstream/123456789/201/1/Article_samia_bouzid.pdf

< 1% match (publications) 25

> Li, Q., "Cationic polyelectrolyte/bentonite prepared by ultrasonic technique and its use as adsorbent for Reactive Blue K-GL dye", Journal of Hazardous Materials, 20070817

< 1% match (Internet from 05-Nov-2017) 26

> http://nardus.mpn.gov.rs/bitstream/handle/123456789/7663/Disertacija.pdf? isAllowed=y&sequence=1

< 1% match (publications) 27

28

29

C. Namasivayam. "Removal and recovery of vanadium(V) by adsorption onto ZnCl2 activated carbon: Kinetics and isotherms", Adsorption, 03/2006

< 1% match (Internet from 29-May-2012)

http://www.sign-ific-ance.co.uk/dsr/index.php/JASER/article/download/14/150

< 1% match (publications)

Ferrarezi, Márcia Maria Favaro, Gustavo Vandromel Rodrigues, Maria Isabel Felisberti, and Maria do Carmo Gonçalves. "Investigation of cellulose acetate viscoelastic properties in different solvents and microstructure", European Polymer Journal, 2013.

< 1% match (Internet from 08-Sep-2017) 30

http://repositorio.uam.es/bitstream/handle/10486/671580/activated_al%20_bahri_cei_2012.pdf? sequence=1

< 1% match (Internet from 26-Jan-2018) 31

> https://www.omicsonline.org/adsorption-of-acid-dyes-onto-bentonite-and-surfactant-modifiedbentonite-2155-9872.1000174.php?aid=20779

< 1% match (Internet from 30-Apr-2016) 32

> https://www.deepdyve.com/browse/journals/chemical-engineeringjournal/2012/v209/joctober?page=3

< 1% match (Internet from 09-Mar-2017) 33

http://www.rsmas.miami.edu/personal/emager/Mager%20CBP%202012.pdf

< 1% match (publications) 34

Handbook of Polymernanocomposites Processing Performance and Application, 2014.

< 1% match (publications) 35

> M. Bodaghi. "Investigation of phase transition of γ-alumina to α-alumina via mechanical milling method", Phase Transitions, 06/2008

< 1% match (Internet from 31-Jul-2017) 36

http://www.cvresiduos.pt/pdf/BookofProceedings.pdf

< 1% match (Internet from 08-Jan-2017) 37

> http://documents.mx/documents/catalytic-conversion-of-lignocellulosic-biomass-to-finechemicals-and-fuels.html

< 1% match (publications) 38

Bakr, A.A., M.A. Betiha, A.H. Mady, M.F. Menoufy, and S.M. Dessouky. "Removal of manganese ions from their aqueous solutions by organophilic montmorillonite (OMMT)", Desalination and Water Treatment, 2015.

< 1% match (student papers from 20-Jul-2017) 39

Submitted to Indian Institute of Science, Bangalore on 2017-07-20

< 1% match (Internet from 03-Jul-2017) 40

http://www.hadinur.com/paper/hadi cej2012.pdf

< 1% match (publications) 41

Encyclopedia of Polymeric Nanomaterials, 2015.

< 1% match (Internet from 09-Mar-2016) 42

http://vuir.vu.edu.au/25844/1/Chi%20Yan%20Lai.pdf

< 1% match (publications) 43

Ali Pourjavadi, Azardokht Abedin-Moghanaki, Amir Tavakoli. "Efficient removal of cationic dyes using a new magnetic nanocomposite based on starch-g-poly(vinylalcohol) and functionalized with sulfate groups", RSC Advances, 2016

< 1% match (publications) 44

Rhim, J.W.. "Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films", LWT - Food Science and Technology, 200903

< 1% match (Internet from 06-Sep-2017) 45

http://shodhganga.inflibnet.ac.in/bitstream/10603/91650/19/19 chapter%2013.pdf

- < 1% match (publications) 46 Zhang, Junping, and Aigin Wang. "Polysaccharide-Based Composite Hydrogels for Removal of Pollutants from Water", Chromatographic Science Series, 2014.
- < 1% match (Internet from 23-Nov-2017) 47 https://espace.library.ug.edu.au/view/UQ:302610
- < 1% match (Internet from 10-Jul-2010) 48 http://www.eeat.or.th/teej/v20no1/p.25-37 S05-11.pdf
- < 1% match (publications) 49 Akar, S.T.. "Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite", Hydrometallurgy, 200906
- < 1% match (publications) 50

Almasian, Arash, Mazeyar Parvinzadeh Gashti, Mohammad Ebrahim Olya, and Ghazaleh Chizari Fard. "Poly(acrylic acid)-zeolite nanocomposites for dye removal from single and binary systems", Desalination and Water Treatment, 2015.

- < 1% match (Internet from 19-Oct-2017) 51 https://tel.archives-ouvertes.fr/tel-01222041/file/ABIDI Nejib 2015 ED413.pdf
- < 1% match (publications) 52 Gok, O.. "Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions", Desalination, 20080301
- < 1% match (publications) 53 Bayramoglu, G.. "Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin", Chemical Engineering Journal, 20091015

54

< 1% match (publications)

Bhatnagar, A.. "Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater - A short review", Advances in Colloid and Interface Science, 20091130

- 55
- < 1% match (Internet from 10-Nov-2009)

http://www.rsc.org/suppdata/cc/b6/b610886e/b610886e.pdf

- 56
- < 1% match (publications)

Saeedeh Hashemian. "Study of adsorption of acid dye from aqueous solutions using bentonite", Main Group Chemistry, 12/2007

- 57
- < 1% match (publications)

P. Vijayalakshmi. "Removal of Acid Violet 17 from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Pistachio Nut Shell", Separation Science and Technology, 01/2011

- 58
- < 1% match (publications)

Ozcan, A.. "Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite", Journal of Colloid And Interface Science, 20040801

paper text:

1(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal noncommercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright

40Chemical Engineering Journal 209 (2012) 223-234 Contents lists available at SciVerse ScienceDirect Chemical Engineering Journal journal homepage: www.elsevier.com/locate/cej

20Paper-like composites of cellulose acetate-organo-montmorillonite for removal of hazardous anionic dye in water Chun-Hui Zhou a, î, Di Zhang a, Dong-Shen Tong a, Lin-Mei Wu a, Wei-Hua Yu a, Suryadi Ismadji

b

12a Research Group for Advanced Materials & Sustainable Catalysis (AMSC), **Breeding Base of State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering and Materials Science,** Zhejiang University of Technology, Hangzhou 310032, China b Department of Chemical Engineering,

Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia

32highlights" Paper-like cellulose acetate/organo-montmorillonite composites were prepared. "Good dispersion of organo-montmorillonite and cellulose acetate was achieved in acetone." The adsorption capacity of the composites for Acid Scarlet G dye reached 85.7 mg g 1. "The

23Lagergren's first-order equation was found to be suited for the adsorption kinetics.

33article info Article history: Received 23 May 2012 Received in revised form 24 July 2012 Accepted 24 July 2012 Available online 2 August 2012 **Keywords:**

Montmorillonite Cellulose acetate Inorganic-organic composite Adsorption Anionic dye Wastewater abstract The shaped solid composites of biopolymers and clay minerals have

2great potential in the efficient removal of hazardous pollutants from wastewater.

[&]quot;The adsorption was endothermic and the isotherm fitted into the Langmuir equation.

Here novel paper-like cellulose acetate/organo-mont- morillonite (CA/OMMT) composites were prepared from cellulose acetate (CA) and organo-montmoril- lonite (OMMT). CA and OMMT were dispersed in acetone, followed by evaporation and drying, thereby leading to paper-like solid CA/OMMT composites. The resulting composite samples

47were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal gravimetric analyses. The adsorption of Acid

Scarlet G (ASG) anionic dye in aqueous solution onto the CA/OMMT composites was tested

57by varying the pH value of the dye solution,

the temperature and

28time, and the initial dye concentration. The organic modification of montmorillonite facilitated the

intercalation of the motifs of CA molecules into the interlayer space of OMMT. There was the intermolec- ular and intramolecular linkage among CA molecules and OMMT platelets. Dependent on the ratio of CA to OMMT, the composites had a dense or a macroporous paper-like structure. The

46adsorption capacity of the composites increased with the decrease of the ratio of CA to

OMMT and the pH value of the dye solu- tion. The adsorption rate was enhanced with the increase of the temperature. The adsorption was a kinet- ically controlled, spontaneous and endothermic process. The

23Lagergren's first-order equation was found to be suited for the adsorption kinetics

of ASG onto the CA/OMMT composite. The adsorption isotherm of ASG onto CA/OMMT composites fitted into the Langmuir equation. Ó 2012 Elsevier B.V. All rights reserved. 1. Introduction Cationic layered clay minerals, such as montmorillonite, sapo- nite and hectorite, feature peculiar ion exchange, swelling, and large surface areas in aqueous system. Accordingly, they have high reactivity and adsorption [1,2]. The modification and shaping of these clay minerals into functional materials has received much attention over the past decades because they are useful in many ↑ Corresponding author. Tel.: +86 571 88320062. E-mail address: chc.zhou@yahoo.com.cn (C.-H. Zhou).

301385-8947/\$ - see front matter Ó 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.07.

107 fields, including adsorption and separation [3]. Many studies have revealed that the naturally-occurring clay minerals in their pristine form can act as adsorbents [4]. They substantially get involved in the adsorption, fixation and transformation of organic matter in nature [5]. However, they usually need modifying and shaping for laboratory and industrial purposes [6]. Noticeably, the thick- ness of a single layer of clay minerals is around one nanometer and, dependent on the type and amount of the exchangeable ions or the guest molecules in their interlayer space, the gallery height can be altered from several angstroms to a few nanometers. Such nanometer-scaled layered structures of clay minerals allows a great many approaches to be applied to tailor their physical and chemical properties on their surface, in their framework, and with- in their interlayer space [7,8]. For the adsorption of organic pollutants, the modification of clay minerals is usually made through the ion exchange reaction and intercalation by guest organic species [9]. Organomontmoril- lonite clays (OMMT), for example, can be obtained through the ion exchange reaction between cations in the interlayer space of mont-morillonite clay minerals and organic cations [10]. In this way, the organophobic interlayer space of montmorillonite clay minerals are converted to organophilic one. By contrast with the pristine montmorillonite, the resultant OMMT materials display a much higher rate and capacity

51in the adsorption of organic ions and mol-ecules

[11,12]. Hence, so far OMMT materials as a class of adsor- bents have been widely tested in the removal of organic pollutants from wastewater [13]. Adsorptive materials are particularly attractive in the removal of the colored, toxic organic compound from wastewater in dye industry [14,15]. Typically, the water containing Acid Scarlet G (ASG), a frequently used dye in industry, is not only harmful to the aquatic organisms and plants, but also is hazardous to human beings. Activated carbon [16,17], chitosan modified montmorillon- ite [18], cross-linked chitosan film [19], and amine functionalized titania/silica nano-hybrid [20] have been tested as adsorbents for the removal of ASG from wastewater. In many cases, the practical applications of these materials are limited either by the low adsorption capacity or the difficulty of separation. Owing to these defects, many of them are rarely put into practical use. Therefore, the development of new materials is still needed. Previously, the powder OMMT was found to be able to adsorb ASG in aqueous solution [21]. However, the use of OMMT in the powder form for the treatment of wastewater on an industrial scale leads to great difficulty in separating them from water after the adsorption. In this context, a solution is to shape OMMT into a type of easily oper- able bulky material. Noticeably, the composites of organic polymers and inorganic clay minerals are a class of bulky and moldable solid materials. These composites can be shaped into membranes and films [5,22]. Recently, with the dwindling of fossil fuels, which are the ba- sic feedstock for the production of many of present polymers, bio- polymers and their composites with layered clay minerals have captured particular attention [23]. Clearly,

2it is of great significance to develop adsorptive composites from biopolymers

and layered clay minerals

2for the removal of organic hazardous pollutants in water. First of all, both biopolymers and clay minerals are non-toxic and nonhazardous to the environment, animals and human beings. In addition, biopolymers are degradable in the natural system [24]. Among various biopolymers, cellulose is the most abundant one on earth [25]. Moreover, it can be converted into various derivatives through chemical reactions.

Recently, several studies described a new type of composites prepared from cellulose or cellulose-de-rived molecules and clay minerals under judiciously chosen condi-tions [26,27]. Remarkably, the composites of clay minerals and cellulose acetate (CA) were found to possess the peculiar physical and chemical properties [28]. Nevertheless, the clay minerals were used as fillers for those composites and the quantity of clay miner- als in them was usually less than 5 wt.% [29]. Therefore, those com- posites are not suitable to be used as adsorbents because of the lack of adsorptive properties [30]. It is still desired to produce a kind of composites which not only have proper adsorption capacity but also can be easily handled in wastewater treatment. Here attempts were made at the preparation of novel paper-like composites from cellulose acetate and organo-montmorillonite clays (CA/OMMT). The adsorption of ASG anionic dye as a model pollutant in aqueous solution onto the resulting paper-like CA/OMMT composites was then evaluated. The effects of the ratio of CA to OMMT, the pH value of the dye solution, adsorption temperature, adsorption time and the initial concentration of the dye on the adsorption of the CA/OMMT composites were explored. Finally, the adsorption kinetic and thermodynamic models were discussed. It is expected that, with the much addition of clay minerals in them, such paper-like composites can be used as new materials to adsorb the hazardous organic ions and molecules in water. In particular, be- cause the composites are made into the insoluble paper-like form, the transportation, use and separation of them after adsorption in the treatment of wastewater will become much easy and economic. 2. Experimental 2.1. Materials and chemicals Raw montmorillonite minerals (Ca-montmorillonite) were pro- vided by Renheng Co., Ltd., China. The powders of the montmoril- lonite with the sizes less than 100 mesh were used. Cetyl trimethylammonium bromide (CTAB) [C16H33(CH3)3NBr] was pur- chased from Shanghai Bio Science & Technology, Co., Ltd., China, with a purity of 98%. Acid Scarlet G (ASG) (Azophloxine, C18H13N3Na2O8S2) (Fig. 1A) was a commercially available textile dye and used without further purification. Cellulose acetate (CA) (Fig. 1B) was a commercially available chemical with average acet- yl content of 39.8 wt.% and a degree of substitution of 2.45. The average molecular weight (Mw) of the CA was measured by gel permeation chromatography (GPC) on a Waters 510 series system with polystyrene standards for column calibration and the Mw va- lue obtained was 50,000.

45All other chemicals and reagents were of analytical grade and were used without further purification. 2.2. Preparation of

Na-rich montmorillonite Na-rich montmorillonite (MMT) was obtained through the ion exchange. 10.0 g of montmorillonite mineral powders were dis- persed in 500

38mL of distilled water. The mixture was stirred for 1 h with a

mechanical stirrer at 300 rpm to form a suspension. Then 0.8 g of NaOH was added into the suspension and the suspen- sion was mechanically

49stirred at 200 rpm at room temperature for 12 h. The slurry was centrifuged at 4500 rpm for 30 min. The solid

was transferred to an evaporating dish and dried in an oven at 105 °C in air for 24 h. After that, the solid was ground and sifted through a sieve of 100 mesh size to yield a powder sample, which was labeled as Na-rich MMT. The cation exchange capacity (CEC) of the obtained Na-rich MMT was determined by the ammonium ace- tate method and it was 87 mmol/100 g

38MMT. 2.3. Preparation of organo -montmorillonite The organically modified MMT (OMMT) was prepared by

the following procedure. The surfactant CTAB [C16H33(CH3)3NBr], the molar amount of which was two times the CEC of 4.0 g of Na-rich MMT, was first dissolved in 100 mL of distilled water. Next, 4.0 g of Na-rich MMT was slowly added into it. The mixture was stirred at 60 °C for 12 h, followed by centrifugation at 4500 rpm for 30 min. Then, the solid was washed several times with distilled water until

31no bromide ion was detected by using an aqueous AgNO3 solution (0.1 M). After the solid was dried in an oven at 105 °C,

52it was ground, sifted through a 100 mesh size sieve

to yield a powder OMMT sample. 2.4. Preparation of paper-like cellulose acetate-organo- montmorillonite composites 0.12 g of OMMT powder was dispersed in 1.5 mL of acetone with magnetic stirring. The suspension was then treated by ultra- sonification for 1 h, thereby leading to a good dispersion of OMMT

41N O N O- Na+ S HO O O HN O S O O- Na+ HO O O O CH3 O O CH3 H3C HO O O O O CH3 O O O

n (A) (B) Fig. 1. (A) The molecular structure of Acid Scarlet G [ASG, 2,7-naphthalenedisulfonic acid, 5-(acetylamino)-4-hydroxy-3(phenylazo)-, disodium salt). (B) The structure of cellulose acetate. in acetone. A solution of 0.08 g of CA in 4.7 mL of acetone was made and then was added to the suspension of OMMT in acetone. The composition of mixture is kept at a weight ratio of CA:OMMT:acetone of 4/6/490. The

55mixture was stirred at room temperature for 24 h. Then the mixture was poured into a

glass Petri dish to allow the solvent to evaporate gradually under ambi- ent condition. After that, the dried paper-like sample was peeled off and was named as CA/OMMT60%. By using the similar proce-dure, a series of CA/OMMT composite samples were made by vary- ing the content of OMMT so that the OMMT in the resultant CA/ OMMT composites took up a percentage of 10 wt.%, 20 wt.%, and 40 wt.%, respectively. The samples were labeled as CA/OMMT10%, CA/OMMT20%, and CA/OMMT40%, respectively. 2.5. Characterization of Na-rich MMT, OMMT and paper-like CA/ OMMT composites The X-ray diffraction (XRD) patterns of the powder samples of Na-rich MMT and OMMT was detected on a Thermo ARL SCINTAG X0TRA diffractometer equipped with CuKa radiation at a wave- length of 1.54056 Å. The reflections

24were recorded in the 2h range of 2°

to 40°

44at a scanning rate of 0. 1°/s. The basal spacing of MMT (d001) was calculated through the Bragg's equation (nk = 2dsinh). The XRD patterns of the

CA/OMMT composites

24were recorded in the 2h range of 2- 12° by

using the as-made paper-like samples. Different from the use of the powders of Na-rich montmorillonite and OMMT samples, the samples of paper-like CA/OMMT compos- ites were directly put on a glass plate for the XRD detection. The Fourier transform infrared spectra (FTIR) of MMT and OMMT samples were recorded on a Nicolet AVATAR-370 spec- trometer. Prior to the use, each sample was dried at 110 °C. It was then mixed with KBr and the resulting mixture was pressed into a wafer. Under ambient conditions, the spectra of the wafer samples were measured at averaging 32 scans/s at 0.1 cm 1 resolu- tion in the wavenumber ranging from 4000 to 400 cm 1. Micrographs of the paper-like composite samples were taken on a scanning electron microscope (SEM) (Hitachi-4700, JEOL). Each sample was fixed on an aluminum stub and coated with gold. Thermogravimetric analysis (TGA) of the paper-like composite samples was performed on a Shimadzu TG 60 thermal analyzer. For each test, about 10–15

35mg of the sample was loaded into the alumina crucible and was then heated from room temperature to 900 °C at a programmed rate of 10 °C/min

in a flow of nitrogen. 2.6. Adsorption experiments For the investigation of the effects of the composition of each paper-like CA/OMMT composite on its adsorption of ASG, 100 ml of aqueous ASG solution

36with an initial concentration of 50 mg L 1 and a pH value of 5.5

was used in each run. To such a dye solution, 0.05 g CA/OMMT composites were added as the adsorbents. The solution with CA/OMMT in it was shaken at 120 rpm at 20 °C for 12 h. After that, the paper-like CA/OMMT was taken out from the solution. Then the solution was used for quantitative analyses. The concentration of ASG in solution was measured on ultraviolet (UV) spectrophotometer (Mode-722, China) at a specific wave- length for ASG (510 nm). The

51amount of the dye adsorbed onto CA/OMMT composite was calculated through the following equation:

ðC0 CeÞV qe ¼ m

56**ŏ1Þ** where qe is the amount of adsorbed dye

17(mg g 1) at equilibrium, C0 is the initial concentration of ASG in solution (mg L 1), Ce is the equilibrium concentration of ASG in solution (mg L 1), m is the mass of adsorbent used (g) and V is the volume of ASG solution (L).

The possible loss of trace ASG caused by volatilization, sorption to the glassware and degradation was ignored. The sample of CA/OMMT60% composites, which comparatively showed the best adsorption capacity among a series of CA/OMMT samples, was selected and used for experiments on the adsorption kinetics and isotherms. The experiments were conducted by using a batch equilibrium technique. The measurement of the effects of pH value of the solution on the adsorption were carried out by using 100 ml of 50 mg L 1 dye solution with 0.05 g of CA/OMMT60% samples

22for 12 h. The pH of the solution was adjusted

in the range of 1–10 through adding

221 mol/L HCI or NaOH

solution in it. The optimal

25pH value was determined and used throughout other adsorption experiments, which were conducted at various time intervals, the initial concentrations

(50, 75 and 100 mg L 1) and temperatures (20, 40 and 60 °C) in order

15to determine the adsorp- tion equilibrium time and the maximum removal of dye.

3. Results and discussion 3.1. Characterization of OMMT According to the XRD patterns of the powder samples of Na-rich montmorillonite and OMMT (Fig. 2), the basal spacing of Na-rich montmorillonite and OMMT, namely d001-value, is 12.6 and 22.3 Å, respectively. The interlayer space was increased by 9.7 Å after the ion exchange between Na+ cations and cetyl trimethylam- monium cation (CTA+, [C16H33(CH3)3N]+) cations. The thickness of a single MMT layer is 9.6 Å, and the height of CTA+ with a monolayer arrangement is 4.6 Å [21,31]. Clearly, the increase of gallery height of the resulting OMMT materials was due to the intercalation of bulky organic cations. Moreover, it suggested that the intercalated cationic surfactants in the interlayer of montmorillonite was pres- ent in a form of an oblique triple-layer arrangement, thereby giving a thickness of about 12.7 Å. The modified montmorillonite with an organic species in the interlayer space exhibited hydrophobicity. Consequently, in the experiments OMMT showed a good compati- bility with the organic acetone and it was well dispersed in ace- tone. The use of acetone was also conducive to the dissolution of CA. Hence, the organic modification of montmorillonite enabled the good dispersion and mixing of OMMT and CA in acetone. All these were favorable to the formation of paper-like CA/OMMT composites after the evaporation of acetone. The formation of OMMT was further evidenced by the FTIR spectra of Ca-rich montmorillonite, Na-rich montmorillonite and OMMT (Fig. 3), The absorbance bands at 3630, 3440 and 1640 cm 1 are characteristic of montmorillonite, arising from the

11stretching vibration of O-H groups, the stretching vibration and bending vibration of water molecules for the hydration in the lat-tice of montmorillonite,

respectively [32]. The band at 3230 cm 1 is ascribed to

11hydrogen bonds among water molecules in the inter-layer of the montmorillonite

[33]. The band at about 1040

43cm 1 is ascribed to the stretching vibration of the Si -O bonds, and the bands at 521 and 466 cm 1 are attributed to the stretching vibra-tion and

11bending vibration of Si-O-Al bonds, respectively. After the

ion exchange between Na+ cations and CTA+ [C16H33(CH3)3N]+ cations, the resulting OMMT

10appeared to have all these typical bands of

Na-montmorillonite (Fig. 3A and B). This

10suggested that the layered structure of the montmorillonite remained and there was only the intercalation of organic species into the interlayer space of montmorillonite. As a result, the

extra

31bands at 2850 and 2920 cm 1 were clearly observed

after organic modification (Fig. 3B). These bands were attributed to the symmetric stretching vibration of – CH2 groups and asymmetric stretching vibration of C-H bonds [34]. These partly verified the intercalation of CTA+ ions into the interlayer of montmorillonite, in good agreement with XRD detection (Fig. 2). 3.2. XRD analysis of CA/OMMT composites As illustrated in Fig. 4, the XRD patterns of the pure CA and the series of CA/OMMT composites appeared different. Compared with the basal reflection of the OMMT sample at 2h = 3.95° (Fig. 2B), for all the CA/OMMT composites, the specific 001 reflections from the montmorillonite in CA/OMMT composites were all shifted toward the lower 2h angle regions at around 2.89°. These were attributed Transmittance [a.u.] C B A 1640 4000 3500 3000 2500 2000 1500 1000 500 Wave number (cm -1) Fig. 3. FTIR spectra of (A) Ca-rich montmorillonite, (B) Na-rich montmorillonite and (B) OMMT. to the occurrence of the further swelling of the OMMT,

10caused by the insertion of part of the polymer chains into their interlayer space.

It meant that there was the interaction between the chains of CA polymer and OMMT, leading to the formation of paper-like CA/OMMT composites. Thus the 0 0 1 reflection of the CA/OMMT composites was shifted to the lower 2h angle, compared with that of OMMT [35]. Moreover, the 0 0 1 reflection became increasingly sharp with the increase of the OMMT content in the CA/OMMT composites. When the OMMT content was increased to an amount of more than 20 wt.% of the composite, there were an extra reflection at around 2h = 5.49° (Fig. 4D and E). It suggested that, dependent on the OMMT content, certain platelets of the OMMT were not inter- calated by CA. This is reasonable to consider that dispersion of OMMT in acetone is

34better at a lower OMMT content than that at a higher OMMT content. Nevertheless, the

0 0 1 reflection was able to be clearly detected for all CA/OMMT composite, indicating that the substantial exfoliation of the OMMT layers did not occur when they interacted with CA molecules [36,37]. Provided that the plate- lets of OMMT in the resulting composites were present in a thor- ough exfoliated form, the 0 0 1 reflection of the MMT clay mineral would completely disappear in the XRD patterns [30,38]. However, when the concentration of OMMT used during preparation was Intensity [a.u.] Intensity [a.u.] 2 4 6 8 10 12 Fig. 4. XRD patterns of

OMMT40%, Fig. 2. XRD patterns of (A) Na-rich montmorillonite and (B) OMMT. and (F) CA/OMMT60%. lower than 20 wt.%, part exfoliation of OMMT platelets was ob- served from the XRD patterns. This was because the more dilute the suspension of OMMT in acetone was, the more easily the OMMT was delaminated. Noticeably, when pristine Na-montmoril- lonite was used for preparing CA/MMT composites, by using simi- lar preparation procedures, only a powder mixture of CA and montmorillonite was yielded. This reflected that the organic mod- ification of montmorillonite was necessary for the formation of pa- per-like structure from the CA and the OMMT. 3.3. SEM analysis of paper-like CA/OMMT composites The paper-like samples of CA and paper-like CA/OMMT com- posites containing 10 wt.%, 20 wt.%, 40 wt.% and 60 wt.% of OMMT were respectively observed on a field emission scanning electron microscope (Fig. 5). A smooth, uniform and macrovoid-free struc- ture was observed for the sample of pure CA polymer, which was dispersed in acetone and then formed a solid paper-like sample after the evaporation of acetone (Fig. 5a). Though all CA/OMMT composite samples were also obtained in the paper-like shape, their morphology were found to be different, as seen from the SEM micrographs. Moreover, dependent on the OMMT contents, the structures of CA/OMMT composites varied, particularly in view of the

34dispersion of clay particles in them. As to the

composite samples

34with the low content of OMMT (Fig.

5b and c), the plate- lets of clay mineral were uniformly dispersed within the compos- ites. The welldispersed platelets of OMMT were favorable to form dense structures, as shown by the observation focused on an area by further magnification (Inset micrographs). It showed that there was dense cross-linking between CA molecules and OMMT plate- lets and OMMT platelets were wrapped by small CA patches. When the content of OMMT reached up to 40 wt.%, remarkable macrovoids were observed (Fig. 5d). It could be attributed to the loose cross-linking between CA molecules and OMMT platelets. When the amount of OMMT was further increased to 60 wt.%, as shown in Fig. 5e, macroporous structures was also formed. Com- pared with CA/OMMT40%, there was difference in morphology for CA/OMMT60% possibly because OMMT clay particles were more easily to form some agglomerates at higher contents. Therefore, from the differences of the morphology of the series of samples ob- served by the SEM, it could be deduced that there were several interactions in the CA/OMMT composites: cross-linking reactions between OMMT and CA, intermolecularly and intramolecularly; aggregations of clay platelets and part of intercalation of CA in the interlayers of OMMT. In the CA/MMT composites with low con- tents of OMMT, exfoliated structures were

more prevalent than intercalated structures, whereas in the CA/MMT composites with high contents of OMMT macroporous structures were favorable to form. 3.4. TGA analysis of paper-like CA/OMMT composites Thermal gravimetric analysis of the samples of Na-MMT, OMMT and CA are shown in Fig. 6a. As for the Na-MMT sample, three dis- tinct stages of weight loss in the range of 20–120 °C, 150–440 °C, and 450-700 °C were observed. The first stage was due to the physical adsorbed water, which has a good mobility and is easy to be removed upon heating, and the weight loss was around 8.9 wt.% (Fig. 6a-A). The second stage of weight loss was due

26to the removal of water by the dehydration of the exchangeable cat-ions

upon heating. It was dependent on the amounts of hydrated cations in the interlayer space. This weight loss was around Fig. 5. SEM micrographs of CA and CA/OMMT composites. 4.8 wt.%. At higher temperatures, the dehydroxylation in the lattice of montmorillonite occurred. As to the OMMT sample (Fig. 6a-B), there was less adsorbed water on the surface because of the sur-face of montmorillonite had been turned from the hydrophilic into the hydrophobic. Moreover,

50in the range of 220-440 °C, the weight loss for the

organic surfactant reached 22.7 wt.%, owing to the decomposition of the surfactant species [39]. The thermal degrada- tion of CA involved at least three stages [40]. The first was the re- moval of physically bound water at the range of 30-260 °C. The second was the unzipping of the cellulose chains and then their primary decomposition to dehydrated and volatile compounds, which occurred at 300-400 °C. The third was the deep decomposi- tion of the dehydrated product to biochar and gases at tempera- tures higher than 450 °C (Fig. 6a-C). Substantial weight loss of around 50.5 wt.% took place at the range of 300–450 °C. Clearly, this was caused by the degradation and the decomposition of CA [41]. As demonstrated in Fig. 6b, the thermogravimetric curves of weight loss of paper-like CA/OMMT composites give a combined characteristic of CA and OMMT, thereby proving the formation of the composites. Typically, there are three stages of weight losses at the temperature range of 70–260 °C, 320–400 °C, and after (a) 100 Residual weight/(%) 80 60 40 20 0 0 200 400 600 800 1000 Temprature/(°c) (b) 100 Residual weight/(%) 400 °C. The first weight loss at 70-260 °C was about 20 wt.% for all CA/OMMT composite samples. There was minor difference mainly because of the difference in the contents of OMMT in these composites, which led to different capacity of water retention on the surface of CA/OMMT composites. When the contents of OMMT was increased from 10 wt.% to 60 wt.%, for all composites samples the weight loss between 220 and 260 °C remained at around 8.0 wt.%, but then the different, rapid weight loss was detected

50in the range of 320-400 °C, as the weight loss came from both the

OMMT and the CA. Comparatively. No obvious weight loss was ob- served for pure Na-MMT at these temperatures. Namely, this weight loss of CA/OMMT composites could be attributed to the structure degradation of CA and the decomposition of surfactant upon heating at high temperatures. As such, the weight loss from the decomposition and the removal of organic species on the CA/ OMMT10%, CA/OMMT20%, CA/OMMT40% and CA/OMMT60% were 42.2 wt.%, 28.8 wt.%, 20.4 wt.%, and 17.6 wt.%, respectively. These values were in good agreement with the order of the ratio of CA/ OMMT used during

sample preparation. 3.5. Effects of the ratio of CA/OMMT and pH value on adsorption For investigating the influence of the ratio of CA to OMMT on the adsorption of ASG onto CA/OMMT composites (Fig. 7), a series of experiments were conducted with the addition of 0.05 g of Na- rich MMT, OMMT, CA/OMMT10%, CA/OMMT20%, CA/OMMT40%, and CA/OMMT60% into a dye solution, respectively. For each run, 100 ml of 50 mg L 1 dye solution at the pH of 5.5 at 20 °C and the adsorption time 12 h was used. When the content of OMMT in the CA/OMMT composites was increased from 10 wt.% to 60 wt.%, the adsorption capacities of CA/OMMT increased in the or- der of 3.1, 21.2, 39.1 and 85.7 mg g 1. The results revealed that OMMT played a leading role in adsorption. This was also verified by the adsorption capacities of the pure powder OMMT sample, which reached 94.6 mg g 1. Obviously, OMMT powder was hard to be separated because after use it became sludge. Instead, pa- per-like appears in a bulky form could be taken out from the water easily. According to the adsorption capacity, the paper-like CA/ OMMT60% composites were then chosen for a series of studies later on. For probing the effect of the pH value of dye solution, each

57experiment was carried out by using 100 ml of

50 mg L 1 dye solu- tion with 0.05 g of CA/OMMT60% in it

22for 12 h. The pH of the solu-tion was respectively adjusted

in the range of 1-10 through adding

221 mol/L HCl or NaOH

solution into it at a required amount. The 80 100 60 40 80 20 60 0 200 400 600 800 1000 40 Temprature/(°c) a A. MMT B. OMMT C. CA Adsorption capacity (mg/g) 20 b

29D. CA/ OMMT10% E. CA/ OMMT20% F. CA/ OMMT40% G. CA/

OMMT60% 0 Na-rich MMT Fig. 6. TGA curves of MMT, OMMT, CA and CA/OMMT composites. (a) A. MMT, B. OMMT,

29C. CA, (b) D. CA/ OMMIT10%, E. CA/ OMMIT20%, F. CA/ OMMIT40%, G. CA/

Fig. 7. Effect of the composition of Na-rich MMT, OMMT and CA/OMMT composites OMMIT60%. on the adsorption of ASG onto them.

28adsorption was found to be dependent on the pH value of the dye

solution (Fig. 8). As seen from the molecular structure of ASG (Fig 1A) and the structural features of montmorillonite, the

25pH value of the dye solution can affect both the surface charge of the adsorbent and the degree of ionization of the adsorbate

ASG. In particular, the degree of ionization of ASG directly related to its pKa values. According to the measurement made by Biçer and Arat [42], the pKa values of ASG were 7.5 (azonium group, pKa1) and 10.0 (naphtholic group, pKa2), respectively. At pH =

461, the adsorption capacity of the CA/OMMT60% composites reached the

maximum of 95.1 mg g 1, whereas at pH = 9, the adsorption capacity gave the minimum of 61.7 mg g 1. Such a gap of 33.4 mg g 1 was attributed to the strong electrostatic interaction between the [C16H33(CH3)3N]+ – in OMMT and dye anions and the ionization of azonium group took priority at low pH [43].

13When the pH value of the dye solution was raised from 1 to 10, the

ionization of napht- holic group made the negative charge on the ASG in the solution increase. Also, the adsorbent surface, namely montmorillonite layer surfaces, appeared negatively charged. As a result, a decreased adsorption at

36high pH values was observed. This was due to the abundance of OH ions in

solution, leading to the ionic repulsion between the negatively charged surface and the anionic dye molecules [44]. 3.6. Effects of initial dye concentration, contact time and temperature on adsorption The initial concentrations of aqueous ASG solution in the range of 25–125 mg dm 3 were used to probe their influences on the rate of adsorption of the paper-like CA/OMMT60% composites at pH = 1 and at 20, 40 and 60 °C, respectively. As depicted in Fig. 9, when the initial concentration of the dye was increased from 25 and 125 mg dm 3, the adsorption capacity of the CA/OMMT60% com- posites increased from 48.4 to 165

26.2 mg g 1 at 20 °C, from 49.3 to 177.6 mg g 1 at 40 °C,

and from 50.0 to 193.4

26mg g 1 at 60 °C, respectively. These indicated that the initial concentration of

dye had a remarkable effect on the adsorption of ASG onto the CA/ OMMT60% composites. Clearly, the increase of the temperature was favorable to the adsorption. The effect of contact time on the amount of ASG adsorbed onto the CA/OMMT60% composites at various temperatures (Fig. 9) was investigated by varying initial concentration of dye from 25 to 125 mg dm 3, respectively.

58When the contact time was increased, the amount of adsorption was increased slightly. By contrast, the rate of the adsorption of ASG onto

the CA/OMMT60% composites was greatly affected by the temperature. Nevertheless, the time 100 200 Adsorption capacity/mg.g-1 20oC 150 100 50 0 125

6mg.dm-3 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 200 0

200 400 t /min 600 800 1000 Adsorption capacity/mg.g-1 180 160 140 120 100 80 60 40 20 0 40oC 125

6mg.dm-3 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 250 0

200 400 t/min 600 800 1000

48Adsorption capacity/mg.g-1 200 150 100 50

60oC 125

5mg.dm -3 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 0 0 200

400 600 800 1000 t/min Adsorption capacity (mg/g) 80 60 40 20 0 0 1 2 3 4 5 pH 6 7 8 9 10 11 Fig. 9.

52Effect of contact time for the adsorption of ASG onto CA/OMMT60% at

temperature:

42(a) 20 °C, (b) 40 °C and (c) 60 °C.

to reach the equilibrium of adsorption depended on the initial con- centration of dye and temperature. At 20 °C, the maximum capac- ities of the adsorption of ASG onto the CA/OMMT60% composites were achieved at 330, 390, 630, 720 and 810 min successively; at 40 °C, those were 330, 390, 450, 630 and 720 min; at 60 °C, those were 180, 225, 390, 540 and 630 min. As shown in Fig. 9, the equilibrium adsorption capacity of ASG onto the CA/OMMT60% composites was affected by temperature. It increased with the increased

temperatures from 20 to 60 °C. This Fig. 8. Influence of the pH values on adsorption capacity of CA/MMT60% for ASG. indicated that the adsorption of ASG onto the surface of the CA/ OMMT60% composites was favorable at enhanced temperatures, suggesting that such adsorption was an endothermic process. This was partly due to the fact that swelling behavior in the inner struc- ture of CA/OMMT adsorbents was favorable at high temperatures. As such, it was conducive to the intake of dye molecules into adsor- bents [45]. Before and after the equilibrium was reached, the adsorption capacity showed different trends at different tempera- tures. Generally, before the

54equilibrium was reached, the increase in the temperature led to an increase of adsorption rate, which indicated a thermodynamically controlled process.

3.7. Kinetics of adsorption The kinetics of adsorption is one of the most important charac- teristics in defining the efficiency and application of an adsorptive material. Many studies suggested that

23that the Lagergren's first- or- der (LFO) equation was suited for explaining

liquid-solid adsorp- tion kinetics and it was called the pseudo-first-order (PFO) equation [46]. So far the often-used kinetic models are the PFO equation and the pseudo-second-order equation (PSO) [47,48]. The pseudo-first-order kinetic equation can be expressed as: qt ¼ q1 expð1 expð k1tÞÞ where q1

21and qt are the amounts of the dye adsorbed at equilibrium and at time t (mg g 1); k1 is the pseudo-first-order rate constant (min 1). When this model was applied to the adsorption of

ASG, parameters q1 and k1 were obtained by using a non-linear least square method and the results are listed in Table 1. Pseudo-first or- der plots for the adsorption of AGS onto CA/OMMT60% at various temperatures are given in Fig. 10, in which the solid lines represent the pseudo-first order model while the symbols represent the experimental data. Here the applicability of the pseudo-first order model to the kinetic data of adsorption of ASG onto CA/OMMT60% was compared

13with the pseudo-second order model. The pseudo-second-order ki- netic model has

the mathematical form as below: qt \(\frac{1}{4} \) q2 1 \(\text{pq2qk22tk2t where q2 is the maximum adsorption capacity} \)

8(mg g 1) and k2 is the equilibrium rate constant of the pseudo-second-order adsorption (g mg 1 min 1). Values of k2 and q2 were

obtained by using a non-linear regression method. Fig. 11 depicts the pseudo-second or- der plots for the adsorption of AGS onto CA/OMMT60% at various temperatures and the results are summarized in Table 1. Both of the models seemed to be able to represent the kinetic data as illustrated in Table 1, Figs. 10 and 11. The correlation coef- ficients for both models were greater than 0.95. However, to decide whether the model could well represent the experimental data or not, the physical meaning of each parameter involved in the model should be considered, rather than only based on the correlation coefficient. The k1 parameter in the pseudo-first order model as well as the parameter k2 in pseudo-second order are the time-scale factors. These parameters decide how fast the equilibrium condition in the system can be reached [49]. As the time-scale factors, usually both of the parameters are strongly dependent on the initial concentration of the adsorbate. The values of these parameters decrease

28with the increase of the initial concentration of the

adsor- bate. As indicated in Table 1, here both of parameters k1 and k2 ob- tained from the non-linear fitting decreased as the initial solution concentration of ASG increased. Nevertheless, just as mentioned above, the parameters q1 and q2 represent the amount of the adsor- bate ASG adsorbed at the equilibrium condition. Usually the value of these parameters should be equal to those experimental values, which can be determined from the measurements of the equilib- rium adsorption isotherms. As listed in Table 1, comparatively, the fitting values of the parameter q1 in the Lagergren's first-order equation better represented the adsorption of ASG onto the com- posite and they were much closer to the experimental value. The results indicated that the pseudo-first order model was more sui- ted for the adsorption of ASG onto CA/OMMT composites than the

14pseudo-second order model. 3.8. Adsorption isotherms and thermodynamic parameters The adsorption isotherms were

measured on the basis of the presumption of the Langmuir model and Freundlich model, respectively [50]. Theoretically, the Langmuir adsorption isotherm as-sumes

24that adsorption takes place at specific homogenous sites on the surface of the adsorbents and it is

4where qe is the equilibrium dye concentration on the adsorbent (mol g 1), Ce the equilibrium dye concentration in the solution (mol dm 3), qmax the monolayer adsorption capacity of the adsor- bent (mol g 1) and KL is the Langmuir adsorption constant (dm3 mol 1) related to the free energy of adsorption. The plots of 1/ge versus 1/Ce for the

adsorption of ASG onto the CA/OMMT60% composites were made to generate the slope of

```
71/(qmax KL) and intercept 1/qmax (Fig.
```

12a). Table 1 Kinetic parameters for the adsorption of ASG on CA/OMMT60%. T (°C) C0 (mg dm 3)

```
27qe (exp) (mg g 1) k1 (min 1) q1 (mg g 1) r21 k2 ( 10 4) (g mg 1 min 1) q2 (mg g 1)
```

r22 20 25 50 75 100 125 47.5 89.3 121.7 135.3 164.7 0.022 0.017 0.011 0.008 0.012 47.4 88.7 115.9 131.5 161.3 0.995 0.994 0.943 0.985 0.996 5.935 2.419 1.185 0.581 0.771 51.8 98.1 130.5 154.9 184.8 0.998 0.999 0.998 0.996 0.999 40 25 50 75 100 125 48.9 93.7 128.0 139.2 177.3 0.039 0.017 0.017 0.012 0.010 48.2 92.3 124.3 135.0 172.7 0.989 0.989 0.981 0.981 0.992 11.21 2.186 1.706 1.004 0.603 51.6 102.4 137.1 152.9 199.7 0.992 0.995 0.993 0.995 0.994 60 25 50 75 100 125 49.2 95.6 131.3 152.1 193.0 0.038 0.026 0.024 0.017 0.015 49.3 95.8 126.8 147.1 188.4 0.993 0.992 0.930 0.985 0.989 10.58 3.661 2.540 1.404 0.941 52.7 103.7 137.6 163.7 210.8 0.996 0.987 0.987 0.998 0.987 200 Adsorption capacity/mg.g-1 20oC 150 100 50 0 125

```
18mg.dm -3 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 Adsorption capacity /mg.
```

g -1 180 160 140 120 100 80 60 40oC -3 125 mg.dm 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 200 0 200 400 t/min 600 800 1000 40 20 0 25 mg.dm-3 250 0 200 400 t/min 600 800 1000

```
48Adsorption capacity/mg.g -1 200 150 100 50
```

60oC 125

```
5mg.dm-3 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 0 0 200
```

400 600 800 1000 t/min Fig. 10. Pseudo-first-order kinetic plots for the adsorption of ASG onto CA/OMMT-60% at temperature:

```
42(a) 20 °C, (b) 40 °C, and (c) 60 °C.
```

The Freundlich isotherm is an empirical equation which is usu- ally used

15to describe heterogeneous systems. A linear form of the Freundlich equation is In qq 1/4 In KF b 1 =n In Ce where KF (dm3 g 1) and n are constants

for a given adsorbate (ASG) and adsorbent (CA/OMMT60%). The constants are

53indicative of the extent of the adsorption and the degree of non-linearity between the concentration of the solution and the

adsorbed amount, respec- tively. From the plots of In ge versus In Ce for the adsorption of ASG 200 Adsorption capacity/mg.g-1 20oC 150 100 50 0 125

18mg.dm-3 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 Adsorption capacity /mg.

g-1 180 40oC 160 140 120 100 80 60 40 20 0 125

6mg.dm-3 100 mg.dm-3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 200 0

200 400 t/min 600 800 1000 250 0 200 400 t/min 600 800 1000 Adsorption capacity/mg.g-1 60oC 200 150 100 50 125

5mg.dm-3 100 mg.dm -3 75 mg.dm-3 50 mg.dm-3 25 mg.dm-3 0 0 200

400 600 800 1000 t/min Fig. 11. Pseudo-second-order kinetic plots for the adsorption of ASG onto CA/ OMMT-60% at various temperatures: (a) 20 °C, (b) 40 °C and (c) 60 °C. onto the CA/OMMT60% composites (Fig. 12b), the intercept value of KF and the slope of 1/n were obtained. The parameters from Langmuir and Freundlich models for the adsorption of ASG are listed in Table 2. When the r2

13values are compared, the Langmuir model correlation coefficients are in a range of 0.

96–0.98, while the Freundlich model correlation coeffi- cients are between 0.95 and 0.98. Hence, the isotherms fit into Langmuir models a bit better. In other words, the adsorption pro-cess of the CA/OMMT60% composites tends to be a homogeneous adsorption on the surface. In addition, the essential feature of the 1/qe / (g mol-1) 11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 (a) 0 300000 600000 900000 1200000 1500000 1/Ce / (dm3 mol-1) -7.8 -8.0 (b) -8.2 -8.4 ln qe -8.6 -8.8 -9.0 -9.2 -9.4 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 In Ce Fig. 12. (a) Langmuir plots and (b)

56Freundlich plots for the adsorption of ARG onto CA/OMMT60% at various temperatures.

Langmuir isotherm can be reflected by 'RL', which is a dimension- less constant and is

19referred to as a separation factor or an equilib- rium parameter. RL is calculated using the following equation: RL 1/4 1 1 b KLC0 where KL is the Langmuir constant (dm3 mol 1) and C0 is the initial dye concentration (mol dm 3). The

values of RL calculated based on such an equation are listed in Table 2. Equilibrium constant KL varies with the temperature. It

14can be used to estimate thermodynamic parameters, such as the changes in the standard free energy (G°), enthalpy (H°) and entropy (S°) associated to the adsorption process. These values were deter- mined by using following equations

and the data are given in Table 3. DG ¼ RT In K L InKL ¼ DG DH DS RT ¼ RT p R The overall standard free energy change during the adsorption process was between 29.5 and 36.9 kJ mol 1, suggesting that Table 3

16Thermodynamic parameters calculated from the Langmuir isotherm data for the adsorption of ASG onto the CA/OMMT60%. T (K) DG° (kJ mol 1) DH° (kJ mol 1) DS° (J k 1 mol 1) 293 29.5 24.

8 186.2 313 34.0 333 36.9 13.4 13.2 13.0 l n KL 12.8 12.6 12.4 12.2 12.0 0.0030 0.0031 0.0032 0.0033 0.0034 1/ T (K-1) Fig. 13. Plot of ln KL to 1/T for calculation of thermodynamic parameters. the process included both physical and chemical adsorption. As for the adsorption of ASG onto the CA/OMMT60% composites, the

7plot of In KL as a function of 1/T (Fig. 13) gave a straight line. The H° and S° were calculated from the slope and intercept of the

plot, respectively (Table 3). The

16positive value of the standard enthalpy change (24. 8 kJ mol 1) clearly indicated that the adsorption

of ASG onto the CA/OMMT60% composites was a spontaneous and endo- thermic process. It was reasonable in consideration of the hydro- phobicity of OMMT and the macroporosity of the composites. 4. Conclusion The preparation and shaping of the inorganic-organic compos- ites from cellulose acetate molecules and organo-montmorillonite platelets led to a new class of paper-like materials. In particular, the resultant materials can act as functional adsorbents

27for the adsorption of the organic pollutants in the wastewater, with the

merits in the aspects of easy operation and separation. For the fab- rication of such composites, OMMT first needed to be produced through the ion exchange of cetyltrimethyl ammonium cations with Na+ cations in the interlayer space of pristine montmorillon- ite, followed by the dispersion of CA and OMMT in acetone. Then the mixture underwent a self-assembly process through gradual evaporation of acetone, leading to the formation of the

32paper-like composites of cellulose acetate and organo-montmorillonite. The characterization of

composites by XRD, FTIR, SEM, and TG analyses indicated that there existed several interactions among CA molecules and OMMT platelets. These included cross-linking reactions between OMMT platelets and CA chains, intermolecu- Table 2 Langmuir and Freundlich isotherm constants for the adsorption of ASG onto CA/OMMT-60% at various temperatures. T

```
8(°C) Langmuir qmax ( 10 4) (mol g 1) KL ( 105) (dm3 mol 1) r2L RL ( 10 3)
Freundlich KF (103) (dm3 g 1)
```

n r2F 20 2.965 1.813 0.983 40 2.881 4.629 0.970 60 3.041 6.090 0.964 21.967 10.467 2.757 8.726 6.266 3.331 6.642 8.951 3.189 0.981 0.957 0.953 larly and intramolecularly; aggregations of clay platelets and inter- calation of part of CA in the interlayers of OMMT. Dependent on the ratio of CA to OMMT, a dense or macroporous paper-like compos- ites can be created. The macroporous paper-like CA/OMMT composites showed a remarkable capacity for the adsorption of Acid Scarlet G anionic dye from aqueous solution. The OMMT components played a dom- inant role in the adsorption. As such, when the content of OMMT in the CA/OMMT composites was increased from 10 wt.% to 60 wt.%, the adsorption capacities of ASG onto CA/OMMT

7increased from 3. 1 mg g 1 to 85.7 mg g 1, respectively, under the

present experi- mental conditions. The pH value of the dye solution, adsorption temperature, and the initial dye concentration had effects on the amount of the adsorption of ASG onto CA/OMMT and the time to reach adsorption equilibrium. A series of measurements on ASG onto the CA/OMMT60% composites suggested that the adsorption kinetics of ASG on such CA/OMMT composites obeyed the Lager- gren's pseudo-firstorder model. The adsorption of ASG onto the CA/OMMT60% composites was a spontaneous and endothermic pro- cess and the adsorption isotherm of ASG could be depicted by the Langmuir equation. Noticeably, such paper-like composites from natural minerals and bioresources are environmentally benign. As demonstrated in this work, they possess adsorption capacity of organic species with advantages of easy operation and separa- tion. All these allow them to find many promising applications in future. Acknowledgements The

37authors wish to acknowledge the financial support from the Distinguished Young Scholar Grants from the Natural Scientific Foundation of Zhejiang Province (R4100436),

9the Natural Scientific Foundation of Zhejiang Province (LQ12B03004), the National Natu- ral Scientific Foundation of China (20773110, 20541002), Zhejiang "151" talents project, and International Collaborative Project (2009C14G2020021) from the Science and Technology Department of Zhejiang Provincial Government for the related research and development. CHZ proposed the

research, designed composites and wrote the paper. DZ conducted the experiments, and provided the data and drafted the article. Other authors contributed to pro- viding technical or scientific assistance during this work. References [1] G.F. Jiang, C.H. Zhou, X. Xia, F.Q. Yang, D.S. Tong, W.H. Yu, S.M. Liu, Controllable preparation of graphitic carbon nitride nanosheets via confined interlayer nanospace of layered clays, Mater. Lett. 64 (2010) 2718–2721. [2] H.S. Xia, C.H. Zhou, D.S. Tong, W.H. Yu, S.M. Liu, Preparation and catalysis in epoxidation of allyl chloride of zeolitic titanosilicate-1/smectitic clay minerals, Appl. Clay Sci. 53 (2011) 279–287. [3] H.H. Murray, Traditional and new applications for kaolin, smectite, and palygorskite: a general overview, Appl. Clay Sci. 17 (2000) 207–221. [4] C.H. Zhou, Emerging trends and challenges in synthetic clay-based materials and layered double hydroxides, Appl. Clay Sci. 48 (2010) 1-4. [5] D. Zhang, C.H. Zhou, C.X. Lin, D.S. Tong, W.H. Yu, Synthesis of clay minerals, Appl. Clay Sci. 50 (2010) 1–11. [6] C.H. Zhou, Z.F. Shen, L.H. Liu, S.M. Liu, Preparation and functionality of clay- containing films, J. Mater. Chem. 21 (2011) 15132–15153. [7] C.H. Zhou, An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis, Appl. Clay Sci. 53 (2011) 97-105. [8] B.S. Krishna, D.S.R. Murty, B.S. Jai Prakash, Surfactant-modified clay as adsorbent for chromate, Appl. Clay Sci. 20 (2001) 65–71. [9] K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Adv. Colloid Interface Sci. 140 (2008) 114-131. [10] W. Shen, H.P. He, J.X. Zhu, P. Yuan, R.L. Frost, Grafting of montmorillonite with different functional silanes via two different reaction systems, J. Colloid Interface Sci. 313 (2007) 268–273. [11] S.A. Boyd, M.M. Mortland, C.T. Chiou, Sorption characteristic of organic compounds on hexadecyltrimethylammonium-smectite, Soil Sci. Soc. Am. J. 52 (1988) 652–657. [12] J.H. Bae, D.I. Song, Y.W. Jeon, Adsorption of anionic dye and surfactant from water

onto organomontmorillonite, Sep. Sci. Technol. 35 (2000) 353-365. [13] F. Lopez Arbeloa, M.J. Tapia Estevez, T. Lopez Arbeloa, I. Lopez Arbeloa, Spectroscopic study of the adsorption of rhodamine 6G on clay minerals in aqueous suspensions, Clay Miner. 32 (1997) 97–106. [14] N. Miyamoto, R. Kawai, K. Kuroda, M. Ogawa, Adsorption and aggregation of a cationic cyanine dye on layered clay minerals, Appl. Clay Sci. 16 (2000) 161–170. [15] A.H. Gemeay, Adsorption characteristics and the kinetics of the cation exchange of Rhodamine-6G with Na+-montmorillonite, J. Colloid Interface Sci. 251 (2002) 235-241. [16] X.N. Wang, N.W. Zhu, B.K. Yin, Preparation of sludge-based activated carbon and its application in dye wastewater treatment, J. Hazardous Mater. 153 (2008) 22-27. [17] J.K. Xie, Q.Y. Yue, B.Y. Gao, Q. Li, Adsorption kinetics and thermodynamics of anionic dyes onto sewage sludge derived activated carbon, Int. J. Environ. Pollut. 45 (2011) 123–144. [18] H. Shao, S. Shao, H.B. Wang, H. Cheng, Experimental study on the treatment of acid scarlet wastewater with modified bentonite, Sci. Technol. Rev. 27 (2009) 89-92. [19] H.Y. Zhu, J. Ru, Preparation of cross-linked chitosan film and its absorption behavior of acid scarlet dyeing, J. Hebei Univ. Sci. Technol. 30 (2009) 54-57. [20] M.N. Mohammad, N. Farhood, Synthesis, amine functionalization and dye removal ability of titania/silica nano-hybrid, Microporous Mesoporous Mater. 156 (2012) 153–160. [21] D.S. Tong, C.H. Zhou, Y. Lu, H.Y. Yu, G.F. Zhang, W.H. Yu, Adsorption of acid red G dye on octadecyl trimethylammonium montmorillonite, Appl. Clay Sci. 50 (2010) 427-431. [22] H.M. Park, A.K. Mohanty, L.T. Drzal, E. Lee, D.F. Mielewski, M. Misra, Effect of sequential mixing and compounding conditions on cellulose acetate/layered silicate nanocomposites, J. Polym. Environ. 14 (2006) 27–35. [23] L.A. White, Preparation and thermal analysis of cotton-clay nanocomposites, J. Appl. Polym. Sci. 92 (2004) 2125–2131. [24] S.S. Ray, M. Bousmina, Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world, Prog. Mater. Sci. 50 (2005) 962-1079. [25] C.H. Zhou, X. Xia, C.X. Lin, D.S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chem. Soc. Rev. 40 (2011) 5588-5617. [26] R. Morita, F.Z. Khan, T. Sakaquchi, M. Shiotsuki, Y. Nishio, T. Masuda, Synthesis, characterization, and gas permeation properties of the silyl derivatives of cellulose acetate, J. Membr. Sci. 305 (2007) 136-145. [27] X.Y. Wang, Y.M. Du, J.W. Luo, Chitosan/organic rectorite nanocomposite films: Structure, characteristic and drug delivery behaviour, Carbohydr. Polym. 69 (2007) 41–49. [28] R.B. Romero, C.A.P. Leite, M.D.C. Goncalves, The effect of the solvent on the morphology of cellulose acetate/montmorillonite nanocomposites, Polymer 50 (2009) 161– 170. [29] H. Fischer, Polymer nanocomposites: from fundamental research to specific applications, Mater. Sci. Eng. C 23 (2003) 763-772. [30] B.J. Pan, W.M. Zhang, L. Lv, Q.X. Zhang, S.R. Zheng, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters, Chem. Eng. J. 151 (2009) 19–29. [31] C.H. Zhou, D.S. Tong, M.H. Bao, Z.X. Du, Z.H. Ge, X.N. Li, Generation and characterization of catalytic nanocomposite materials of highly isolated iron nanoparticles dispersed in clays, Top. Catal. 39 (2006) 213–219. [32] R. Liu, R.L. Frost, W.N. Martens, Near infrared and mid infrared investigations of adsorbed phenol on HDTMAB organoclays, Mater. Chem. Phys. 113 (2009) 707-713. [33] Q. Zhou, R.L. Frost, H. He, Y. Xi, H. Liu, Adsorbed para-nitrophenol on HDTMAB- A TEM and Infrared spectroscopic study, J. Colloid Interface Sci. 307 (2007) 357–363. [34] K.H.S. Kung, K.F. Hayes, Fouriertransform infrared spectroscopic study of the adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica, Langmuir 9 (1993) 263–267. [35] S.W. Jang, J.C. Kim, J.H. Chang, Preparation and characterization of cellulose nanocomposite films with two different organo-micas, Cellulose 16 (2009) 445–454. [36] C. Danumah, M. Bousmina, S. Kaliaguine, Novel polymer nanocomposites from templated mesostructured inorganic materials, Macromolecules 36 (2003) 8208-8209. [37] S. Tunc, O. Duman, Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films, Appl. Clay Sci. 48 (2010) 414- 424. [38] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. Res. 28 (2000) 1-63. [39] W. Xie, R. Xie, W.P. Pan, D. Hunter, B. Koene, L.S. Tan, R. Vaia, Thermal stability of

quaternary phosphonium modified montmorillonites, Chem. Mater. 14 (2002) 4837–4845. [40] D.S. Tong, C.H. Zhou, Catalytic hydrolysis of cellulose to reducing sugar over acid-activated montmorillonite catalysts, Appl. Clay Sci., in press. [41] M.D.C. Lucena, A.E.V. de Alencar, S.E. Mazzeto, S.D. Soares, The effect of additives on the thermal degradation of cellulose acetate, Polym. Degrad. Stab. 80 (2003) 149–155. [42] E. Biçer, C. Arat, A voltammetric study on the aqueous electrochemistry of acid red 1 (azophloxine), Croat. Chem. Acta 82 (2009) 583–593. [43] A.S. Ozcan, B. Erdem, A. Ozcan, Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite, J. Colloid Interface Sci. 280 (2004) 44-54. [44] Z. Wu, I.S. Ahn, C.H. Lee, J.H. Kim, Y.G. Shul, K.T. Lee, Enhancing the organic dye adsorption on porous xerogels, Colloids Surf. A: Physicochem. Eng. Asp. 240 (2004) 157–164. [45] K.G. Bhattacharyya, A. Sarma, Adsorption characteristics of the dye, brilliant green, on neem leaf powder, Dyes Pigm. 57 (2003) 211–222. [46] R.L. Tseng, F.-C. Wu, R.-S. Juang, Characteristics and applications of the Lagergren's firstorder equation for adsorption kinetics, J. Taiwan Inst. Chem. Eng. 41 (2010) 661–669. [47] Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70 (1998) 115-124. [48] A. Ozcan, E.M. Oncu, A.S. OZcan, Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite, Colloid. Surf. A 277 (2006) 90-97. [49] W. Plazinski, W. Rudzinski, A. Plazinska, Theoretical models of sorption kinetics including a surface reaction mechanism: a review, Adv. Colloid Interface Sci. 152 (2009) 2-13. [50] A.S. Ozcan, B. Erdem, A. Ozcan, Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite, Colloid Surf. A: Physicochem. Eng. Asp. 266 (2005) 73-81.

39Author's personal copy 224 Author's personal copy C.-H. Zhou et al. / **Chemical Engineering Journal**

209 (2012) 223-234

39Author's personal copy C.-H. Zhou et al. / Chemical Engineering Journal

209 (2012) 223-234 225 226 Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223-234

Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223-234

227 228 Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223–234

Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223-234

229 230 Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223-234

Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223-234

231 232 Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223-234

Author's personal copy C.-H. Zhou et al. /

3Chemical Engineering Journal 209 (2012) 223-234

233 234 Author's personal copy C.-H. Zhou et al. / Chemical Engineering Journal 209 (2012) 223-234