turnitin Originality Report

Chem Eng J 189-190 (2012) 264-274 by Suryadi Ismadji

From journal (Hippo-hippo)

Processed on 15-Feb-2018 22:39 WIB

ID: 916459383 Word Count: 7994

Similarity by Source Similarity Index 9% 17% 6% Internet Sources: Publications: Student Papers: 18%

sources:	
1	2% match (student papers from 17-Jul-2013) <u>Submitted to Malaviya National Institute of Technology on 2013-07-17</u>
2	1% match (publications) Velibor Tasic. "Failure to thrive and nephrolithiasis in a boy with congenital cyanotic heart anomaly—questions", Pediatric Nephrology, 03/01/2011
3 bento	1% match (publications) <u>Gomri, Fatima, Mokhtar Boutahala, Hassina Zaghouane-Boudiaf, Sophia A. Korili, and Antonio Gil. "Removal of acid blue 80 from aqueous solutions by adsorption on chemical modified onites", Desalination and Water Treatment, 2016.</u>
4	1% match (publications) "Dye Adsorption on Expanding Three-Layer Clays", Green Chemistry for Dyes Removal from Wastewater, 2015.
5 acidi	1% match (publications) Nesic, Aleksandra R., Vesna V. Panic, Antonije E. Onjia, and Sava J. Velickovic. "The enhanced removal of cationic dyes in binary system using novel copolymers with two kinds of c groups", Colloids and Surfaces A Physicochemical and Engineering Aspects, 2015.
6	1% match (publications) Rahardjo, A.K "Modified Ponorogo bentonite for the removal of ampicillin from wastewater", Journal of Hazardous Materials, 20110615
7 Sorp	1% match (publications) <u>Liu, Hai, Qun Gao, Peng Dai, Jian Zhang, Chenglu Zhang, and Nan Bao. "Preparation and characterization of activated carbon from lotus stalk with guanidine phosphate activation: tion of Cd(II)", Journal of Analytical and Applied Pyrolysis, 2013.</u>
8	1% match (Internet from 28-Aug-2013) http://www.srcosmos.gr/srcosmos/showpub.aspx?aa=8217
9	1% match (publications) Tsai, W. "Adsorption of acid dve onto activated carbons prepared from agricultural waste

bagasse by ZnCl"2 activation", Chemosphere, 200110

Tsai, W.. "Adsorption of acid dye onto activated carbons prepared from agricultural waste

1% match (Internet from 30-Nov-2014) 10

http://www.arcjournals.org/pdfs/ijarcs/v1-i1/ijarcs-v1-i1-5.pdf

< 1% match (publications) 11

Romana Gelli, Romana Turk, Ivan Folnožić, Jelena Šuran, Damjan Gračner, Hrvoje Valpotić, Ivan Butković, Marko Samardžija. "The influence of body condition score on serum metabolite profile in Boer does before and after parturition". Veterinarski arhiv. 2017

< 1% match (publications) 12

13

Maria A. Vodolazhenko, Nikolay Yu Gorobets, Oleg A. Zhikol, Sergey M. Desenko, Oleg V. Shishkin. "A quantum chemical approach towards understanding stability and tautomerism of 2-imino-2H-pyran derivatives", RSC Advances, 2016

< 1% match (publications)

An, Shuai, Xueyan Liu, Lijun Yang, and Lei Zhang. "Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: Study in single- and binary-solute systems", Chemical Engineering Research and Design, 2015.

< 1% match (publications)

14 Ong, L.K., A. Kurniawan, A.C. Suwandi, C.X. Lin, X.S. Zhao, and S. Ismadji. "A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors", Progress in Natural Science Materials International, 2012.

< 1% match (Internet from 08-Nov-2017) 15

> https://repositorio.uam.es/bitstream/handle/10486/671582/Removal Lemus cej 2012.pdf? isAllowed=y&sequence=1

< 1% match (Internet from 19-Nov-2013) 16

http://wqbis.ces.iisc.ernet.in/biodiversity/pubs/ces_tr/TR113_Ahalya/CES%20Technical%20Report_dyes210607.p

< 1% match (Internet from 13-Nov-2012) 17

http://ee.hnu.cn/eeold/php/news/pic/yunfeirandompic 1336217741.pdf

< 1% match (publications) 18

Liu, Qingru, and Yanxiang Gao. "Binary adsorption isotherm and kinetics on debittering process of ponkan (Citrus reticulata Blanco) juice with macroporous resins", LWT - Food Science and Technology, 2015.

< 1% match (publications) 19

Ismadji, Suryadi, Dong Shen Tong, Felycia Edi Soetaredjo, Aning Ayucitra, Wei Hua Yu, and Chun Hui Zhou. "Bentonite hydrochar composite for removal of ammonium from Koi fish tank", Applied Clay Science, 2016.

< 1% match (publications) 20

Mahmoodi, Niyaz Mohammad, Farzaneh Bagherpour, and Elham Nariyan. "Amine functionalized magnetic carbon nanotube: synthesis and binary system dye removal", Desalination and Water Treatment. 2014.

< 1% match (publications)</pre>

<u>Putra, E.K..</u> "Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics", Water Research, 200905

< 1% match (publications)</pre>

Turabik, Meral, and Belgin Gozmen. "Removal of Basic Textile Dyes in Single and Multi-dye Solutions by Adsorption: Statistical Optimization and Equilibrium isotherm studies", CLEAN - Soil Air Water, 2012.

< 1% match (publications)</pre>

Sellaoui, Lotfi, Salah Knani, Alessandro Erto, Mohamed Abdennaceur Hachicha, and Abedlmottaleb Ben Lamine. "Equilibrium isotherm simulation of tetrachlorethylene on activated carbon using the double layer model with two energies: Steric and energetic interpretations", Fluid Phase Equilibria, 2016.

< 1% match (publications)</p>

24

<u>Baskaralingam, P.. "Equilibrium studies for the adsorption of Acid dye onto modified hectorite", Journal of Hazardous Materials, 20060825</u>

< 1% match (student papers from 10-Jan-2017)</p>

Submitted to Alfaisal University on 2017-01-10

26 < 1% match (Internet from 10-Feb-2011)</p>

http://citraningrum.wordpress.com/2008/08/

27 < 1% match (Submitted to Yonsei University)</p>

Submitted to Yonsei University

< 1% match (student papers from 14-Mar-2017)</p>

Submitted to University of New South Wales on 2017-03-14

29 < 1% match (Internet from 31-Aug-2017)</p>

http://www.its.uci.edu/~wjin/publications/TRB989.pdf

30 < 1% match (Internet from 10-Feb-2018)

http://www.tandfonline.com/doi/full/10.1080/19443994.2016.1178178

31 < 1% match (Internet from 06-Nov-2017)

http://pnrsolution.org/Datacenter/Vol5/Issue4/Vol5%20Issue4.pdf

< 1% match (publications)</pre>

Hokkanen, Sanna, Eveliina Repo, Song Lou, and Mika Sillanpää. "Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose", Chemical Engineering Journal, 2015.

< 1% match (publications) 33

Prahas, D.. "Activated carbon from jackfruit peel waste by H"3PO"4 chemical activation: Pore structure and surface chemistry characterization", Chemical Engineering Journal, 20080701

< 1% match (publications) 34

Janaki, V., K. Vijayaraghavan, A.K. Ramasamy, Kui-Jae Lee, Byung-Taek Oh, and Seralathan Kamala-Kannan. "Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides compositeâ€"A novel eco-friendly polymer", Journal of Hazardous Materials, 2012.

< 1% match (student papers from 18-Oct-2011) 35

Submitted to Universiti Sains Malaysia on 2011-10-18

< 1% match (Internet from 09-Sep-2017) 36

https://tel.archives-ouvertes.fr/tel-01128280/file/2014LYO10260.pdf

< 1% match (Internet from 19-Dec-2009) 37

http://vetiver.com/ICV4pdfs/DC28.pdf

< 1% match (publications) 38

Sukpreabprom, Hatairat, Orn-anong Arqueropanyo, Wimol Naksata, Ponlayuth Sooksamiti, and Sorapong Janhom. "Single and binary adsorption of Cd (II) and Zn (II) ions from aqueous solutions onto bottom ash", Korean Journal of Chemical Engineering, 2015.

< 1% match (publications) 39

> Ines Bruno Tavares, M.. "Polypropylene-clay nanocomposite structure probed by H NMR relaxometry", Polymer Testing, 200712

< 1% match (Internet from 07-Nov-2015) 40

http://www.giesm.net/? action=articleInfo&article=9556

< 1% match (publications) 41

> Do, . "Fundamentals of Pure Component Adsorption Equilibria", Series on Chemical Engineering, 1998.

paper text:

1This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal,

institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Chemical **Engineering**

Journal 189-190 (2012) 264-274

15Contents lists available at SciVerse ScienceDirect Chemical Engineering Journal journal homepage: www.elsevier.com/locate/cej Removal of

40basic dyes in binary system by adsorption using rarasaponin-bentonite: **Revisited of extended Langmuir model**

Alfin Kurniawan, Hogiartha Sutiono,

26Nani Indraswati, Survadi Ismadji * Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia

29article info Article history: Received 23 January 2012 Received in revised form 23 February 2012 Accepted 23 February 2012 Keywords:

Adsorption Malachite green Methylene blue Binary system Extended Langmuir abstract The preparation of organo-bentonite via microwave radiation using natural surfactant (i.e. rarasaponin) from the tropical soapfruit pericarps of Sapindus rarak was conducted in this work. The adsorption per- formance of bentonite and its modified form was studied for the removal of two dyes (i.e. methylene blue and malachite green) in single and binary systems.

22Langmuir and Freundlich models were applied to evaluate adsorption equilibrium data in single systems.

3From physical meaning interpretation of the model parameters, it was found that Langmuir model gave the best representation.

A new approach in representing binary experimental isotherms with extended Langmuir model incorporating fractional surface coverage in 3D mesh plot was also verified. The results show that recently proposed modification of extended Langmuir model could be used to evaluate binary adsorption data well with reasonable fitted parameter value. © 2012 Elsevier B.V. All rights reserved.

231. Introduction The increasing environmental pollution from domestic and industrial effluents, particularly in the developing countries is of major concern.

One kind of contaminants that are frequently pol- luting the water systems are dyes. Dyes are complex aromatic substances that indispensable in many industries such as tex- tile, paper, paint, leather, pigment, and pharmaceutical to impart color. Compared with natural dyes, synthetic dyes are superior in terms of color availability, permanent, ease to use, quick-setting and ensured by accurate formulas [1]. More than 100,000 kinds of synthetic dyes are commercially available with total amount of production reach 7 × 105 tonnes annually [2]. Of these, mala- chite green (MG) and methylene blue (MB) are two kinds of dyes that are most widely used among all other dyes in basic dye class [3,4]. Malachite green (4-[(4-dimethylaminophenyl)phenyl- methyl]-N,N-dimethylaniline) is a triphenylcarbenium salts, which composed of triarylmethane ring as the chromophore structure. Its applications are widely found in the paper, leather, silk and wool industries to color such products and aquaculture field as a biocide, fungicide and parasiticide therapeutic agent [3]. In other hand, methylene blue (3,7-bis(dimethylamino)phenothiazin-5- ium chloride) is a thiazine dye that used as redox indicator in the chemistry field, bacteria stain and indicator of viable yeast cell in the biology field and dyestuff for cotton, wool, paper and silk [4,5]. *

6Corresponding author. Tel.: +62 313891264; fax: +62 313891267.

24E-mail address: suryadiismadji @yahoo.com (S. Ismadji). 1385-8947/\$ – see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.

cej.2012.02.070 Despite of the commercial importance of MG and MB dyes, the presence of these substances in natural environment (e.g. water bodies) even in trace quantities are highly undesirable for both toxicological and esthetical reasons. Moreover, the prolonged accu- mulation of these dyes in human body via food chain can cause several diseases and disorders due to their carcinogenic and muta- genic activity [6,7]. Therefore, the removal of these dyes from waste effluents is of interest prior to release into natural environment. Several conventional methods are available for the treatment and decontamination of dyes including physical, chemical and biological methods such as ozonation, photocatalysis, chemical oxidation, membrane filtration, flotation, coagulation, aerobic and anaerobic microbial degradation, enzyme degradation and adsorp- tion [8,9]. However, most of them are considered ineffective for handling colored effluents

16due to chemical stability and low biodegradability of

most dyes. In other hand, adsorption

16has proven to be a promising and cost effective method for

this purpose.

16Cost is actually an important parameter for the selection of the adsorbent materials

in designing adsorption system. In recent years, attention has been focused on the search and development of various low cost alternative adsorbents for dyes removal, including agri- cultural solid wastes, industrial by-products and natural materials [10–12]. Clay has been emerged as potential natural adsorbents in the adsorption field due to their abundant reserve, low cost, high chem- ical and mechanical stabilities as well as high adsorptive properties. The applications of clay-based adsorbents for the removal of dyes have received growing attentions in the last decade [10,13-15]. Bentonite is a type of natural clay mineral that abundantly found in Table 1 Information on the methylene blue and malachite green dyes. Methylene blue (MB) Malachite green (MG) C.I number C.I name Chemical formula Molecular weight (g mol-1) (nm) Molecular 3D-structure 52015 Basic blue 9 C16H18N3SCI 319.85 664.1 42000 Basic green 4 C23H25N2Cl 364.91 617.3 many countries, including Indonesia. It is originated from the alter- ation of glassrich volcanic rocks such as tuffs and ash deposits that composed of montmorillonite mineral as the main constituent [16]. The surface properties of bentonite can be remarkably enhanced by replacing inorganic metal cations (typically Na+ and Ca2+) at ben- tonite interlayer with organic cations. This substitution results in the hydrophobic surface nature of bentonite, which is suitable for the adsorption of organic substances. Several studies have reported on the modification of bentonite using various surfactants such as CTAB, CDBAC, CPC, and TMAB for dye removal [17–19]. However, the use of synthetic surfactants often causes environmental issues and need an extra cost for the treatment of unused chemicals. For this reason, the utilization of natural surfactant (i.e. rarasaponin) from the tropical soapfruit pericarps of Sapindus rarak is highlighted in this work. This work deals with the removal of two basic dyes (i.e. MB and MG) in single and binary systems using Trenggalek ben- tonite modified with rarasaponin surfactant. To date, there is no report on the removal of these dyes in binary system using rarasaponin-bentonite. A new approach of extended Langmuir model for representation of experimental isotherm in binary sys- tem was also proposed. Most of studies on the binary adsorption of various substances used such model to evaluate adsorption equilib- rium data by introducing original KL and qm parameters from single system [20-24]. However, such procedure cannot be precisely implemented in binary system, where the competition between adsorbate components for the adsorption sites occurs and may act as the sorption-controlling factor. Therefore, we proposed a revis- ited mathematic expression of qm and KL parameters in extended Langmuir model for binary system by inclusion of fractional surface coverage. 2. Materials and methods 2.1. Materials Malachite green (A.R. Grade, purity > 96%) and methylene blue (A.R. Grade, purity > 95%) were purchased from Sigma Aldrich and used as received. Some information about these dyes and their molecular structures are summarized in Table 1. Rarasaponin sur- factant used in this study was isolated from the tropical fruit pericarps of S. rarak by extraction process. The detail procedure of rarasaponin extraction can be found elsewhere [10]. 2.2. Preparation of adsorbents

19Bentonite used in this study was collected from the mining site located in Trenggalek, East Java, Indonesia. The type of bentonite

from this location is Ca-bentonite. Prior to use, bentonite was puri-fied using H2O2 solution according to the procedure reported by Rahardjo et al. [25]. The

6cation exchange capacity (CEC) of bentonite was determined based on the **ASTM C837-99** standard procedure

and found to be 0.537 meq/g clay. The mineral compositions of ben- tonite were analyzed by atomic absorption spectrophotometry, in a FAAS Shimadzu AA6200 and the results are given as follows: SiO2 57.8%, Al2O3 21.6%, Fe2O3 6.4%, CaO 4.3%, Na2O 1.9%, MgO 1.5%, K2O 0.7% and H2O 5.8%. Rarasaponin-bentonite was synthesized by following proce-dure: 10 g of bentonite was dispersed into 50 mL distilled water containing rarasaponin surfactant with concentration

6equivalent to 1.5 times of the CEC of bentonite. The

mixture was then subjected to heating

6in a microwave oven (National NN-S327 WF) for 60 s at

heating power of 700 W. The resulting rarasaponin-bentonite

37was then repeatedly washed with distilled water and dried in an oven at 100 ∘C for 24 h.

2.3. Characterizations of adsorbents The pore structure of the adsorbents was analyzed by nitrogen adsorption at 77 K, in a Quadrasorb SI at relative pressure (p/p0) range from approximately 0.001 to 0.995. The samples were degassed in vacuum condition at 423 K for at least 24 h prior to the adsorption analysis. The surface area of the adsorbents (SBET) was determined by

33standard BET equation applied at relative pressure range from 0.06 to 0.3. The total pore volume

(VT) of the adsorbents was calculated from the gas adsorption data at the highest relative pressure (p/p0 = 0.995). The pore size distributions (PSDs) of the adsorbents were evaluated

14by Density Functional Theory (DFT) model available within the instrument with medium regularization. The layer structure of bentonite and rarasaponinbentonite was

characterized by XRD method (Rigaku Miniflex Goniometer). The powder XRD patterns of the samples were collected at 30 kV and 15 mA, with a Ni-filtered CuK? radiation (= 1.542 Å) at a step size of 0.01°. The

surface functional groups of the adsorbents were analyzed by infrared spectroscopy, in a FTIR Shimadzu 8400S spectrometer using KBr disk pelleting technique. The

14spectra data of the samples were recorded in the mid-IR wavenumber range

(4000-500 cm-1). The pHpzc

32(point of zero charge) of bentonite and rarasaponin-bentonite were determined by

pH-drift procedure [26], and found to be 2.86 and 3.02, respectively. 2.4. Adsorption experiments For single systems, the stock solutions of dyes at initial concentration of 1000 mg/L (2.74 mmol/L – MG and 2.67 mmol/L – MB) were prepared by dissolving a known amount of dye into distilled water. Adsorption isotherm experiments were carried out by adding various mass of adsorbent into a series of conical flasks containing 100 mL of dye solution. The flasks were then shaken in a Memmert shaking water bath at various temperatures (303.15 K, 323.15 K and 343.15 K) within 1–2 h until equilibrium condition reached. Subsequently, the mixture was centrifuged at 4500 rpm for 5 min to remove solid particles. The resultant

5supernatant was taken and analyzed its residual concentration

using a

5Shimadzu UV/Vis-1700 spectrophotometer at maximum absorbance wavelengths () of

617.3 nm for MG and 664.1 nm for MB,

5respectively. The effect of pH was also studied at pH range of

3-10.

5To adjust the pH, an appropriate amount of 0. 1 N HCl or NaOH solutions was added to the system. The

34calibration curves for dyes in single systems were prepared by measuring the absorbance of different concentrations of the dyes. The amount of

dye adsorbed at equilib- rium per unit of mass, qe, was calculated

9as follows: qe (C0 \neg Ce) × V = m (1) where C0 and Ce are the initial and equilibrium concentrations of dye in solution (mmol/L), respectively, V is the volume of dye solution (L) and m is the mass of the adsorbents used (g). For binary systems, the dye mixtures were prepared by

adding a known amount of MB dye (0.25 g, 0.5 g, 0.75 g and 1 g) into 1 L of MG

5solutions with initial concentration of 2.74 mmol /L.

Adsorption isotherm experiments were conducted based on the procedure in single system. The residual dye concentration in binary system was determined by measuring MG and MB dyes at 1 and 2, respectively,

20to give optical densities of d1 and d2, as

previously described by Choy et al. [20]: Ce,MG = kMG,M1kBM,2Bd,12 -- kkMMBG,,12k2MB,1 k d Ce,MB = kMGk,M1kGM,1Bd,22 -- kkMMGG,,22dk1MB,1 (2) (3) where kMG,1, kMG,2, kMB,1 and kMB,2

20are the calibration constants for MG and MB dyes at the two wavelengths, 1 and 2, respectively. The amount of

"i" dye adsorbed at equilibrium per unit of mass, qe,i, was calculated as follows: qe,i = (C0,i - Ce,i) ×

8V m (4) where C0, i and Ce, i are the initial and equilibrium concentrations of "i" dye in the mixture (mmol /L), respectively, V is the volume of dye mixture (L) and m is the mass of the adsorbents used (g). 3. Results and discussion 3.1. Pore characteristics of adsorbents The

pore structure of the solid is a critical variable in the adsorp- tion process since it determines the failure or success of such process from both equilibria and kinetic viewpoints. In this work, the pore structure of bentonite and rarasaponin–bentonite was analyzed by nitrogen adsorption at 77 K (Supporting information Fig. S1). From this figure, it can be confirmed the largely meso- porosity on the surface of bentonite and rarasaponin–bentonite, as denoted from the adsorption–desorption isotherm curves that exhibit type-IV shape based on IUPAC classification. Moreover, the mesoporous characters of the adsorbents were also observed from the hysteresis curve that lies

21between adsorption and desorption isotherm curves at relative pressure (p/p0) above 0.

5 (Supporting information Fig. S1). The surface area (SBET) of rarasaponin-bentonite was lower than bentonite (45.3 m²/g vs. 51.8 m²/g) while its total pore volume (VT) is higher than bentonite (0.49 cm³/g vs. 0.41 cm3/g). This is likely due to the formation of larger pore as a result of intercalation of organic modifier (i.e. acetyl cation) at the interlayer spacing of ben- tonite. Such pore characteristics are also evidenced from DFT result (Supporting information Fig. S2). 3.2. Layer characteristics of adsorbents

3XRD analysis can be used as useful tool to characterize the layer structure of bentonite before and after modification. The powder XRD patterns of bentonite and

rarasaponin-bentonite are shown in Fig. 1. From Fig. 1, it can be seen the reflection peak for Ca-bentonite at 2 = 5.92°

```
3with a d(0 0 1)-spacing value of 14.93 Å.
```

The presence of other mineral compounds such as kaolin (K), quartz (Q) and calcite (Ca) in bentonite were also observed in the reflections relative to the planes K(0 0 1), Q(1 0 1) and Ca(1 0 4), respectively. After modification with rarasaponin surfactant, the reflection peak of rarasaponin-bentonite was shifted to lower angle of 2 = 5.77° with

```
39an increase in d(0 0 1)-spacing
```

value to 15.87 Å. The slightly

```
39increase in the d(0 0 1)-spacing of
```

rarasaponin-bentonite denotes that not all the interlayer sheets have been intercalated by acetyl cations. Such phenomena result in the expansion of the 2:1 interlamellar distance and later will promote the adsorption capacity of rarasaponin-bentonite for dyes removal. 3.3. Surface chemistry characteristics of adsorbents Infrared spectroscopy analysis (FT-IR) was performed to probe the conformation of surfactant cation species at the interlayer of rarasaponin-bentonite and identify the vibrational frequency changes of surface groups of the adsorbents, which are involved in the sorption process (figure not shown here). The FT-IR assignments of bentonite and rarasaponin-bentonite are summarized in Table 2. From Table 2, it can be seen the formation of rarasaponin-bentonite proceeded via ion exchange mechanism between inorganic inter- layer cation (i.e. Ca2+) and acetyl cation (C2H3O+), as indicated from the presence of C O stretch vibration at 1712 cm−1. Other FT-IR assignments in bentonite, which are the characteristics of montmorillonite clay also noticed such as

```
28AI O Si deformation at 524 cm-1; Si O stretch of quartz at 677 cm-1; AI AI OH
defor- mation at 923 cm-1;
```

Si O stretch (in-plane) of tetrahedral sheet at 1040 cm-1; O H bend for adsorbed H2O at the interlayer of clay at 1638 cm-1 and O H stretch of aluminol (Al OH) or silanol (Si OH) at 3621 cm-1. The FTIR assignments of bentonite loaded with dyes (i.e. MB and MG) were also given in Table 2. From this table, it can be seen the presence of assignments of N O asymmetric stretch and S O stretch at 1528 cm-1 and 973 cm-1, respectively. These assignments may reveal to the binding of dye molecules onto the bentonite surface, which occur via electrostatic dipole-dipole

12interaction between negatively charged oxygen atoms of the deprotonated silanol sites and positively charged site of the

dye molecules (i.e. N+ for MG and S+ for MB). Moreover, the pres- ence of other assignment at 1592 cm-1, attributed to the aromatic C C stretch of the dye structure was also observed. The binding of the dye moieties in the silanol sites was also confirmed from the shifting of OH-stretch in the silanol species from 3621 cm-1 to 3563 cm-1 and reduction in its corresponding peak energy. Sim- ilar observations were also noticed in the FTIR assignments for rarasaponin-bentonite loaded with dyes. 3.4. Effect of pH The pH is regarded as a crucial parameter in the adsorption pro- cess since it may control the uptake mechanism of the adsorbate as well as influence the adsorption sites (e.g. the potential charge Table 2 FTIR assignments of pristine and dye-loaded adsorbents. FTIR assignments Wavenumber (cm-1) Bentonite rarasaponinbentonite Bentonite + dyes Rarasaponin- bentonite + dyes O H stretch (Si OH or Al OH) C O stretch (C2H3O+) O H bend (adsorbed H2O at the interlayer of clay) C C stretch (aromatic ring) N O stretch (asymmetric stretch) Si O stretch (in-plane) for tetrahedral sheet S O stretch Al Al OH Si O stretch (quartz) Al O Si 3621 3614 – 1712 1638 1636 – – – – 1040 1017 – – 923 916 677 675 524 522 3563 – 1638 1592 1528 1025 973 916 690 523 3548 1706 1638 1581 1542 1032 968 916 682 524 of the site) on the solid surface. In the case of dye adsorption, the

10changes in the structural and colour stabilities as well as degree of ionization for such adsorbate is also dependent on the pH of the solution [27]. The effect of pH on the adsorption of MB and MG dyes onto

rarasaponin-bentonite in single system was studied at pH range of 3-10 and the results are given in Fig. 2. As noted in Fig. 2, a gradual increase in the percentage removal for both dyes was observed

4in the pH range of 4-7 and reached its maximum at around pH 8.

Increasing pH more than this value would lead to insignificant change in the percentage removal for both dyes. Moreover, a substantial reduction in the color inten- sity for MG was observed at pH > 9 while the color intensity of MB Fig. 1. Powder XRD patterns of bentonite (A) and rarasaponin-bentonite (B). Fig. 2. Effect of pH on the adsorption of dyes onto rarasaponin–bentonite (C0 = 2.74 mmol/L; t = 2 h; T = 303.15 K). slightly changes from pH 8 to pH 10. Therefore pH 8 was selected as optimum point and used for further experiments in this study. Since both MG and MB are cationic dyes, which have similar pH value for their highest removal, therefore pH 8 was also used during adsorption experiments in binary system. In basic solution, the adsorption of cationic dyes was favored due to the presence of negatively charged sites (i.e. deprotonated silanol) on the adsorbent surface, resulting in the electrostatic forces between these groups and positively charged dye molecules. As mentioned in previous paragraph, the pH of the solution also gives

impact on the surface sites of the adsorbent, associated to the protonation and deprotonation of silanol groups (Si OH) as the active sites. The protonation and deprotonation of silanol species take place as follows:

21Si OH + H+
$$\rightarrow$$
 Si OH2+, whenpHsolution < pHpzc Si OH + OH- \rightarrow Si O- + H2O,

whenpHsolution > pHpzc In acidic solution (e.g. pH = 3), the adsorption of dyes was retarded due to sorption competition between hydrogen ions (H+) and dye molecules for occupancy of the active sites. Moreover,

4high concentration of H+ ions causes the protonation of silanol groups,

which resulted in ionic repulsion between cationic dye molecules and protonated silanol sites.

4As the pH of the system increases, the concentration of H+ ions in bulk solution decreases and the silanol sites become deprotonated, therefore increasing the neg- ative charge density on the adsorbent surface and facilitating the adsorption of dye molecules.

3.5. Adsorption isotherms Adsorption isotherm is the most valuable information in the adsorption studies for the practical and operational design of the sorption system since it describes the distribution of the adsorbate molecules within the solid and liquid phase at equilibrium. By evaluating this aspect, the information on the

41adsorption kinetics of single component system, adsorption equilibria of multicompo- nent systems and adsorption kinetics of multicomponent systems

can be obtained [28]. In the beginning, the adsorption models such as Langmuir, Freundlich, Sips, Toth, Dubinin-Raduskevich, Redlich-Peterson, Temkin, and Hill are extensively used to describe adsorption in gas phase, but in later, most of them can in prin- ciple be extended to liquid phase adsorption. Several studies have reported on the applications of different adsorption models to eval- uate various liquid phase adsorption systems [29–33]. 3.5.1. Adsorption isotherms for single system In this study, the two-well known adsorption models namely Langmuir and Freundlich were used to evaluate adsorption equi- librium data in single system. Langmuir model (1918) was proposed

27based on the kinetic principle, that is the adsorption rate is equal to the desorption rate from the surface to maintain zero rate of

accu- mulation when equilibrium is approached [28]. This model also assumed that the adsorption on surface occurs at a finite or defi- nite localized site

35with no lateral interaction and steric hindrance between the adsorbed species, even on the adjacent sites [34]. The Langmuir

model can be expressed mathematically as follows: qe = 1qm+KKLLCCee (5) where qm is the maximum adsorption capacity for the adsorbent, corresponds to the monolayer surface coverage (mmol/g) and KL

32is Langmuir constant represented adsorption affinity (L/mmol). The

characteristic of

25Langmuir model can be essentially expressed by dimensionless constant called equilibrium parameter, RL, as follows [35]: RL = 1 + KLC0 1 (6) The values of RL indicate various nature of the adsorption

systems

31to be unfavorable (RL > 1), favorable (0 < RL < 1), linear (RL = 1) or irreversible (RL = 0). The

second adsorption model used in this study was Freundlich. Freundlich (1932) proposed an adsorption on surface with non- ideal and reversible characteristics, which is not restricted to the monolayer adsorption [36]. To date,

15this model has been success-fully applied to describe various adsorption systems of

organics onto activated carbon and other adsorbents. However, the applica- tion of Freundlich model to evaluate adsorption data is generally valid in the narrow range of concentration since this model does not have Henry law limit

19at low concentration and saturation limit at high- end concentration. The Freundlich model

has the following form: ge = KF × Ce1/n (7) where KF and n are Freundlich constants for adsorptivity of solute [(mmol/g)(mmol/L)-n] and system heterogeneity, respectively. Higher value of n denotes the more heterogeneous the system is and the system approaches a rectangular isotherm (or irreversible isotherm) when n value is getting larger than about 10 [28]. The KF constant can also be regarded as the maximum adsorption capacity of the adsorbent only when the value of n approaches infinite [37]. The plots of the applied models against adsorption equilibrium data at various temperatures are depicted in Figs. 3 and 4.

The values of the model parameters were obtained by nonlinear least square fitting and the results are given in Table 3. From Figs. 3 and 4, it seems that both Langmuir and Freundlich models can fit all exper- imental data well, as indicated by good values of correlation factor (R2) that lies between 0.95 and 0.99. The values of KL and KF param- eters seem to increase at higher temperature, denoting that higher temperature favors the adsorption process due to greater adsorp- tivity of dye molecules toward the adsorbent surface. The increase in affinity parameter can also be explained from kinetics viewpoint that is higher temperature provides more energy for the solutes to undergo an interaction with the active sites on the solid surface. Similar observation is also noticed in the qm parameter, in which this value increases by the increase of temperature. Higher value of gm for rarasaponin-bentonite is likely due to the expansion of 2:1 interlamellar distance as a result of insertion of acetyl cation, which promotes the adsorption capacity of the adsorbent for dyes removal. Fitted parameters for the adsorption of MB and MG in single system at various temperatures. Adsorbent Adsorbate T (K) Langmuir parameters Freundlich parameters qm (mmol/g) KL (L/mmol) R2 RL KF (mmol.g-1) (mmol/L)-1/n n R2 Bentonite MG MB 303.15 323.15 343.15 303.15 323.15 343.15 0.51 0.53 0.56 0.54 0.57 0.59 1.56 2.13 3.23 1.67 2.46 3.34 0.98 0.97 0.99 0.98 0.97 0.97 0.19 0.15 0.10 0.18 0.13 0.10 0.31 0.35 0.41 0.34 0.37 0.42 2.73 3.00 3.39 2.72 3.15 3.22 0.98 0.98 0.99 0.97 0.97 0.98 Rarasaponin-Bentonite MG MB 303.15 323.15 343.15 303.15 323.15 343.15 0.66 0.87 0.93 0.71 0.89 0.96 1.71 2.31 3.66 1.75 2.54 4.13 0.98 0.98 0.97 0.99 0.98 0.98 0.18 0.14 0.09 0.18 0.13 0.08 0.36 0.47 0.73 0.41 0.49 0.76 2.15 2.34 2.72 2.19 2.27 2.81 0.98 0.97 0.95 0.98 0.98 0.94 By comparing the fitted parameters obtained, it is known

30that the adsorptivity of MB dye towards the adsorbent surface is

higher than MG dye. This result can be explained from molecular view- point that is small molecule gains

4easier access to the internal pore-network of the adsorbent

than large molecule. MB has lower molecular weight therefore its molecular size is smaller than MG. Moreover, higher affinity of MB dye is also caused due to more stabi- lized positive charge at the sulfur atom as a result of the -I inductive effect of the benzene ring [38], resulting in stronger dipole-dipole

12interaction between negatively charged oxygen atom and posi-tively charged sulfur atom

compared to

12negatively charged oxygen atom and positively charged nitrogen atom. The

value of n parameter in Freundlich model also increases with increase of temperature. This is due to faster mobility of the adsor- bate molecules in bulk solution, which rise the randomness degree of the system. The value of n parameter for rarasaponin-bentonite Fig. 3. Equilibrium plot and the models fit

13for the adsorption of MB and MG in single system onto bentonite at various temperatures. Fig.

4. Equilibrium plot and the models fit

13for the adsorption of MB and MG in single system onto rarasaponin-bentonite at

various temperatures. is considered to be higher than bentonite due to the present of organic modifier in the 2:1 interlayer space, causing the solid system to be more complex and heterogeneous. However, inconsistency results are noticed in this study that is the n values for rarasaponin–bentonite systems are lower than bentonite systems. This result reveals that Freundlich model fails to give best representation from parameters justification. Therefore, its extended form (extended Freundlich) is not further

38used to evaluate adsorption equilibrium data in binary system.

3.5.2. Adsorption isotherms for binary system In this study, the extended Langmuir model was used to evalu- ate

38adsorption equilibrium data in binary system. The mathematic expression of extended Langmuir

model is given below: qe,i = 1 + m,iKj=L1,iKCLe,,iiCe,i q n (8) For binar∑y

13system, the extended Langmuir equation above becomes: qe ,1 = 1 + KLm ,1, C1e,1L ,1+

Ke,L1,2Ce,2 q K C (9) qe,2 = 1 + KLm,1,C2e,1L,2+ Ke,L2,2Ce,2 q K C (10) where qm and KL in Eqs. (9) and (10) are Langmuir constants for

6maximum adsorption capacity of the adsorbents (mmol/g) and adsorptivity of the

adsorbates (L/mmol) in single system, respectively. The applications of extended Langmuir model to represent adsorption equilibrium data in binary system have been reported in several studies [20–24]. From the previous studies, it was known that the evaluation of binary adsorption equilibrium data using extended Langmuir model was performed by inserting the values of qm and KL parameters in single system to calculate theoretical value of qe and compared it with experimental results. However, such procedure cannot

be precisely implemented for binary adsorption system although it may give good correlation result. In binary sys- tem, the competitions (total or partial) between adsorbate species

22for the adsorption sites on the solid surface occur and

may act as the sorption-controlling factor. Such phenomena result in the cov- erage on the solid surface by both adsorbates with certain fractional loadings. Moreover, the adsorption potential on the surface is also affected by lateral interaction or competition between adsorbate species in the system. From the statements above, it is obvious that both KL and qm parameters from single Langmuir model cannot be adequately used to describe adsorption behaviors in binary system. Therefore, we proposed a revisited mathematic equation for gm and KL parameters for binary adsorption system as follows: gm(bin) = gm,1(sin) 1 + qm,2(sin) 2 (11) KL,1(bin) = KL,1(sin) exp(-21) (12) KL,2(bin) = KL,2(sin) exp(-12) (13) Fig. 5.Comparison plotting between original-extended Langmuir (A and B) and proposed-extended Langmuir (C) models against binary experimental data (2.74 mmol/L MG + 1.34 mmol/L MB - bentonite - 303.15 K). where 1 and 2 are constants representing fractional loading of each adsorbate species on the adsorbent surface. The mathematic relationship between qm and is clearly understand that is the sur- face of the adsorbent was occupied by both adsorbates with certain loadings. In other hand, the mathematic relationship between KL and can be explained principally from the surface coverage view- point that is the adsorption potential on the surface is weakened when the adsorbate species competed each other for the adsorp- tion sites. Since the competition between adsorbate species occurs in binary system, therefore the values of adsorption potential (or affinity) for each adsorbate should be lower than in single system. Substitute Eqs. (11)–(13) into extended Langmuir model give: qe,1(bin) = 1 + K(Lq,1m(s,i1n()sienx)p1(-+ q2m/,21(s)iCn)e,12()bKinL),1+(siKn)L,e2x(spin()-exp(-1)1C/e,12(b)iCne),2(bin) 2 / qe,2(bin) 1 + KL,1(sin) $\exp(-2/1)$ Ce,1(bin) + KL,2(sin) $\exp(-1/2)$ Ce,2(bin) = (gm,1(sin) 1 + gm,2(sin) 2)KL,2(sin) $\exp(-1/2)$ Ce,2(bin) $\exp(-1/2)$ Ce,2(b 2)Ce,2(bin) (14) (15) Fig. 6. Model fit of proposed-extended Langmuir at different viewpoints against binary adsorption data (2.74 mmol/L MG + 1.34 mmol/L MB - bentonite - 303.15 K). Fig. 7. Model fit of proposedextended Langmuir at different viewpoints against binary adsorption data (2.74 mmol/L MG + 1.34 mmol/L MB – rarasaponin–bentonite – 303.15 K). Both equations above will return to single Langmuir model if only one adsorbate species is presented in solution (i.e. 2 = 0 in Eq. (14) and 1 = 0 in Eq. (15)). To get better understanding whether our model is applicable to represent binary adsorption experi- mental data, we compare the plot of experimental isotherm data (2.74 mmol/L MG + 1.34 mmol/L MB - bentonite - 303.15 K) against original-extended Langmuir (Eqs. (9) and (10)) and proposed- extended Langmuir models (Eqs. (14) and (15)) in 3D mesh plot, as presented in Fig. 5. In Fig. 5, the blank data points represent the plot of Ce,MB as x- axis vs. Ce,MG as y-axis vs. qe,MB as z-axis while the filled data points denote the plot of Ce,MG as x-axis vs. Ce,MB as y-axis vs. qe,MG as z- axis. For binary system, the plot of the model should fit both data points since the concentration of both adsorbate species in bulk solution is in a dynamic balance with the interface concentration at equilibrium condition. Fig. 5A clearly shows a very poor fit between the mesh plot and experimental data points since all data points lie below the mesh plot. This result may confirm that evaluation of binary adsorption data by comparing theoretical value of qe with experimental results is not valid. In other hand, Fig. 5B and C denote a very good fitting between the models and experimental data. However, the values of fitted parameters obtained from original- extended Langmuir model (Fig. 5B) are deviate away as those for single system therefore this fitting is not valid from parameters interpretation viewpoint. To this end, the value of fitted parameter obtained (1) from proposed-extended Langmuir model (Fig. 5C) is reasonable with good correlation factor (R2 = 0.95), therefore this proposed model is further used for evaluation of binary adsorption equilibrium data in this study. The plotting of Eqs. (14) and (15) against binary experimen- tal data (e.g. 2

2.74 mmol/L MG + 1.34 mmol/L

MB and 2

2.74 mmol/L MG + 1. 34 mmol/L

MB) onto bentonite and rarasaponin–bentonite at 303.15 K was performed by SigmaPlot software and the results are displayed in 3D-mesh plot (Figs. 6 and 7). The fitted parameter (1) was obtained by nonlinear least square fitting and the results are summarized in Table 4. The

18values of qm(bin), KL,1(bin) and KL,2(bin) parameters are

calculated by inserting the value of 1 parameter into Eq. (11), Eq. (12) and Eq. (13), respectively.

30From Table 4, it can be seen the value of

1, which refers to the fractional surface coverage by MG, decreases as the concentration of MB in the dye mixture increases. At the same concentration (i.e. 2.74 mmol/L (1000 mg/L) MG + 2.67 mmol/L (1000 mg/L) MB), the fractional loading of MB (2) is larger than MG, denoting that MB is preferentially adsorbed on the adsorbent surface than MG.

18This result is consistent with adsorption characteristics in single system that is the adsorptivity of MB is larger than

MG, causing more cov- erage on the adsorbent surface. Increasing temperature also leads to the increase in affinity constants for both dyes, denoting that higher temperature favors the adsorption process. Higher value of qm for rarasaponin–bentonite is due to larger interlamellar spaces so that more dye molecules can occupy the internal pore in the solid matrix. Fitted and calculated parameters for MB and MG adsorption in binary system at various dye mixtures and temperatures. Adsorbent Dye mixture T (K) Fitted parameter 1 Calculated parameters R2 2 KL,1(bin) KL,2(bin) qm(bin) Bentonite Rarasaponin–bentonite 2

2.74 mmol/L MG + 0.67 mmol/L MB 2.74 mmol/L

MG + 1.34 mmol/L MB 2.74

2mmol/L MG + 2. 01 mmol/L MB 2 .74 mmol/L MG + 2.67 mmol/L MB 2.74 mmol/L

MG + 0.67 mmol/L MB

11**2.74 mmol/L** MG + 1.34 **mmol/L**

MB 2.74

2mmol/L MG + 2. 01 mmol/L MB 2 .74 mmol/L MG + 2.67 mmol/L MB 2.74 mmol/L

MG + 0.67 mmol/L MB

11**2.74 mmol/L** MG + 1.34 **mmol/L**

MB 2.74

2mmol/L MG + 2. 01 mmol/L MB 2 .74 mmol/L MG + 2.67 mmol/L MB 2.74 mmol/L

MG + 0.67 mmol/L MB

11**2.74 mmol/L** MG + 1.34 **mmol/L**

MB 2.74

2mmol/L MG + 2. 01 mmol/L MB 2 .74 mmol/L MG + 2.67 mmol/L MB 2.74 mmol/L

MG + 0.67 mmol/L MB

11**2.74 mmol/L** MG + 1.34 **mmol/L**

MB 2.74

2mmol/L MG + 2. 01 mmol/L MB 2 .74 mmol/L MG + 2.67 mmol/L MB 2.74 mmol/L

MG + 0.67 mmol/L MB

11**2.74 mmol/L** MG + 1.34 **mmol/L**

MB 2.74 mmol/L MG + 2.01 mmol/L MB 2.74 mmol/L MG + 2.67 mmol/L MB 303.15 0.57 0.51 0.42 0.36 323.15 0.55 0.49 0.38 0.33 343.15 0.51 0.45 0.34 0.31 303.15 0.53 0.46 0.38 0.32 323.15 0.49 0.44 0.35 0.30 343.15 0.47 0.41 0.31 0.27 0.43 0.74 0.49 0.60 0.58 0.39 0.64 0.26 0.45 0.94 0.51 0.75 0.62 0.42 0.67 0.28 0.49 1.24 0.55 0.95 0.66 0.46 0.69 0.35 0.47 0.70 0.54 0.53 0.62 0.34 0.68 0.20 0.51 0.82 0.56 0.65 0.65 0.36 0.70 0.22 0.53 1.19 0.59 0.87 0.69 0.40 0.73 0.25 0.44 0.59 0.81 0.95 0.73 0.94 1.15 1.30 1.18 1.47 1.99 2.13 0.57 0.75 0.95 1.09 0.97 1.16 1.48 1.66 1.70 2.06 2.64 2.85 0.51 0.51 0.52 0.52 0.53 0.54 0.54 0.54 0.56 0.57 0.57 0.57 0.66 0.66 0.67 0.67 0.87 0.87 0.88 0.88 0.96 0.97 0.97 0.97 0.88 0.95 0.94 0.91 0.91 0.89 0.88 0.93 0.92 0.91 0.93 0.94 0.95 0.91 0.89 0.91 0.94 0.93 0.91 0.95 0.89 0.92 0.94 0.91 4. Conclusions Preparation of rarasaponin-bentonite via microwave radiation has been demonstrated in this work. Batch adsorption experi- ments at three different temperatures were performed to test adsorption performance of bentonite and rarasaponin-bentonite for the removal of methylene blue and malachite green in sin- gle and binary systems. Experimental isotherms in single systems

3were analyzed by Langmuir and Freundlich models and their fit- ting results were contrasted. From physical meaning interpretation of the model parameters, it was found that Langmuir model gave the best representation.

For binary system, experimental isotherms were presented in the 3D mesh plot and were interpreted using extended Langmuir model incorporating fractional surface cover- age (). The results show that recently proposed modification of extended Langmuir model can be used to describe binary adsorption experimental data well with reasonable fitted parameter value.

17Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.cej.2012.02.

070. References [1] S. Chowdhury, P. Saha, Sea shell powder as a new adsorbent to remove basic green 4 (malachite green) from aqueous solutions: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J. 164 (2010) 168–177. [2] C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes Pigments 58 (2003) 179–196. [3] S.D. Khattri, M.K. Singh, Colour removal from dye wastewater using sugar cane dust as an adsorbent, Adsorpt. Sci. Technol. 17 (1999) 269-282. [4] O. Hamdaoui, Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns, J. Hazard. Mater. 138 (2006) 293–303. [5] A.R. DiSanto, J.G. Wagner, Pharmacokinetics of highly ionized drugs. II. Methy- lene blue - absorption, metabolism, and excretion in man and dog after oral administration, J. Pharm. Sci. 61 (1972) 1086-1090. [6] J.W. Harvey, A.S. Keitt, Studies of the efficacy and potential hazards of methy- lene blue therapy in aniline-induced methaemoglobinaemia, Br. J. Haematol. 54 (1983) 29–41. [7] E. Sudova, J. Machova, Z. Svobodova, T. Vesely, Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review, Vet. Med. 52 (2007) 527-539. [8] C. Fernandez, M.S. Larrechi, M.P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents, Trends Anal. Chem. 29 (2010) 1202–1211. [9] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – a review, J. Environ. Manage. 90 (2009) 2313–2342. [10] A. Kurniawan, H. Sutiono, H.-Y. Ju, F.E. Soetaredjo, A. Ayucitra, A. Yudha, S. Ismadji, Utilization of rarasaponin

natural surfactant for organo-bentonite preparation: application for methylene blue removal from aqueous effluent, Micropor. Mesopor. Mater. 142 (2011) 184–193. [11] S. Netpradit, P. Thiravetyan, S. Towprayoon, Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system, Water Res. 38 (2004) 71-78. [12] G. Annadurai, R.S. Juang, D.J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solution, J. Hazard. Mater. 92 (2002) 263–274. [13] Y.S. Ho, C.C. Chiang, Y.C. Hsu, Sorption kinetics for dye removal from aqueous solution using activated clay, Sep. Purif. Technol. 36 (2001) 2473–2488. [14] Q. Li, Q.-Y. Yue, H.-J. Sun, Y. Su, B.-Y. Gao, A comparative study on the prop- erties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationicpolymer/bentonite, J. Environ. Manage. 91 (2010) 1601–1611. [15] O. Gok, A.S. Ozcan, A. Ozcan, Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite, Appl. Surf. Sci. 256 (2010) 5439–5443. [16] H.A. Patel, R.S. Somani, H.C. Bajaj, R.V. Jasra, Synthesis and characterization of organic bentonite using Gujarat and Rajasthan clays, Curr. Sci. 92 (2007) 1004–1009. [17] B. Zohra, K. Aicha, S. Fatima, B. Nourredine, D. Zoubir, Adsorption of Direct Red 2 on bentonite modified by cetyltrimethylammonium bromide, Chem. Eng. J. 136 (2008) 295–305. [18] P. Baskaralingam, M. Pulikesi, V. Ramamurthi, S. Sivanesan, Modified hec- torites and adsorption studies of a reactive dye, Appl. Clay Sci. 37 (2007) 207–214. [19] J. Li, L. Zhu, W. Cai, Microwave enhanced-sorption of dyestuffs to dual-cation organobentonites from water, J. Hazard. Mater. 136 (2006) 251-257. [20] K.K.H. Choy, J.F. Porter, G. McKay, Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon, J. Chem. Eng. Data 45 (2000) 575-584. [21] K.K.H. Choy, S.J. Allen, G. McKay, Multicomponent equilibrium studies for the adsorption of basic dyes from solution on lignite, Adsorption 11 (2005) 255–259. [22] K.S. Baig, H.D. Doan, Ju Wu, Multicomponent isotherms for biosorption of Ni2+ and Zn2+, Desalination 249 (2009) 429–439. [23] G. Atun, E.T. Acar, Competitive adsorption of basic dyes onto calcite in single and binary component systems, Sep. Sci. Technol. 45 (2010) 1471–1481. [24] S. Chakraborty, J.K. Basu, S. De, S.D. Gupta, Adsorption of reactive dyes from textile effluent using sawdust as the adsorbent, Ind. Eng. Chem. Res. 45 (2006) 4732-4741. [25] A.K. Rahardjo, M.J.J. Susanto, A. Kurniawan, N. Indraswati, S. Ismadji, Modified ponorogo bentonite for the removal of ampicillin from wastewater, J. Hazard. Mater. 190 (2011) 1001–1009. [26] P.C.C. Faria, J.J.M. Orfao, M.F.R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res. 38 (2004) 2043–2052. [27] A. Saeed, M. Sharif, M. Iqbal, Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption, J. Hazard. Mater. 179 (2010) 564-572. [28] D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998. [29] A. Seker, T. Shahwan, A.E. Eroglu, S. Yilmaz, Z. Demirel, M.C. Dalay, Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cad- mium(II) and nickel(II) ions on Spirulina platensis, J. Hazard. Mater. 154 (2008) 973–980. [30] A. Kurniawan, A.N. Kosasih, J. Febrianto, H.-Y. Ju, J. Sunarso, N. Indraswati, S. Ismadji, Evaluation of cassava peel waste as lowcost biosorbent for Ni- sorption: equilibrium, kinetics, thermodynamics and mechanism, Chem. Eng. J. 172 (2011) 158–166. [31] S. Kalyani, P.S. Rao, A. Krishnaiah, Removal of nickel(II) from aqueous solu- tions using marine macroalgae as the sorbing biomass, Chemosphere 57 (2004) 1225-1229. [32] A. Khenifi, B. Zohra, B. Kahina, H. Houari, D. Zoubir, Removal of 2,4-DCP from wastewater by CTAB/bentonite using one-step and two-steps methods: a com- parative study, Chem. Eng. J. 146 (2009) 345–354. [33] E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of basic dyes from aqueous solution onto activated carbons, Chem. Eng. J. 135 (2008) 174–184. [34] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38 (1916) 2221–2295. [35] T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, AIChE J. 20 (1974) 228–238. [36] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–471. [37] X. Lu, Comment on thermodynamic and isotherm studies of the biosorption of Cu(II), Pb(II), and Zn(II) by leaves of saltbush (Atriplex canescens), J. Chem. Thermodyn. 40 (2008) 739-740. [38] A.E. Ofomaja, Kinetic study and sorption mechanism of methylene blue and methyl violet onto

Mansonia (Mansonia altissima) wood sawdust, Chem. Eng. J. 143 (2008) 85-95. Author's personal copy Author's personal copy A. Kurniawan et al. /

7Chemical Engineering Journal 189–190 (2012)

264-274 265 266 Author's personal copy A. Kurniawan et al. /

7Chemical Engineering Journal 189-190 (2012)

264-274 Author's personal copy A. Kurniawan et al. /

7Chemical Engineering Journal 189-190 (2012)

264-274 267 268 Author's personal copy A. Kurniawan

36et al. / Chemical Engineering Journal 189-190 (2012) 264-274 Table 3

Author's personal copy A. Kurniawan et al. /

7Chemical Engineering Journal 189-190 (2012)

264-274 269 270 Author's personal copy A. Kurniawan et al. /

7Chemical Engineering Journal 189-190 (2012)

264-274 Author's personal copy A. Kurniawan et al. /

7Chemical Engineering Journal 189–190 (2012)

264–274 271 272 Author's personal copy A. Kurniawan

36et al. / Chemical Engineering Journal 189-190 (2012) 264-274 Table 4

Author's personal copy A. Kurniawan et al. /

7Chemical Engineering Journal 189-190 (2012)

264–274 273 274 Author's personal copy A. Kurniawan et al. / Chemical Engineering Journal 189–190 (2012) 264-274