turn:) $_{{f it}{tin}}$ Turnitin Originality Report				
<u>Chemical Engineering Journal 172 (2011)</u> <u>158– 166</u> by Suryadi Ismadji From journal (Hippo-hippo)		Similarity Index 18%	Similarity by Source Internet Sources: Publications: Student Papers:	11% 18% 8%	
Pr ID W	ocessed on 15-Feb-2018 21:53 WIB : 916440998 lord Count: 6449				
source	s:				
1	2% match (Internet from 01-Aug-2012) http://www.cognitiveneuroscience.it/wp-content/uploads/2012/04/IJPsyphy_Bortoletto_2011.pdf				
2	1% match (publications) <u>Julien Pettré, Ming Lin. "New generation</u> Courses on - SIGGRAPH '14, 2014	n crowd simulation alg	orithms", ACM SIGGR/	APH 2014	
3	1% match (Internet from 22-Oct-2009) http://www.uq.edu.au/gilbertgroup/LG.p	<u>df</u>			
4 Scien	1% match (publications) Ismadji, Suryadi, Felycia Edi Soetaredjo Adsorption of Hazardous Substances U ice, 2015.	o, and Aning Ayucitra. sing Clay Minerals", S	"The Equilibrium Studie pringerBriefs in Molecu	es in the Ilar	
5	1% match (publications) <u>S. Ismadji, S. K. Bhatia. "A Modified Po</u> <u>Activated Carbon", Langmuir, 2001</u>	re-Filling Isotherm for	Liquid-Phase Adsorptic	o <u>n in</u>	
6	1% match (Internet from 12-Jun-2017) https://benthamopen.com/FULLTEXT/TOCENGJ-10-18				
7	1% match (publications) <u>Putra, E.K "Performance of activated of wastewater: Mechanisms, isotherms an</u>	arbon and bentonite f d kinetics", Water Res	or adsorption of amoxic search, 200905	<u>sillin from</u>	
8 <u>fungu</u>	1% match (publications) Mahmood, Tahira, Afsar Khan, Abdul N Muhammad Farooq, and Fida Hussain. Is Pleurotus ostreatus", Desalination and	aeem, Muhammad Ha "Adsorption of Ni(II).ic Water Treatment, 201	mayun, Mairman Musk ons from aqueous solut 5.	<u>a,</u> ion onto a	
9 <u>rhoda</u>	1% match (publications) Jitender Sharma, Sukriti, Prerna Anand Bhatia, B.S. Kaith. "RSM-CCD optimize amine-B: Kinetics and equilibrium studies'	, Vaishali Pruthi, Amrit d adsorbent for the se , Materials Chemistry	<u>pal Singh Chaddha, Ja</u> <u>questration of carcinog</u> <u>and Physics, 2017</u>	<u>spreet</u> enic	
10	1% match (Internet from 15-Apr-2016)				
<u>http://</u> 5139/	/doiserbia.nb.rs/(X(1)A(0dVEf3O_0QEkA /2016/0352-51391500086L.pdf	AAANzRiM2RiNjQtNT	JkMC00MzdmLTliMWN	<u>MtZDAxMjVjZT.</u>	JkNjA5qsO6CtMcrytR6fSZnflt
11 Journ	< 1% match (publications) <u>Wibowo, N. "Adsorption of benzene a</u> <u>carbon and its acid and heat treated fo</u> <u>al of Hazardous Materials, 20070719</u>	nd toluene from aqueo prms: Influence of surfa	ous solutions onto activ ace chemistry on adsor	<u>ated</u> ption",	
12	< 1% match (publications) Soenjaya, Soegiarto Adi, Nova Hando Hsu Ju, and Suryadi Ismadji. "Prepara national Journal of Industrial Chemistry, 2	y <u>o, Felycia Edi Soetar</u> tion of carbon fiber fro 014.	<u>edjo, Artik Elisa Angka</u> m water hyacinth liquid	<u>wijaya, Yi-</u> I <u>tar",</u>	
13	< 1% match (publications)				

Rezaei Kalantry, Roshanak, Ahmad Jonidi Jafari, Ali Esrafili, Babak Kakavandi, Abdolmajid Gholizadeh, and Ali Azari. "Optimization and evaluation of reactive dye adsorption on magnetic composite of activated carbon and iron oxide", Desalination and Water Treatment, 2015.

14	< 1% match (publications) Anbalagan, K., P. Senthil Kumar, and R. Karthikeyan. "Adsorption of toxic Cr(VI) ions from aqueous solution by sulphuric acid modified Strychnos potatorum seeds in batch and column s" Desalination and Water Treatment 2015.
15	< 1% match (publications)
seeds	Serencam, Huseyin, Duygu Ozdes, Celal Duran, and Hasan Basri Senturk. "Assessment of kinetics, thermodynamics, and equilibrium parameters of Cu(II) adsorption onto Rosa canina , Desalination and Water Treatment, 2014.
16	< 1% match (Internet from 30-Jan-2012) http://www.ssi-18.net/files/PosterSession_II.pdf
17	< 1% match (publications) Vicentius Ochie Arief. "Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies",
CLEA	N - Soil Air Water, 12/2008
18 <u>2015.</u>	< 1% match (publications) Hokkanen, Sanna, Eveliina Repo, Song Lou, and Mika Sillanpää. "Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose", Chemical Engineering Journal,
19 <u>multiv</u>	< 1% match (publications) <u>Agarwal, Shilpi, Inderjeet Tyagi, Vinod Kumar Gupta, M.H. Dehghani, J. Jaafari, D. Balarak,</u> and M. Asif. "Rapid removal of noxious nickel (ΙΙ) using novel γ-alumina nanoparticles and alled carbon nanotubes: Kinetic and isotherm studies", Journal of Molecular Liquids, 2016.
20	< 1% match (publications) Bronwen W. Cribb. "Unique zinc mass in mandibles separates drywood termites from other groups of termites", Naturwissenschaften, 05/2008
21	< 1% match (Internet from 01-Jun-2010) http://lib.bioinfo.pl/pmid:17363153
22	< 1% match (student papers from 19-Apr-2015) <u>Submitted to National Institute of Education on 2015-04-19</u>
23	< 1% match (Internet from 17-Nov-2017) http://ro.ecu.edu.au/cgi/viewcontent.cgi?amp=&article=2014&context=theses
24	< 1% match (Internet from 04-Dec-2016) https://www.doria.fi/xmlui/bitstream/handle/10024/74543/isbn%209789522652140.pdf? sequence=1
25 and E	< 1% match (publications) Zou, W "Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode", Colloids and Surfaces A: Physicochemical ngineering Aspects, 20060515
26	< 1% match (Internet from 25-Dec-2017) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.942.2986&rep=rep1&type=pdf
27 aquec	< 1% match (publications) <u>Ahmad, Akil, Asma Khatoon, Siti-Hamidah Mohd-Setapar, Rajeev Kumar, and Mohd.</u> <u>Rafatullah. "Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from</u> <u>us solutions", Desalination and Water Treatment, 2015.</u>
28	< 1% match (publications)

<u>Aramı,</u> <u>dyes",</u>	M "Investigation on the adsorption capability of egg shell membrane towards model textile Chemosphere, 200612
29	< 1% match (publications) <u>F. Hernáinz. "Comparative study of the biosorption of cadmium(II), chromium(III), and lead(II)</u> <u>by olive stone", Environmental Progress, 12/2008</u>
30	< 1% match (student papers from 19-Mar-2015) Submitted to 87986 on 2015-03-19
31	< 1% match (Internet from 07-Mar-2016) https://www.coursehero.com/file/8359994/Vo-Dinh-T-Biomedical-Photonics-Handbook-Vols-1- 65-CRC-2003/
32 <u>as a lo</u>	< 1% match (publications) <u>Gutha, Yuvaraja, Venkata Subbaiah Munagapati, Mu. Naushad, and Krishnaiah Abburi.</u> "Removal of Ni(II) from aqueous solution by Lycopersicum esculentum (Tomato) leaf powder w-cost biosorbent", Desalination and Water Treatment, 2015.
33	< 1% match (student papers from 14-Feb-2012) Submitted to University of Arizona on 2012-02-14
34	< 1% match (publications) <u>Febrianto, J "Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:</u> <u>A summary of recent studies", Journal of Hazardous Materials, 20090315</u>
35	< 1% match (publications) Gohel, V., "Thermalstabilization of chitinolytic enzymes of Pantoea dispersa", Biochemical Engineering Journal, 20070715
36	< 1% match (Internet from 21-Jul-2017) http://documents.mx/documents/ftir-tables.html
37	< 1% match (publications) <u>Sudaryanto, Y "High surface area activated carbon prepared from cassava peel by chemical</u> <u>activation", Bioresource Technology, 200603</u>
38	< 1% match (publications) Shroff, K.A "Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis", Chemical Engineering Journal, 20110715
39 and nic and mi	< 1% match (publications) <u>Ramos, Stela Nhandeyara do Carmo, Amália Luísa Pedrosa Xavier, Filipe Simões Teodoro,</u> <u>Laurent Frédéric Gil, and Leandro Vinicius Alves Gurgel. "Removal of cobalt(II), copper(II), kel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: Mono- <u>ulticomponent adsorption in batch mode", Industrial Crops and Products, 2016.</u></u>
paper te	xt:
	1This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright

24Chemical Engineering Journal 172 (2011) 158–166 Contents lists available at ScienceDirect Chemical Engineering Journal journal homepage:

www.elsevier.com/locate/cej Evaluation of

5cassava peel waste as lowcost biosorbent for Ni-sorption: Equilibrium, kinetics, thermodynamics and mechanism Alfin Kurniawana, Aline Natasia Kosasiha,b, Jonathan

Febriantoa,

6Yi-Hsu Jub, Jaka Sunarsoc, Nani Indraswatia, Suryadi Ismadjia,* a Department of Chemical Engineering, Widya Mandala Catholic University, Kalijudan 37, Surabaya 60114, Indonesia b Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan

С

16Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Institute for Technology Research and Innovation, Deakin University, 221 Burwood Highway, Victoria 3125, Australia

33article info Article history: Received 1 April 2011 Received in revised form 23 May 2011 Accepted 24 May 2011

Keywords: Cassava peel Isotherm Nickel Biosorption abstract The feasibility of cassava peel waste for Nisorption is evaluated in this work. The biosorbents are characterized by Boehm titration, Fourier transforminfra red (FTIR) spectroscopy, Nitrogen sorption, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis (e.g. elemental

21mapping) and X-ray photoelectron spectroscopy (XPS). Adsorption experiments

are performed in batch mode at

3530 °C (303.15 K), 45 °C (318 .15 K)

and 60 °C (333.15 K). The performance of several temperature dependence forms of isotherm models e.g. Langmuir, Freundlich, Sips and Toth to represent the adsorption equi- librium data is evaluated and contrasted. Sips model demonstrates the best fitting with the maximum uptake capacity for Ni(II) ions of 57 mg/g (0.971 mmol/g) at pH 4.5. For kinetic data correlation,

39**pseudo- second order model** shows **the best** representation. **The**

chemisorption mechanism and thermodynamics aspect are also discussed. © 2011 Elsevier B.V. All rights reserved. 1.

10Introduction Water pollution by heavy metals is a serious environmental problem with harmful impacts to ecological balance and living organisms, including humans due to

their toxicity, accumulation in food chain and persistence nature. Nickel is one type of heavy metals generated from various industrial effluents such as metal electroplating, mining and extractive metallurgy, battery and accu- mulator industries, pigment as well as alloy and petroleum refinery [1]. Nickel possesses carcinogenic and mutagenic properties along with its acute and chronic effect which can cause several disor- ders and diseases like nausea, vomiting, skin dermatitis, infertility, apathy, chronic headache, lung, kidney, liver, intestine and heart malfunction [2]. This heavy metal is considered as hazardous sub- stance; hence its removal from wastewater forms an essential effort in the protection of environment and water resources. A large variety of wastewater treatment methods for nickel are available which include chemical precipitation, ion exchange, membrane filtration, coagulation and flocculation, flotation, elec- trochemical treatment and adsorption [3]. However, most are ineffective due to low removal efficiency and high treatment cost for low contaminant concentrations. Adsorption is known as a * Corresponding author. Tel.: +62 313891264; fax: +62 313891267. E-mail addresses: suryadiismadji@yahoo.com, suryadi@mail.wima.ac.id (S. Ismadji).

261385-8947/\$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.cej.2011.

05.083 promising technique for this purpose due to its selectivity, high effi- ciency, low operational cost and minimal amount of toxic sludge. Nowadays, there are great interests to find potential and alterna- tive adsorbents from agricultural by-products and forestry wastes [4] to overcome the limitation use of commercial adsorbents such as activated carbon for industrial applications. Abundant amount of non-used cassava peels in Indonesia (approximately 440,800 ton peels are produced in 2009) fits this purpose and might

32be utilized as an effective and low cost biosorbent. Recently, the utilization of

this agricultural waste as alternative adsorbent for Cu(II) removal has been studied [5]. The aim of the present study is to explore the various aspects of Ni-sorption onto cassava peel, which include its equilibrium, mech- anism, kinetics and thermodynamics. The temperature dependence forms of several adsorption isotherm models are adopted to cor- relate adsorption equilibrium data. In our previous studies, these particular models have been successfully applied

18to evaluate the adsorption equilibrium data of

several organic compounds onto organo-clay [6,7].

182. Materials and methods 2.1. Chemicals

NiSO4·6H2O (A.R. Grade; Wako Pure Chemical Industries, Ltd, Taiwan) was used as metal ion source.

272.2. Preparation of biosorbent Cassava peel waste was collected from

a cassava starch factory located near Surabaya, East Java, Indonesia. The collected cassava peels were washed repeatedly with tap water to remove sand and surface dirt. Subsequently, the peels were dried under the sunlight for 48 h before dried further in an oven at 100 °C for 24 h. The cas- sava peels were then crushed using micro-hammer mill (JANKE and KUNKEL) and sieved to certain particle sizes (125–177 ?m, 177–250 ?m, 250–500 ?m). The final product was finally kept in airtight plastic bags for further use. 2.3. Characterizations of biosorbent 2.3.1. Boehm titration The oxides on the surfaces of the adsorbent were analyzed by Boehm titration method [8]. The procedure is as follows: a fixed amount of cassava peel (0.5 g) was added into several conical flasks containing 50 cm3 of 0.05 N: Na2CO3, NaHCO3, HCl and NaOH solution. Subsequently, the flasks were placed into the thermostatic bath-shaker (Memmert UM400) and shaken at room temperature for 48 h. The mixture was then decanted and filtered through using Whattman 42 filter paper, in which

1110 cm3 of the remaining solu- tion was titrated using 0.05 N HCl or NaOH; depending on the original solution used. The amount of acid surface groups was cal- culated under the assumptions that NaOH neutralizes carboxylic, phenol and lactone;

sample. 2.3.2. Fourier transform-infra red (FTIR) The surface functional groups of adsorbent were analyzed by FTIR spectroscopy, conducted in FTIR Shimadzu 8400S using KBr disk technique. The spectra data of the sample were collected in the mid-IR wavenumber range (500–4000 cm–1). 2.3.3. Nitrogen sorption The pore structure of the adsorbent was characterized by N2 sorption using a gas sorption analyzer (Quadrasorb SI) at 77.15 K. Prior to the adsorption analysis, the sample was degassed in a vacuum condition at 423.15 K for at least 24

8h. The standard Brunauer–Emmett–Teller (BET) equation was used to calculate the specific BET surface area (SBET) of the sample

in the relative pres- sure (P/P0)

37range from 0.06 to 0.3. The total pore volume of the sample was determined from the N2 adsorption– desorption data at the

highest relative pressure (P/P0 = 0.994).

142.3. 4. Scanning electron microscopy (SEM) The surface morphology of the

adsorbent was visualized in a

7JEOL JSM-6400F field emission SEM. The

SEM sample was coated with a thin layer of platinum to make them electronically conduc- tive. The sputtercoater

12(Eiko IB-5) was operated at 6 mA for 4 min in an argon atmosphere. The coated sample was then placed in the SEM specimen chamber and scanned at an electron acceleration voltage of 10 kV,

7spot size of 8, aperture of 4 and 37 mm working distance. 2.3.

5. Energy dispersive X-ray (EDX) and X-ray elemental mapping The EDX spectra and X-ray elemental mapping of the metal- loaded adsorbent were obtained using a JEOL JSM-6460 LA low vacuum analytical SEM equipped with EDX-spectrometer. Prior to the analysis, the sample was coated with carbon fiber using a custom-made carbon coater.

20Acquisition conditions on the SEM were 20 kV, 10 mm working distance and 30 s live time acquisition at approximately 10–15% dead time.

The X-ray data of the sample were recorded and analyzed using integrated JEOL analysis station (v3.2) software. 2.3.6. X-ray photoelectron spectroscopy (XPS) The XPS spectra of the metal-loaded adsorbent were obtained with a Kratos Axis ULTRA X-ray Photoelectron Spectrometer using

23monochromatic Al K? X- ray radiation (1486.6 eV) at 150 W (15 kV, 15 mA). Survey scans were collected at binding energy range of 0–1200 eV with the pass energy adjusted to 160 eV and narrow high-resolution scans at 20 eV. Survey scans were run

3with 1.0 eV steps and 100 ms dwell time while narrow high-resolution scans were run with 0.05 eV steps and 250 ms dwell time. Base pres- sure in the analysis chamber was 1.0 × 10–9 Torr and during sample analysis was 1.0 × 10–8 Torr.

2.4. Biosorption experiments The stock solution of NiSO4·6H2O at initial concentration of 200 mg/L was used as synthetic effluent. This solution was pre- pared by dissolving a fixed amount of NiSO4·6H2O into 1 L deionized water. The biosorption equilibrium experiments were conducted by adding various mass of adsorbents (0.1–10 g) into several con- ical

32**flasks containing** 100 **mL of metal solution.** Subsequently, the flasks **were** placed in **a**

thermostat orbital shaker incubator LM- 570 and heated from room temperature to the desirable operating temperature (30 °C, 45 °C, 60 °C). The shaker was then set to rotate at 200 rpm within 2–3 h to reach equilibrium. The metal solution was then centrifuged (Hettich Zentrifugen EBA-20) at 4000 rpm for 5 min to remove solid particles. The residual Ni-metal concen- tration in solution was analyzed using a flame atomic absorption spectrophotometer (Shimadzu AA6200) at = 232.7 nm. For biosorption kinetics, the experiments were carried out as fol- lows: 100 mL of metal solution at initial concentration of 200 mg/L was mixed with 0.5 g of adsorbent with certain particle size in sev- eral conical flasks. The flasks were then placed in an orbital shaker incubator and shaken at 60 °C and 200 rpm for certain period of time. During the experiments, at certain interval of time, 10 mL of metal solution was taken from the flasks, centrifuged and ana- lyzed its residual nickel metal concentration. The effect of pH was also studied at pH range of 1.0–9.0. To adjust pH, an appropriate amount of 0.1 N HCl or NaOH solutions was added. All experiments were carried out in triplicate with their averages used as the result. The uptake capacity of cassava peel, in the unit concentration of mmol/g

30can be calculated using following mass balance equation: qe = (C0 - Ce) m ×V (1) where qe is the amount of

metal uptake at equilibrium condition (mmol/g), C0 and Ce is a symbol represented the initial and equilibrium concentration of metal ions in solution (mmol/L), m

9is the biosorbent dose (g) and V is the volume of metal solution (L). 3. Results and discussion 3.1. Characterizations of

pristine cassava peel The surface morphology of cassava

27peel is depicted in Fig. 1. Fig. 1 features the

non-porous, heterogeneous and complex nature of cassava peel surface. The N2 sorption analysis (Fig. 2) is consis- tent with the SEM result. The specific BET surface area (SBET) of this peel is 3.72 m2/g with N2 sorption capacity of 20.2 cm3/g (STP). Low SBET value is likely due to the low porosity on the material surface [9–11]. The presence of surface oxides in cassava peel can be detected by Boehm titration. The cassava peel surface is mainly Fig. 1. SEM micrographs of cassava peel at two magnifications (a) 600× and (b) 5000×. occupied by acidic groups (0.526 meq/g) and small amount of basic groups (0.108 meq/g). 3.2. Characterizations of Ni-loaded cassava peel 3.2.1. FTIR spectroscopy FTIR can be used to collect information regarding the vibra- tional frequency changes of functional groups, which are involved during sorption process. Fig. 3 presents the FTIR spectra of both pristine and Ni-loaded cassava peel adsorption 25 Cassava peel desorption 20 ads (cm3/g) 15 V 10 5 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Relative pressure (P/P0) Fig. 2. N2 adsorption–desorption isotherm of cassava peel at 77 K. 0.50 0.45 Cassava peel + Ni(II) ions 0.40 C-O (COO-Ni) 0.35 Absorbance 0.30 0.25 0.20 0.15 O-H bend

36C-H stretch C=N stretch C=C stretch C=O stretch C-O stretch

0.10 0.05 0.00 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. 3. FTIR spectra of pristine and Ni-loaded cassava peel. plex surface with various functional groups appearing at certain wavenumber (Table 1). The alteration of several functional groups in pristine cassava peel after metal sorption was evidenced. The FTIR spectra of Ni-loaded cassava peel reveal that the alter- ation of absorption peaks (3620, 1340 and 942 cm-1) occurs after metal sorption. The peak observed at 3620 cm-1; corresponds to O–H stretch of hydroxyl groups in the lignocellulosic structure dis- appears (after sorption). Modification of another peak (at 942 cm-1 associated with the decrease of peak energy for O–H bend in car- boxylic acid) is also observed due to their involvement during Ni-sorption. Moreover, the existence of new peak is also noticed at 1340 cm-1; representing C–O stretch of metal–carboxylate (COO–M) groups. Overall, change in the surface functional groups of the adsorbents is mainly observed in hydroxyl and carboxyl groups; denoting that their deprotonated forms (hydroxylate and carboxy- late anions) are the adsorption sites for Ni(II) [12,13]. 3.2.2.

21Energy dispersive X-ray (EDX), X-ray elemental mapping and X-ray photo electron spectroscopy (XPS)

analyses The presence of heavy metal after sorption can be detected by analyzing the adsorbent surface using SEM-EDX, X-ray elemental mapping and XPS analyses. EDX is an analytical technique to iden- tify the element presence on the material surface based on their characteristic X-ray energy. This technique is normally coupled with SEM analysis to gain more complete result. The SEM-EDX spectra of Ni-loaded cassava peel are given in Fig. 4. In Fig. 4, Ni(II) ions' presence can be detected from the Ni–L and Ni–K peaks, which appear in the binding energy range of 0.85–0.87 keV and 7.5–8.3 keV, respectively. The X-ray elemental Table 1 Functional groups of pristine and Ni-loaded cassava peel. Functional group Wavenumber (cm–1) Pristine Ni-loaded O–H bend (carboxylic acids) C–O stretch of –OCH3 groups (lignocelluloses compound) C–O stretch of metal–carboxylate complex (COO–Ni)

31C–C stretch (aromatics structure) C O stretch (asymmetric COO) –C C– stretch (alkenes) C N stretch (nitrile groups) C– H stretch (alkanes) C– H stretch (methylene groups) O– H stretch

(lignocelluloses structure) 942 1050 – 1515 1636 1764 2378 2847 2941 3602 940 1052 1340 1514 1637 1762 2377 2846 2943 – Fig. 4. SEM-EDX spectra of Ni-loaded cassava peel. Fig. 5. SEM and X-ray elemental mapping of Ni-loaded cassava peel. mapping is also performed to measure qualitatively the distribution

39of metal ions on the adsorbent surface (Fig. 5).

In Fig. 5, nickel metal is represented by the bright region. The XPS spectroscopy of Ni- loaded cassava peel is recorded to gain insight into metal–surface interaction in the sorption study. Fig. 6 displays the XPS spectra of Ni-loaded cassava peel. In this figure, the presence of Ni(II) ions is verified from the assignment of Ni 2p3/2 XPS spectra, which appear at binding energy of 854.6 eV; representing Ni2+ in the oxide state. Fig. 6. XPS spectra of Ni-loaded cassava peel. Fig. 7. Effect of pH on the Ni(II) ions equilibrium uptake (C0 = 200 mg/L, biosorbent mass = 1.5 g, T = $45 \circ$ C). 3.3. Effect of pH The pH is a key factor that should be considered in the sorption since it substantially affects the mechanism of

19metal ion uptake. The effect of pH on the Ni(II) ion uptake at equilibrium was studied by varying

pH from 1 to 9. Fig. 7 shows that the amount of Ni(II) ion uptake increases steadily by increasing pH from 1 to 4 and reach its maximum at pH 4.5. At higher pH, the amount of Ni(II) adsorbed is less compared to that at pH 4.5. This phenomenon might be caused by the formation of metal hydroxide [Ni(OH)2], which takes place at alkali pH range (pH > 7). The formation of Ni(OH)2 reduces the

cassava peel also decreases. For this reason, pH 4.5 was selected during metal biosorption experiments and serves also as optimum value for Ni(II) removal. Low nickel uptake in acidic solution might be due to the com- petition between Ni(II) ions and H3O+ ions for the adsorption sites, which reduced the amount of Ni(II) uptake. The presence of H3O+ ions also retards the Ni-sorption due to repulsion force between protonated adsorbent surface and metal cations. This phenomenon can be explained on the basis of carboxylic groups (R–COOH) being protonated by H3O+ ions as follows: R–COOH + H3O+ \rightarrow R–COOH2+ + H2O (2)

17As the pH increase, the concentration of H3O+ ions in metal

solu- tion decreases and the repulsion between adsorbent and adsorbate also weakens; resulting in the increase amount of adsorbed metal ions (onto the solid surface). Increasing pH also exposes more negatively charged ligands such as carboxylate anions (R–COO–) on the adsorbent surface due to the dissociation of carboxylic at pH range of 3.5–5.5 [14], leading to the electrostatic attraction

8of Ni(II) ions onto these groups.

3.4. Chemisorption

8of Ni(II) ions onto cassava peel surface The chemisorption mechanism of

Ni(II) ions onto cassava peel surface was proposed in this study using molecular simulation by ChemDraw software package. Some information about the surface chemistry characterization of the adsorbents, for example the alter- ation of functional groups can be used as evidences in proposing biosorption mechanism. The Ni-chemisorption mechanism onto cassava peel surface and the molecular model of Ni-carboxylate complex is illustrated in Fig. 8. In Fig. 8, it can be seen that Ni(II) ions were bound into car- boxylate groups in the lignocellulosic structure of cassava peel by creating ionic forces with carboxylic oxygen atoms. These oxy- gen atoms exhibited negative charge in their structure as a result of the dissociation of carboxylic groups. The negatively charged oxygen atom in carboxylate anions will coordinate with nickel cations, resulting in the formation of metal-carboxylate complexes (COO-Ni) on the cassava peel surface. The presence of metal-carboxylate complex could be also indi- cated from the peak at 1340 cm-1, which assigned to C-O stretch of COO-Ni groups. Other phenomena were also observed during the formation of COO-Ni complex, relating to the disappearance of O-H stretch at 3600 cm-1 and reduction of peak energy for O–H bend at 940 cm–1. This statement was in agreement with FTIR results as shown in Fig. 3. In addition, the coordination type of metal-carboxylate com- plexes can also be determined by examining the vibrational modes of vasym (COO-) and vsym (COO-) in the wavenumber region of 1300-1750 cm-1. As reported by Papageorgiou et al. [15] that the unidentate coordination of metal-carboxylate complex occurs where the difference (?v) between vasym (COO-) and vsym (COO-) is larger than 200 cm-1. In this study, the ?v (COO-) value was 297 cm-1, suggested the formation of Ni-carboxylate complex through unidentate chelating coordination. 3.5. Biosorption isotherms Biosorption isotherm is vital information from the view of prac- tical design and operation of the sorption system as it describes the distribution of adsorbates among solid and liquid phases at equi- librium. In this work, several temperature dependence forms of

18isotherm models (Langmuir, Freundlich, Sips and Toth) were used to represent adsorption equilibrium data.

The Langmuir model can be expressed as follows: $qe = qm KL(T) \times Ce 1 + KL(T) \times Ce (3)$

14where qm is the Langmuir based maximum adsorption capacity for particular adsorbent (mmol /g) and KL is Langmuir

parameter that defined as affinity constant at equilibrium (L/mmol). The tem- perature dependence form of qm parameter, which proposed by Dubinin–Radushkevich and KL is given as follows [16,17]: q m = q0 exp(i(T - T0)) (4) KL(T)=K0 exp Qads (5) RT where q0

5is the maximum uptake capacity of adsorbate at reference () temperature

T0 (298.15 K), i is a parameter representing thermal expansion coefficient of adsorbate (K-1), Qads is heat of adsorption

22The value of RL indicates various characteristics of adsorption isotherm to be irreversible (RL = 0), linear (RL = 1), unfavorable (RL > 1) and favorable (0 < RL < 1). The

second adsorption model is Freundlich. This model was proposed by Freundlich (1932) assuming that the adsorbent surface is heterogeneous with uneven distribution of adsorption heat and affinity over the solid surface. Although Freundlich model has widely applied in many sorption studies, it has a limitation in correlating equilibrium data at wide concentration range since this isotherm

4does not have a proper Henry law limit at low

Fig. 8. Ni-chemisorption mechanism and the model of Ni-carboxylate complex.

4concentration and does not have a saturation limit at high-end concentration.

The Freundlich model

34has the following form: qe = KF (T) × Ce1 /n

(7) where n and KF are the Freundlich parameters which rep- resent the system heterogeneity and adsorption capacity [(mmol/g) (mmol/L)-n], respectively. The parameter KF and n can be expressed as the temperature dependence form as follows [16]: RT KF = KF0 exp - A (8) 0 1 () n = RT A0 (9) The third adsorption model is Sips. Sips (1948) proposed an empirical equation describing adsorption behavior in heteroge- neous system which has similar form to Langmuir model: $qe = qm (Ce \times KS (T))1/n (10) (1 + (Ce \times KS (T))1/n)$ The temperature dependence forms of Sips parameter are [16]: KS = KS0 exp RT0((TQ/aTd0s) - 1) (11) [] n = 1 (1/n0) + (1 - (T/T0)) (12) where KS0 and n0 is the adsorption affinity and the system het- erogeneity parameter at reference temperature T0 (298

5.15 K), respectively and is a constant parameter. The

last adsorption model is Toth. The Toth model is one of the most popular three-parameter adsorption equations used in pre- dicting adsorption phenomena in heterogeneous system due to its capability to overcome the drawback of Sips and Freundlich model. The Toth model has the form: $qe = qm bT(T) \times Ce (1 + (bT(T) \times Ce)t)1/t$ (13) Here t and bT are the Toth parameter characterizing the system het- erogeneity and the biosorption affinity (L/mmol), which is specific for adsorbent–adsorbate system. The parameter bT and t in Toth model can be expressed as temperature function [16]: bT = b0 exp QRaTd0s T0 - 1 T (14) [()] t = t0 + 1 - T (15) T0 where b0 and t0 are the adsorption affinity and t parameter at ref- () erence temperature T0 (298

5.15 K) and is a constant parameter. The

Ni-sorption equilibrium data at three different tempera- tures e.g.

3530 °C (303.15 K), 45 °C (318 .15 K)

and 60 \circ C (333.15 K) and the fitting of isotherm models are shown in Fig. 9. The isotherm parameters were calculated by nonlinear regression method (Table 2). Fig. 9 shows that all models could fit the adsorp- tion equilibrium data well (R2 > 0.998), however, to assess the applicability and suitability of the models in correlating experi- mental data, the

4physical meaning of each parameter should be examined. The parameter

q0, which represents the maximum uptake capacity of adsorbent at temperature T0, refers to the complete monolayer coverage. Table 2 demonstrates that the values of q0 parameter for Langmuir, Sips and Toth models are similar. These parameter values correspond to the Ni(II) ion uptake around 57 mg/g. Therefore, the value of q0 parameter in Langmuir, Sips and Toth is reasonable and consistent. For comparison purpose, the maximum biosorption capacity of several adsorbents for Ni(II) Fig. 9. Ni-sorption equilibrium data and the fitting of temperature dependence forms of isotherm models (C0 = 200 mg/L, particle size = 125-177 ?m, pH = 4.5). ion removal is also given in Table 3. The maximum uptake capac- ity (indicated by KF0) from Freundlich model is significantly larger (192.5 mg/g) than that from other models. For non-treated biosor- bent, the obtained maximum uptake capacity value is not possible; hence this model is not discussed further. Table

42 The fitted temperature dependence parameters of

isotherm models for Ni-sorption onto cassava peel. Isotherm model Parameter Value R2 Langmuir g0 (mmol/g) (1/K) K0 (L/mmol) Qads (kJ/mol) Freundlich KF0 [(mmol/g) (mmol/L)-n] /A0 (mol/J) Sips q0 (mmol/g) I (1/K) KS0 (L/mmol) Qads (kJ/mol) n0 Toth q0 (mmol/g) I (1/K) b0 (L/mmol) Qads (kJ/mol) t0 0.972 0.00628 2.614 × 10-6 40.17 3.279 3.416 × 10-4 0.989 0.00607 2.246 41.03 1.159 4.637 0.981 0.00619 1.835 40.64 3.129 14.473 0.9982 0.9991 0.9987 0.9989 Further verification was performed onto K0, KS0 and b0 param- eters, which is defined as adsorption affinity. K0, in particular, this parameter measures how strong the interaction force between adsorbate molecule and adsorbent surface. Both adsorption affini- ties of Sips and Toth models are comparable to values reported for other sorption systems, however the fitting value of parameter K0 in Langmuir model is considerably low and not consistent with the value reported on most sorption systems. Table 3 The maximum sorption capacity of various adsorbents for Ni(II) removal. Adsorbent Operating condition g m (mg/g) Reference pH T (K) Cashew nut shell Orange peel OPAA - modified orange peel Pomegranate peel Sargassum muticum Gracilaria caudata Pine bark H3PO4 - treated rice bran Acid - treated peepal leaf Barley straw Moringa oleifera bark Cassava peel 5 303.15 5.5 303.15 5.5 303.15 - 318.15 3 293.15 5 293.15 8 - 6 303.15 7 - 4.85 296.15 6 323.15 4.5 - 18.87 9.82 162.6 69.4 70.0 45 12.15 102 6.35 35.8 30.38 57 [22] [12] [12] [23] [24] [24] [25] [26] [27] [28] [13] This study Fig. 10. Ni-biosorption kinetic data and the fitting of kinetic models (C0 = 200 mg/L, T = 60 °C, biosorbent mass = 0.5 g, pH = 4.5). The last verification of the physical meaning of the remaining isotherm models (Sips and Toth) is on the n0 or t0 parameter, which represents the heterogeneity of the system. If its value deviates

4away from unity, the sorption system is considered more hetero- geneous. The value of

t0 in Toth model is usually less than unity while the n0 parameter in Sips model is greater than unity [16]. Sips model provide reasonable parameter value while Toth model gives incorrect value (Table 2). Thus, Sips model provides the best representation on the exper- imental data. The chemisorption nature of Ni-sorption is also supported by Sips model on which the Qads value lies between 40 and 400 kJ/mol. 3.6. Biosorption kinetics In order to investigate the potential rate-controlling step involved, two

9kinetic models namely pseudo-first order and pseudo-second order were used to evaluate kinetic data. The pseudo-first order,

which is also known as Lagergren equation can be expressed as follows [18]: qt = qe(1 - exp(-k1t)) (16)

7while the pseudo-second order model [19] has the form

as described in Eq. (17): qt = k2q2et(17) 1 + k2qet

29where qt and qe is the amount of Ni(II) ions adsorbed at time t and equilibrium condition (mmol /g), respectively. The rate constant of k1 (1 /min)

and k2 (g/(mmol min)) was attributed to pseudo-first order and pseudo-second order model, respectively and t is time (min). The plot of the experimental data and the model fitting are illustrated in Fig. 10. The kinetic parameters

7obtained by non-linear regression method are tabulated in Table 4.

Table 4 shows that particle size has significant effect to the rate constant (k) and nickel equilibrium uptake (qe). Smaller particle size increases the rate constant and nickel equilibrium uptake to the extent that the equilibrium condition is achieved faster. Smaller particles also provide larger surface area and more available bind- ing sites for Ni(II) ions onto their surface; leading to faster metal ion uptake. Comparing

19the correlation coefficient (R2) value, the pseudo- second order is better than the pseudo-first order

model. In addition, the qe parameter in pseudo-second order model provides closer value to the experimental results. These facts suggest

10that the potential rate- controlling step in Ni -sorption is chemisorption

involving cation exchange reaction between adsorbate and adsor- bent, surface complexation, coordination and/or chelation. 3.7. Thermodynamics aspects Thermodynamic parameters relevant to the sorption process are the change in standard Gibb's free energy ($?G^\circ$), entropy ($?S^\circ$) and enthalpy ($?H^\circ$); which can be determined using following equa- tions: $?G^\circ = -RT \ln KD$ (18) ln $KD = -?H^\circ ?S^\circ + RT R$

15(19) where R is the universal gas constant (8.314 J mol-1 K-1), T is the temperature (K) and KD is the thermodynamic distribution

coeffi- cient, defined as: Ca KD = Ce (20) where Ca is the equilibrium metal concentration on the solid surface (mmol/L)

13and Ce is the equilibrium metal concentration in the bulk solution (mmol /L). The enthalpy and entropy change can be calculated from the slope and intercept of Van't Hoff plot of In KD vs 1/T (Fig. 11). The

calculated thermodynamic parameters are given in Table 5. Negative values of $?G^{\circ}$ are displayed in Table 5 at all temper- atures, which indicate the favorability and spontaneous nature of 3.0 2.8 2.6 2.4 2.2 ln KD 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.0030 0.0031 0.0032 0.0033 1/T (K-1) Fig. 11. Thermodynamic plot of ln KD versus 1/T of Ni-sorption onto cassava peel. Table 4 The fitted parameters of kinetic models for Ni-sorption onto cassava peel. Particle size (?m) qe exp (mmol/g) Kinetic model Pseudo-first order Pseudo-second order k1 qe R2 k2 qe R2 125–177 1.2304 0.0920 177–250 0.9933 0.0665 250–500 0.7418 0.0524 1.1840 0.9629 0.9787 0.9909 0.7297 0.9858 0.1039 1.2351 0.0772 1.0147 0.0754 0.7475 0.9903 0.9926 0.9936 Table 5 Thermodynamic parameters of Ni-sorption onto cassava peel. T (K) ?G° (kJ/mol) ?H° (kJ/mol) ?S° (kJ/mol K) R2 303.15 318.15 333.15 –2.738 46.584 0.162 0.9992 –5.077 –7.623 Ni-sorption process. As the temperature increases, the ?G° value becomes more negative which implies that higher temperature favors Ni-sorption. The positive value of ?H° denotes the endother- mic nature of this sorption process and acts as another evidence of its chemisorption nature since ?H° value lies between 20.9 and 418.4 kJ/mol [20]. This observation is also supported by the increased amount of adsorbed nickel at higher temperature. On the other hand, the positive value of ?S° denotes the internal structural changes of the cassava peel

38due to the intercalation of Ni(II) ions and the increase in the

disorder degree at solid-solution interface due to the desolvation in bulk solution during metal sorption process [21]. 4. Conclusions This work evaluates various aspects of Ni-sorption onto cassava peel waste.

Characterizations of adsorbent are conducted to ana- lyze the surface morphology and surface chemistry of cassava peel before and after metal sorption. To assess the feasibility of cassava peel waste to remove Ni(II) ions, the biosorption experiments are carried out in batch mode. The maximum uptake capacity (qm) of cassava peel is 57 mg/g at pH 4.5. The Sips model provides the best representation for adsorption equilibrium data. In kinetic data cor- relation, the

34pseudo-second order is superior to the pseudo-first order model.

The Ni-sorption mechanism is also discussed from molecular point of view. Lastly, thermodynamic results indicate the endothermic ($(P_{\circ} > 0)$, spontaneous ($(P_{\circ} < 0)$ and irreversible ($(P_{\circ} > 0)$) natures of Ni-sorption onto cassava peel. References [1] M. Monier, D.M. Ayad, Y. Wei, A.A. Sarhan, Adsorption of Cu(II), Co(II) and Ni(II) ions by modified magnetic chitosan chelating resin, J. Hazard. Mater. 177 (2010) 962-970. [2] R.P. Beliles, The lesser metals, in: F.W. Oehme (Ed.), Toxicity in Heavy Metals in the Environment, Part 2, Marcel Dekker, New York, 1978. [3] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage. 92 (2011) 407-418. [4] A. Bhatnagar, M. Sillanpaa, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment - a review, Chem. Eng. J. 157 (2010) 277–296. [5] A.N. Kosasih, J. Febrianto, J. Sunarso, Y.-H. Ju, N. Indraswati, S. Ismadji, Seques- tering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta), J. Hazard. Mater. 180 (2010) 366-374. [6] A.K. Rahardjo, M.J.J. Susanto, A. Kurniawan, N. Indraswati, S. Ismadji, Modified Ponorogo bentonite for the removal of ampicillin from wastewater, J. Hazard. Mater. 190 (2011) 1001-1008. [7] F.P. Yesi, H.-Y. Sisnandy, F.E. Ju, S. Soetaredjo, Ismadji, Adsorption of acid blue 129 from aqueous solutions onto raw and surfactant modified bentonite: the application of temperature dependent form of adsorption isotherms, Adsorpt. Sci. Technol. 28 (2010) 847-868. [8] H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon 40 (2002) 145-149. [9] L.M. He, B.M. Tebo, Surface charge properties of and Cu(II) adsorption by spores of the marine Bacillus sp. Strain SG-1, Appl. Environ. Microbiol. 64 (1998) 1123–1129. [10] N. Fiol, I. Villaescusa, M. Martinez, N. Miralles, J. Poch, J. Serarols, Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol. 50 (2006) 132–140. [11] S.K. Das, A.K. Guha, Biosorption of chromium by Termitomyces clypeatus, Colloids Surf. B 60 (2007) 46–54. [12] N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, J. Hazard. Mater. 185 (2011) 49-54. [13] D.H.K. Reddy, D.K.V. Ramana, K. Seshaiah, A.V.R. Reddy, Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost adsorbent, Desalination 268 (2011) 150-157. [14] J. Buffle, Complexation Reactions in Aqueous Systems: An Analytical Approach, Ellis Horwood, Ltd., Chichester, 1988. [15] S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy, Carbohydr. Res. 345 (2010) 469-473. [16] D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998. [17] S. Ismadji, S.K. Bhatia, A modified pore-filling isotherm for liquid phase adsorp- tion in activated carbon, Langmuir 17 (2001) 1488–1498. [18] S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar 24 (1898) 1-39. [19] Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem. 34 (1999) 451-465. [20] C.Y. Tan, M. Li, Y.M. Lin, X.Q. Lu, Z.L. Chen, Biosorption of basic orange from aqueous solution onto dried A. filiculoides biomass: equilibrium, kinetic and FTIR studies, Desalination 266 (2011) 56-62. [21] D.L. Guerra, V.L. Leidens, R.R. Viana, C. Airoldi, Application of Brazilian kaoli- nite clay as adsorbent to removal of U(VI) from aqueous solution: kinetic and thermodynamic of cation-basic interactions, J. Solid State Chem. 183 (2010) 1141–1149. [22] P.S. Kumar, S. Ramalingam, S.D. Kirupha, A. Murugesan, T. Vidhyadevi, S. Sivane- san, Adsorption behavior of nickel(II) onto cashew nut shell: equilibrium, thermodynamics, kinetics, mechanism and process design, Chem. Eng. J. 167 (2011) 122-131. [23] A. Bhatnagar, A.K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloids Surf. B 76 (2010) 544–548. [24] Y.G. Bermudez, I.L.R. Rico, O.G. Bermudez, E. Guibal, Nickel biosorption using Gracilaria caudata and Sargassum muticum, Chem. Eng. J. 166 (2011) 122-131. [25] M.E. Argun, S. Dursun, M. Karatas, Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark, Desalination 249 (2009) 519–527. [26] M.N. Zafar, R. Nadeem, M.A. Hanif, Biosorption of nickel from protonated rice bran, J. Hazard. Mater. 143 (2007) 478–485. [27] M.Z. Aslam, N. Ramzan, S. Naveed, N. Feroze, Ni(II) removal by biosorption using Ficus religiosa (Peepal) leaves, J. Chil. Chem. Soc. 55 (2010) 81-84. [28] A. Thevannan, R. Mungroo, C.H. Niu, Biosorption of nickel with barley straw, Bioresour. Technol. 101 (2010) 1776–1780. Author's personal copy

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158-166 159 160

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158–166

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158-166 161 162

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158-166

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158-166 163 164

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158-166

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158-166 165 166

2Author's personal copy A. Kurniawan et al.

/ Chemical Engineering Journal 172 (2011) 158-166